图形问题(三)——代数法解图形

合集下载

以形助数-以数解形——浅谈数形结合思想在初中数学中的应用

以形助数-以数解形——浅谈数形结合思想在初中数学中的应用

以形助数,以数解形—-浅谈数形结合思想在初中数学中的应用摘要:在初中数学中,数形结合思想无处不在,利用好它可以帮助解决较难问题,并提高解题速度。

笔者结合教学实际,对数形结合思想进行浅议,探讨其在数学教学中的应用.关键词:数形结合初中数学数学应用数形结合思想是初中数学中一种重要的数学思想.在近几年武汉中考数学试卷中,利用数形结合思想解决问题的题目屡见不鲜,而且有逐年加强的趋势,可见其重要性。

因此,笔者结合数学教学实际,探讨数形结合思想在初中数学中的应用.在《初中数学新课程标准》中提到:“数学中有一些重要内容、方法、思想是需要学生经历较长的认识过程,逐步理解和掌握的,如:数形结合思想等。

”[1]所谓数形结合,就是指把代数的精确刻划与几何的形象直观相统一,将抽象思维与形象直观相结合的一种思想方法。

利用它可以使复杂的问题简单化,抽象的问题具体化,很多难题便迎刃而解,而且解法简便易懂。

数与形是密切相关的两个数学表象,它们是一一对应的关系,且相互依存、相互促进.在解决数学问题时,我们要把它们有机的结合起来,并相互转化,即把几何图形转化为数量关系问题, 应用代数、三角函数等知识进行讨论,或者把数量关系问题转化为图形问题,借助几何知识加以解决,使学生看到“形”能想到“数”, 而看到“数”则能想到“形”,最终达到优化解题途径的目的.著名的数学家华罗庚说得好:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离" [2].初一我们就学习了数轴,它建立起了实数与数轴上的点的一一对应关系.进而,又引入了直角坐标系,它扩大成了有序实数对与坐标平面上的点的一一对应.到了初二、初三又陆续学习了一次函数、二次函数,我们知道它们跟直线、抛物线也是一一对应的关系,以至于后来的“用函数的观点看方程”,实质上就是曲线和方程的对应关系。

正是这些数与形的对应,才促使我们要利用它们之间的联系,相互结合,相互转化,最终达到解决数学问题的目的。

最新人教版中考数学复习专题17 证明题(3)——代数与规律探究

最新人教版中考数学复习专题17  证明题(3)——代数与规律探究

(3)a1+a2+a3+a4+a5+a6=____________(得出最简结果);
返回目录
(4)计算:a1+a2+…+an.
返回目录
谢谢
返回目录
返回目录
5. 如图ZT17-2,每个图形都由同样大小的小正方形按照一定的 规律组成,每个小正方形的面积是1.
返回目录
根据图形与等式的关系解答下列问题: (1)直接写出图⑤所反映的等式:____1_+_2_+_3_+_4_+_5_=___________ ; (2)猜想图n所反映的等式,并证明; (解3:)(根2据)(图2①)所的反结映论的计等算式::1011=+102+103+…+2 020+2 021.
返回目录
(3)101+102+103+…+2 020+2 021 =(1+2+3+…+2 021)-(1+2+3+…+100) = =2 038 181.
返回目录
6. 观察下列等式: 第一个等式:a1= 第二个等式:a2= 第三个等式:a3= 第四个等式:a4=
返回目录
按上述规律,回答下列问题:
专题训练
专题17 证明题(3)——代数与规律探究
1. (2019·安徽)观察以下等式:
按照以上规律,解决下列问题: (1)写出第6个等式:_________________________.
ቤተ መጻሕፍቲ ባይዱ
返回目录
(2)写出你猜想的第n个等式:
___________________________________________

(完整版)解圆锥曲线问题常用的八种方法与七种常规题型

(完整版)解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知---—-—--这类问题一般可用待定系数法解决. 2.曲线的形状未知-———-求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。

第一定义中,r 1+r 2=2a 。

第二定义中,r 1=ed 1 r 2=ed 2。

(2)双曲线有两种定义。

第一定义中,a r r 221=-,当r 1〉r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明.2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。

设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法",即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M (x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。

代数问题的图形解法

代数问题的图形解法

即 "$( %&) +,
若 "#$#%#&有为 +者#例如#若 ") +#则
$)9 *#&) +#%)9 *#结论显然成立,
: 证明不等式
例 : 已知 "#$#;#<为正实数#且 "’(
$’) *#;’( <’) *,求证-";( $<= *,
.*//>年河北省邯郸市 中 学 生 数 学 竞 赛
试题1
:5-,)
: #






##8$ :8
#
/
推广 ; 已知 <-80 => -且 <& #-?!-
?#-@-?< 0 ’1-$ 2(-"!-"#-@-"<-:0 ’1-
$
2 (-"!$
"#$
@
$
"<
)
:-求
?! "8!
$
?# "8#
$
@
$
?< "8<
的最小值/
解 法 同 文 A!B-结 论 是 6当 且 仅 当
下载时间:2010年8月10日
所以原式
图!
) T + 矩形LMQS T ) 矩形POSR !FFI!FF43 !+ !FF4!FF43 !) !1111/
’++O年第 *期
中学数学月刊
T I?T
! 证明等式
例 ! 已 知 "#$#%#&是 实 数#且 满 足 "’ ( $’) *#%’( &’) *#"%( $&) +,求证-$’ ( &’) *#"’( %’) *#"$( %&) +,

新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。

解方程的三种基本方法

解方程的三种基本方法

解方程的三种基本方法解方程是数学中最基本的问题之一、解方程的方法有很多种,其中包括代数法、图形法和几何法等多种方法。

下面将详细介绍解方程的三种基本方法。

一、代数法代数法是解方程最常用的方法之一、它通过代数运算来找到方程的解,主要包括如下几种思路和方法:1.移项法:将方程中的项移动到一个侧边,使方程变为等式,从而得到解。

例如,对于方程2x+3=7,可以通过将等式两侧的3移动到右边得到2x=7-3,进一步计算得到x=22.合并同类项法:将方程中的同类项合并,从而简化方程。

例如,对于方程3x+2x=10,可以将等式两边的同类项3x和2x合并为5x,得到5x=10,进一步计算得到x=23.代入法:将已知的解代入方程,验证是否满足方程,如果满足则为方程的解。

例如,对于方程x^2-3x+2=0,已知x=1是方程的解,将x=1代入方程得到1^2-3*1+2=0,等式成立,所以x=1是方程的解。

4.因式分解法:将方程进行因式分解,从而找到方程的解。

例如,对于方程x^2-x=0,可以将方程进行因式分解得到x(x-1)=0,从而得到x=0或x=15. 二次方程求根公式:对于二次方程ax^2 + bx + c = 0,可以使用二次方程的求根公式来求得方程的解。

求根公式为x = (-b ± √(b^2 - 4ac))/2a,其中√表示平方根。

例如,对于方程x^2-5x+6=0,可以通过代入a=1,b=-5,c=6,然后使用求根公式计算得到x=2或x=3二、图形法图形法是通过绘制方程对应的图形来找到方程的解,主要包括如下几种方法:1.坐标法:将方程表示为y=f(x)的形式,然后在坐标系中绘制函数y=f(x)的图像,根据图像与x轴的交点来得到方程的解。

例如,对于方程x^2-4=0,将方程表示为y=x^2-4,绘制函数y=x^2-4的图像,发现该图像与x轴的交点为x=2或x=-2,所以方程的解为x=2或x=-22.代数几何法:将方程表示为两个图形的交点,然后通过观察图形的性质来找到方程的解。

3.3探索与表达规律(一)——图形变化类2024-2025学年北师大版(2024)数学七年级上册

3.3探索与表达规律(一)——图形变化类2024-2025学年北师大版(2024)数学七年级上册
第三章 整式及其加减
探索与表达规律(一) ——图形变化类
·数学
1.(2022新课标)了解代数推理. 2.能用代数式表示并借助代数式运算验证所探索规律的一 般性,并对具体现象做出解释.
抽象能力 运算能力 推理能力 应用意识
·数学
探索规律的一般方法 (1)从具体的、实际的问题出发,观察各个数量的特点及相 互之间的变化规律; (2)由此及彼,合理联想,大胆猜想; (3)善于类比,从不同事物中发现其相似或相同点; (4)总结规律,作出结论,并验证结论正确与否; (5)在探索规律的过程中,要善于变换思维方式,达到事半 功倍的效果.
以采用横着看、竖着看、斜对角看等方法,有时题目的问题
也是找规律的方向.
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
·数学
2.(北师7上P96)观察如左图所示的日历图. (1)日历图中的数有什么规律? 横着看:每横行中相邻两数相差 1 ; 竖着看:每竖行中相邻两数相差 7 ; (2)日历图的套色方框中的9个数之和与该方框正中间的数有 什么关系?
·数学
(1)框中的四个数的关系是 对角两数的和相等 ; (2)在图中任意画一个类似(1)中的框,设左上角的一个数为x, 那么其他三个数怎样表示?你能求出这四个数的和吗?
解:(2)其他三个数分别为x+2,x+8,x+10,四个数的和 为x+(x+2)+(x+8)+(x+10)=4x+20.

利用代数式求解解决几何图形问题

利用代数式求解解决几何图形问题

利用代数式求解解决几何图形问题一、基本概念与性质1.1 几何图形的定义与分类:平面几何图形、立体几何图形等。

1.2 点、线、面的基本性质:点的位置、线的方向与长度、面的面积与形状。

1.3 角度与弧度的概念:角度的度量、弧度的定义。

1.4 三角形、四边形、圆的基本性质:三角形的边长关系、四边形的对角线关系、圆的半径与直径关系。

二、点的坐标与直线方程2.1 坐标系的概念:直角坐标系、极坐标系。

2.2 点的坐标表示:坐标轴上的点、坐标平面内的点。

2.3 直线方程的定义:直线的一般方程、直线的点斜式方程。

2.4 直线与坐标轴的关系:直线与x轴、y轴的交点。

三、三角形的相关代数式求解3.1 三角形的边长关系:海伦公式、余弦定理。

3.2 三角形的面积公式:底乘高、海伦公式。

3.3 三角形的角度关系:正弦定理、余弦定理。

四、四边形的相关代数式求解4.1 四边形的对角线关系:对角线互相平分、对角线交点为重心。

4.2 四边形的面积公式:分割成三角形求面积、对角线交点公式。

五、圆的相关代数式求解5.1 圆的半径与直径关系:半径与直径的比值、圆的周长与半径关系。

5.2 圆的面积公式:πr²、圆的面积与半径关系。

5.3 圆的方程:圆的标准方程、圆的一般方程。

六、立体几何图形的代数式求解6.1 立方体的体积与表面积:体积公式、表面积公式。

6.2 圆柱体的体积与表面积:体积公式、表面积公式。

6.3 球的体积与表面积:体积公式、表面积公式。

七、解题策略与方法7.1 画图辅助解题:画出几何图形,明确已知与求解量。

7.2 列代数式:根据题目条件,列出相关的代数式。

7.3 化简与求解:化简代数式,求解未知量。

7.4 检验与讨论:检验解的正确性,讨论解的适用范围。

八、注意事项8.1 掌握基本概念与性质:明确几何图形的定义与性质,为解题打下基础。

8.2 熟练掌握代数式的求解:熟悉各种几何图形的代数式,提高解题速度。

8.3 灵活运用解题策略:根据题目条件,选择合适的解题方法。

小学数学图形解题方法大全

小学数学图形解题方法大全

小学数学图形解题方法大全一、线、角1。

直线没有端点,没有长度,可以无限延伸。

2。

射线只有一个端点,没有长度,射线可以无限延伸,并且射线有方向.3。

在一条直线上的一个点可以引出两条射线。

4。

线段有两个端点,可以测量长度。

圆的半径、直径都是线段.5。

角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。

6.几个易错的角边关系:(1)平角的两边是射线,平角不是直线。

(2)三角形、四边形中的角的两边是线段。

(3)圆心角的两边是线段.7。

两条直线相交成直角时,这两条直线叫做互相垂直。

其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

8。

从直线外一点到这条直线所画的垂直线段的长度叫做点到直线的距离。

9.在同一个平面上不相交的两条直线叫做平行线。

二、三角形1.任何三角形内角和都是180度。

2。

三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。

3。

任何三角形都有三条高。

4。

直角三角形两个锐角的和是90度。

5.两个三角形等底等高,则它们面积相等.6。

面积相等的两个三角形,形状不一定相同.三、正方形面积1。

正方形面积:边长×边长 2.正方形面积:两条对角线长度的积÷2四、三角形、四边形的关系1。

两个完全一样的三角形能组成一个平行四边形。

2。

两个完全一样的直角三角形能组成一个长方形.3.两个完全一样的等腰直角三角形能组成一个正方形。

4。

两个完全一样的梯形能组成一个平行四边形.五、圆把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径.则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r×2。

半圆的周长等于圆的周长的一半加直径。

半圆的周长公式:C=∏d÷2在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小以上倍数的平方倍.六、圆柱、圆锥把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。

小升初数学专题训练—“图形问题(三)(全国通用)

小升初数学专题训练—“图形问题(三)(全国通用)

图形问题(三)——代数法解图形
【设而要求,构造方程】
例1如图(1)所示的三角形沿着虚线折叠成如图(2)所示的图形,S1是S2的1.5倍。

已知(2)中阴影部分的面积为1cm²,求重叠部分的面积。

例2如图,一个长方形,恰好被分成六个正方形,其中最小的正方形面积是1平方厘米,求这个长方形的面积。

例3如图,在三角形ABC中,BE和CD交于O点,三角形DOB、三角形BOC、三角形EOC的面积分别是5、10、8,求阴影部分面积。

例4如图,三角形ABC的面积是1平方厘米,且BE=2EC,F是CD的中点。

那么,阴影部分面积是多少平方厘米?
【设而不求,整体代换】
例5 如图,在腰长为10cm,面积为34平方厘米的等腰三角形的底边任意取一点,设这个点到两腰的垂直线段分别长a cm、b cm,那么(a+b)的长度是多少厘米?
例6 如图,阴影部分的面积是50cm²,求环形面积。

例7 如图,三角形ABC中,D、E为BC边上的点,且BD=DE=EC,F、G为AC 边上的点,且AF=FG=GC,三角形ABC的面积为1。

求图中阴影部分的面积。

3.2.2代数式——特殊方法求值、规律问题(课件)七年级数学上册(苏科版2024)

3.2.2代数式——特殊方法求值、规律问题(课件)七年级数学上册(苏科版2024)
按此规律,则第⑨个图中有________颗棋子。
84
【分析】第①个图形中,棋子数量为4=2×2+02,
第②个图形中,棋子数量为7=2×3+12,
第③个图形中,棋子数量为12=2×4+22,
…,
第n个图形中,棋子数量为:2(n+1)+(n-1)2,
∴第⑨个图形中,棋子数量为:2×10+82=84。
03




∴3m-4n= ,


∴9m-12n=3(3m-4n)=3× = ,



∴9m-12n+4= +4= 。




∴9m-12n+4= +4= 。


特殊方法求值
——赋值法
01
课堂引入
已知(x+1)2=ax2+bx+c,求代数式a+b+c的值。
【分析】(x+1)2=ax2+bx+c是一个关于x的恒等式,即无论x取何值,
∴20=2(n+1),解得:n=9,∴a=9,b=10,x=10×20+9=209。
03
典例精析
图形类
例4、找出以下图形变化的规律,则第2024个图形中有________个
3036
黑色正方形。
【分析】由图可知:第1个图形中黑色正方形的数量是2,第2个图形
中是3,第3个图形中是5,第4个图形中是6,第5个图形中是8,…,
(3)6x+6y=6(x+y)=6×2=12;
(4)-10x-10y。
(4)-10x-10y=-10(x+y)=(-10)×2=-20。

四川成都市七年级数学上册第四单元《几何图形初步》-解答题专项经典习题(含答案解析)

四川成都市七年级数学上册第四单元《几何图形初步》-解答题专项经典习题(含答案解析)

一、解答题1.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.解析:(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD是∠AOB的平分线,OE是∠BOC的平分线,所以∠BOD=12∠AOB,∠BOE=12∠BOC,所以∠DOE=12(∠AOB+∠BOC)=12∠AOC=90°;(2)设∠EOB=x,则∠EOC=2x,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.2.如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC为轴旋转一周.求所形成的立体图形的体积.解析:6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).3.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.4.(1)如图,AC =DB ,请你写出图中另外两条相等的线段.(2)在一直道边植树8棵,若相邻两树之间距离均为1.5m ,则首尾两颗大树之间的距离是_____.解析:(1)AB=CD ;(2)10.5m.【分析】(1)根据等式的性质即可得出结论;(2)8棵树之间共有7段距离,从而计算即可.【详解】(1)因为AC =BD ,∴AC -BC =DB -BC ,即AB =CD .(2)设首尾之间的距离为x ,由8棵树之间共有7段间隔,可得x =7×1.5=10.5(m ). 故答案为:10.5m .【点睛】本题考查了等式的性质及线段的计算,属于基础题,明白8棵树之间的间隔是关键. 5.如图,有一只蚂蚁想从A 点沿正方体的表面爬到G 点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意. 解析:如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A 爬到G 的最短途径.(2)分情况讨论, 作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B 、面C 相对的面分别是 和 ;(2)若A =a 3+15a 2b +3,B =﹣12a 2b +a 3,C =a 3﹣1,D =﹣15(a 2b +15),且相对两个面所表示的代数式的和都相等,求E 、F 代表的代数式. 解析:(1)面F ,面E ;(2)F =12a 2b ,E =1 【分析】(1)根据“相间Z 端是对面”,可得B 的对面为F ,C 的对面是E ,(2)根据相对两个面所表示的代数式的和都相等,三组对面为:A 与D ,B 与F ,C 与E ,列式计算即可.【详解】(1)由“相间Z 端是对面”,可得B 的对面为F ,C 的对面是E.故答案为:面F ,面E.(2)由题意得:A 与D 相对,B 与F 相对,C 与E 相对,A +D =B +F =C +E将A =a 315+a 2b +3,B 12=-a 2b +a 3,C =a 3﹣1,D 15=-(a 2b +15)代入得: a 315+a 2b +315-(a 2b +15)12=-a 2b +a 3+F =a 3﹣1+E , ∴F 12=a 2b , E =1.【点睛】本题考查了正方体的展开与折叠,整式的加减,掌握正方体展开图的特点和整式加减的计算方法是正确解答的前提.8.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)解析:(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.9.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线.[知识运用] (1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可;②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°;②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时,则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时, 则12COD AOD ∠=∠, 即()153********t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】 本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.10.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.11.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.解析:见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.12.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.13.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?解析:见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.14.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O 为圆心,a 为半径作圆,分别交射线OA ,OB ,OC 于A′、B′、C′;、 (2)以点O 为圆心,b 为半径作圆,分别交射线OD ,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.如图,∠AOB=∠DOC=90°,OE 平分∠AOD ,反向延长射线OE 至F.(1)∠AOD 和∠BOC 是否互补?说明理由;(2)射线OF 是∠BOC 的平分线吗?说明理由;(3)反向延长射线OA 至点G ,射线OG 将∠COF 分成了4:3的两个角,求∠AOD .解析:(1)互补;理由见解析;(2)是;理由见解析;(3)54°或720()11【分析】(1)根据和等于180°的两个角互补即可求解;(2)通过求解得到∠COF=∠BOF,根据角平分线的定义即可得出结论;(3)分两种情况:①当∠COG:∠GOF=4:3时;②当∠COG:∠GOF=3:4时;进行讨论即可求解.【详解】(1)因为∠AOD+∠BOC=360°﹣∠AOB﹣∠DOC=360°﹣90°﹣90°=180°,所以∠AOD和∠BOC互补.(2)因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°﹣∠DOC﹣∠DOE=90°﹣∠DOE,∠BOF=180°﹣∠AOB﹣∠AOE=90°﹣∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,则∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180°,所以90°+7x+3x=180°,解方程得:x=9°,所以∠AOD=180°﹣∠BOC=180°﹣14x=54°.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90°+7x+4x=180°,解得:x =90 () 11,所以∠AOD=180°﹣∠BOC=180°﹣14x720 ()11 .综上所述:∠AOD的度数是54°或720 () 11.【点睛】本题考查了余角和补角,角平分线的定义,同时涉及到分类思想的综合运用.16.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.解析:(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.17.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.解析:120°【分析】此题可以设∠AOC=x ,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.18.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.解析:45︒【分析】本题需要分类讨论,当OC 在AOB ∠内部时,根据OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠,即可求出EOF ∠的度数;当OC 在AOB ∠外部时,OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠,所以1122EOF FOC EOC BOC AOC ∠=∠-∠=∠-∠,即可解决. 【详解】解:①如图,当OC 在AOB ∠内部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠, 所以1122COE COF AOC BOC ∠+∠=∠+∠, 即12EOF AOB =∠∠.又因为90AOB ︒∠=,所以45EOF ︒∠=.②如图,当OC 在AOB ∠外部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠, 所以1111()452222EOF FOC EOC BOC AOC BOC AOC AOB ︒∠=∠-∠=∠-∠=∠-∠=∠=.综上所述,45EOF ︒∠=.本题主要考查了角度的计算和角平分线的定义,熟练分类讨论思想,并且画出图形是解决本题的关键.19.线段12cm AB =点C 在线段AB 上,点D ,E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长;(2)若4cm AC =,求DE 的长;(3)若点C 为线段AB 上的一个动点(点C 不与A ,B 重合),求DE 的长. 解析:(1)6cm ;(2)6cm ;(3)6cm【分析】(1)根据中点的定义,进行计算即可求出答案;(2)由中点的定义,先求出DC 和CE 的长度,然后求出DE 即可;(3)利用中点的定义,即可得到结论.【详解】解:(1)因为点C 是AB 中点, 所以16cm 2AC BC AB ===. 又因为D ,E 分别是AC 和BC 的中点, 所以1116cm 222DE DC CE AC BC AB =+=+==, 故DE 的长为6cm .(2)因为12cm AB =,4cm AC =,所以8cm BC =.因为点D ,E 分别是AC 和BC 的中点,所以12cm 2DC AC ==,14cm 2CE BC ==, 所以6cm DE =. (3)因为111222DE DC CE AC BC AB =+=+=, 且12cm AB =,所以6cm DE =.【点睛】本题考查了线段中点的定义,解题的关键是熟练掌握线段之间的数量关系进行解题. 20.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.解析:8cm【分析】先由中点的定义求出AM ,BM 的长,再根据MC :CB=1:2的关系,求MC 的长,最后利用AC=AM+MC 得其长度.∵线段AB 的中点为M ,∴AM=BM=6cm设MC=x ,则CB=2x ,∴x+2x=6,解得x=2即MC=2cm .∴AC=AM+MC=6+2=8cm .故答案为:8cm .【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.21.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.解析:(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE的补角有:∠BOF和∠EOC.【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.22.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD =∠AOC +∠COD =55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.23.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)解析:(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】 解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b . MN=2b . 【点睛】 本题考查两点间的距离.24.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.解析:答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.25.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量26.如图所示,点A 、O 、C 在同一直线上,OE 是BOC ∠的平分线,90EOF ∠=︒,()1420x ∠=+︒,()210x ∠=-︒.(1)求1∠的度数(请写出解题过程).(2)如以OF 为一边,在COF ∠的外部画DOF COF ∠=∠,问边OD 与边OB 成一直线吗?请说明理由.解析:(1)1140∠=︒;(2)边OD 与边OB 成一直线,理由详见解析.【分析】(1)因为OE 是∠BOC 的平分线 所以∠BOC=2∠2,再根据点A 、O 、C 在一直线上,求出∠1和∠2关于x 的关系式,列出等式求出x 的值;(2)根据∠EOF=∠EOC+∠COF=90°和∠EOC=12∠BOC ,∠FOC=12∠DOC ,12∠BOC+12∠DOC=90°,得出∠BOC+∠DOC=180°,进而可可判断边OD 与边OB 成一直线.【详解】(1)因为OE 是BOC ∠的平分线,所以22BOC ∠=∠,因为点A 、O 、C 在同一直线上,所以1180BOC ∠+∠=︒,又因为()1420x ∠=+︒,()210x ∠=-︒,所以()()420210180x x ++-=,解得:30x =,1140∠=︒(2)边OD 与边OB 成一直线.理由:因为90EOF EOC COF ∠=∠+∠=︒, 又因为12EOF BOC ∠=∠,12FOC DOC ∠=∠. ∴119022BOC DOC ∠+∠=︒, 即180BOC DOC ∠+∠=︒,所以点D 、O 、B 在同一直线上,即边OD 与边OB 成一直线.【点睛】本题主要考查角的计算和角平分线的知识点,解答本题的关键是熟练运用角之间的等量关27.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)解析:见解析.【分析】根据正方体展开图直接画图即可.【详解】解:【点睛】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.28.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.29.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?解析:(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.30.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.。

图形问题

图形问题

DC BD S S S S S S AEC ABE EDC EBD ADC ABD ===∆∆∆∆∆∆DE AES S S S S S DBC ABC DEC AEC DEB AEB ===∆∆∆∆∆∆小升初考前专项冲刺集训——空间与图形(一)考点方法扫描图形问题是小升初考试的必考内容,而且常常以大题形式出现,重点名校选拔考试题目分值较高,并且难度有所增加,题型形式多样化。

本讲主要举例学习解答平面几何图形问题的方法与技巧,旨在训练同学们敏锐的观察力和空间想象力、灵活的思考能力和动手操作能力,悟出考题规律,积累解题方法技巧,快速提升图形问题的解题能力。

一、转化法在求图形面积时,有时需要把某个图形进行变换,变成另一个比较方便求的图形,常用的几何变换法有:平移、旋转、对称法 。

二、代数法18.设而要求,构造方程。

列出方程,巧用代数法来解决面积问题。

19.设而不求,整体代换。

设一个或几个字母参加列式运算,不求字母的值作整体代换。

三、比例法1、等底等高的三角形或平行四边形面积相等。

2、如果两个长方形的长(或宽)相等,那么它们面积之比等于它们的宽(或长)之比。

3、如果两个三角形(或平行四边形)的底(或高)相等,那么它们的面积比等于它们的高(或底)之比。

于是我们可以得出以下情形:四、差不变的原理若甲比乙的面积大,则甲和乙同时加上或减去相等的面积,他们的差不变。

五、面积一半的应用1、在正方形、长方形、平行四边形中,以其中一条边为底,在它的对边上任意取一点,所得到的三角形的面积等于整个图形面积的一半。

2、平行四边形内任意一点与四个顶点的连线所分成的四个三角形中,相对的两个三角形的面积之和相等。

3、以下图形中,阴影部分面积都占整个图形面积的一半:六、蝶形定理在任意凸四边形(如下左图)中有如下关系:(1)DO ∶OB=)()(32413421S S ∶S S S ∶S S ∶S ++==或者4231S S S S ⨯=⨯(2)AO ∶OC=)()(34213241S S ∶S S S ∶S S ∶S ++==七、在梯形(如下右图)中有如下关系:(1)42S S = (2)4231S S S S ⨯=⨯八、勾股定理如下图,在直角三角形ABC 中有222c b a =+名师经典解析例1 如图1所示,长方形ABCD 面积是40平方厘米,E 、F 、G 分别为AB 、BC 、CD 的中点,H 为AD 上任意一点,求阴影部分的面积。

9 第3课时 几何图形问题

9  第3课时  几何图形问题

21.3 实际问题与一元二次方程第3课时几何图形问题置疑导入归纳导入复习导入类比导入提起代数,人们自然就和方程联系起来,事实上,过去代数的中心问题就是对方程的研究.我国古代对代数的研究,特别是对方程解法的研究,取得了重要成果.我国古代数学家研究过二次方程的解法,当时的解法虽然与现代的解法不同,但已与现代的解法相似.下面是我国南宋数学家杨辉提出的一个问题:“直田积(矩形面积)八百六十四步(平方步).只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步”.答:“阔二十四步,长三十六步”.这里,我们不谈杨辉的解法,你能用已学过的知识解决这个问题吗?[说明与建议] 说明:在古代文献中有很多的方程应用型问题,题的内容来自生活,新颖有趣,有很高的数学价值和欣赏价值,通过本问题的引入,激起学生的学习兴趣.建议:引导学生积极思考问题,建立方程的思想.如图21-3-3,小明把一张边长为10 cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子.图21-3-3(1)如果要求长方体的底面面积为81 cm2,那么剪去的正方形边长为多少?(2)如果按下表列出的长方体底面面积的数据要求,那么剪去的正方形的边长会发生什么样的变化?折合成的长方体的体积又会发生什么样的变化?[说明与建议] 说明:通过生活中的实际问题的引入,让学生感觉到数学与生活的联系,激起学生的学习兴趣.建议:让学生体会数学来源于生活,又应用于生活,要求同学们能用一些所学的数学知识解决生活中的实际问题,感受到数学的应用价值,并体会到方程是刻画现实世界的一个有效的工具.——第22页习题21.3第9题如图21-3-4,要设计一幅宽20 cm,长30 cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为3∶2.如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度(结果保留小数点后一位)?图21-3-4【模型建立】此类问题一般要利用“图形经过移动,它的面积不会改变”的道理,把纵、横的彩条移动到一起,利用面积的和差解决问题.有关面积问题的常见图形有如下几种:图21-3-5【变式变形】1.庆阳中考如图21-3-6,某小区计划在一块长为32 m,宽为20 m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2.若设道路的宽为x m,则下面所列方程正确的是( A )A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=570图21-3-6 图21-3-72.大连中考如图21-3-7,有一张矩形纸片,长为10 cm,宽为6 cm,将它的四个角各剪去一个同样大小的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32 cm2,求剪去的小正方形的边长.设剪去的小正方形的边长是x cm,根据题意可列方程为( B )A.10×6-4×6x=32B.(10-2x)(6-2x)=32C.(10-x)(6-x)=32D.10×6-4x2=323.如图21-3-8,某小区有一块长为36 m,宽为24 m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为600 m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为2m.图21-3-8 图21-3-94.如图21-3-9,已知一边靠墙,另三边用木篱笆围成一个面积为130 m2的矩形花坛,木篱笆长为33 m,墙长为15 m,则矩形花坛的长和宽各为多少米才能使木篱笆正好合适?[答案:花坛长为13 m,宽为10 m][命题角度1] 列一元二次方程解决等积变形问题在列一元二次方程解决等积变形问题时,要抓住以下三个等量关系:①图形周长改变,面积没变;②容器形状改变,但容积没变;③原料体积=成品体积.从而找出题中的等量关系,列出方程.例 [襄阳中考] 用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的长为x cm ,则可列方程为( B )A .x (20+x )=64B .x (20-x )=64C .x (40+x )=64D .x (40-x )=64[命题角度2] 列一元二次方程解决与几何图形面积相关的问题方程是我们利用数学知识解决实际问题时常用的一种数学模型,而构建方程解决问题的关键是找到相等的数量关系,而几何图形常用的数量关系往往和线段的长度、角的度数和图形的面积等因素不可分割.例如本课素材二[教材母题挖掘].[命题角度3] 列一元二次方程解决存在性问题列一元二次方程解决存在性问题的一般步骤:先假设结论存在或成立,然后根据题意列出方程.若方程有解,则说明假设成立;若方程无解,则说明假设不成立.例 用长为32米的篱笆围成一个矩形养鸡场,设围成的矩形养鸡场的一边长为x 米,面积为y 平方米.(1)求y 关于x 的函数解析式.(2)当x 为何值时,围成的矩形养鸡场的面积为60平方米?(3)能否围成面积为70平方米的矩形养鸡场?如果能,请求出其边长;如果不能,请说明理由.[答案:(1)y =x (16-x ) (2)x =10或x =6 (3)不能 理由略] [命题角度4] 列一元二次方程解决运动型问题运动型问题一般根据“路程=速度×时间”求出图形中相应边的长度,再列方程解决问题,这类题目一般和函数、几何图形综合考查,综合性较强.例1 如图21-3-10所示,东西方向上有相距10千米的A ,C 两地,甲以16千米/时的速度从A 地出发向正东方向前进,乙以12千米/时的速度从C 地出发向正南方向前进,则最快经过多少小时后,甲、乙两人相距6千米?[答案:25小时]图21-3-10例2 某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形.如图21-3-11所示,甲、乙两点分别从直径的两端点A ,B 以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程l (cm )与时间t (s )满足关系:l =12t 2+32t (t ≥0),乙以4 cm /s 的速度匀速运动,半圆的长度为21 cm .(1)甲运动4 s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多长时间? (3)甲、乙从开始运动到第二次相遇时,它们运动了多长时间?图21-3-11[答案:(1)14 cm (2)3 s (3)7 s ]P 21习题21.3复习巩固1.解下列方程:(1)x 2+10x +21=0; (2)x 2-x -1=0; (3)3x 2+6x -4=0; (4)3x(x +1)=3x +3;(5)4x 2-4x +1=x 2+6x +9;(6)7x 2-6x -5=0.解:(1)移项,得x 2+10x =-21.配方,得 x 2+10x +52=-21+52,即(x +5)2=4. 开平方,得x +5=±2,∴x 1=-3,x 2=-7.(2)∵a =1,b =-1,c =-1,b 2-4ac =(-1)2-4×1×(-1)=5>0, ∴x =-(-1)±52×1=1±52,即x 1=1+52,x 2=1-52.(3)∵a =3,b =6,c =-4,b 2-4ac =62-4×3×(-4)=84>0,x =-6±842×3=-3±213,∴x 1=-3+213,x 2=-3-213.(4)整理,得3x(x +1)-3(x +1)=0,3(x +1)(x -1)=0,则有x +1=0或x -1=0, ∴x 1=-1,x 2=1.(5) 整理,得(2x -1)2-(x +3)2=0,(x -4)(3x +2)=0,则有x -4=0或3x +2=0, ∴x 1=4,x 2=-23.(6)∵a =7,b =-6,c =-5,b 2-4ac =(-6)2-4×7×(-5)=146>0, ∴x =-(-6)±1462×7=6±14614,∴x 1=6+14614,x 2=6-14614. 2.两个相邻偶数的积是168.求这两个偶数.解:设这两个偶数分别为x ,x +2,由题意,得x(x +2)=168.整理,得x 2+2x -168=0.解得x 1=12,x 2=-14.当x =12时,x +2=14;当x =-14时,x +2=-12.经检验都是符合题意的.答:这两个偶数分别是12,14或-14,-12.3.一个直角三角形的两条直角边的和是14 cm ,面积是24 cm 2.求两条直角边的长.解:设一条直角边长为x cm ,另一条直角边长为(14-x) cm .由题意,得x (14-x )2=24.解这个方程,得x 1=6,x 2=8.当x =6时,14-x =8;当x =8时,14-x =6.所以两条直角边的长分别为6 cm 和8 cm .综合运用4.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?解: 设每个支干长出x 个小分支,由题意,得1+x +x 2=91,整理,得(x -9)(x +10)=0,x -9=0或x +10=0,解得x 1=9,x 2=-10(不合题意,舍去).答:每个支干长出9个小分支.5.一个菱形两条对角线长的和是10 cm ,面积是12 cm 2.求菱形的周长.解:设菱形的一条对角线为x cm ,则另一条对角线为(10-x) cm ,由题意,得x (10-x )2=12.解这个方程,得x 1=4,x 2=6.当x =4时,10-x =6;当x =6时,10-x =4,经检验都符合题意.∴菱形的边长为⎝⎛⎭⎫422+⎝⎛⎭⎫622=13.∴菱形的周长为413 cm . 6.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?解:设共有x 个队参加比赛,每个队要赛(x -1)场,由题意,得x(x -1)=90.解得x 1=10,x 2=-9(舍去).答:共有10个队参加比赛.7.青山村种的水稻2010年平均每公顷产7200 kg ,2012年平均每公顷产8450 kg .求水稻每公顷产量的年平均增长率.解:设水稻每公顷产量的年平均增长率为x ,由题意,得7200(1+x)2=8450,(1+x)2=84507200,1+x ≈±1.083.x 1≈0.083=8.3%,x 2≈-2.083(不合题意,舍去).答:水稻每公顷产量的年平均增长率约为8.3%.8.要为一幅长29 cm ,宽22 cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的四分之一,镜框边的宽度应是多少厘米(结果保留小数点后一位)?解: 设镜框边的宽度为x cm ,由题意,得(29+2x)(22+2x)=⎝⎛⎭⎫1+14×29×22, 整理,得8x 2+204x -319=0,解得x =-204±2042-4×8×(-319)16,∴x 1≈1.5,x 2≈-27.0 (不合题意,舍去).答:镜框边的宽度约为1.5 cm . 拓广探索9.如图,要设计一幅宽20 cm ,长30 cm 的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为3∶2.如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度(结果保留小数点后一位)?解: 因为横、竖彩条的宽度比为3∶2,可设横彩条的宽度为3x cm ,竖彩条的宽度为2x cm ,由题意,得(20-6x)(30-4x)=⎝⎛⎭⎫1-14×20×30. 整理,得12x 2-130x +75=0.解得x =130±(-130)2-4×12×7524,∴x 1≈0.6,x 2≈10.2 (不合题意,舍去). 当x =0.6时,3x =1.8,2x =1.2 .答:横彩条的宽度为1.8 cm ,竖彩条的宽度为1.2 cm . 10.如图,线段AB 的长为1.(1)线段AB 上的点C 满足关系式AC 2=BC·AB ,求线段AC 的长度; (2)线段AC 上的点D 满足关系式AD 2=CD·AC ,求线段AD 的长度; (3)线段AD 上的点E 满足关系式AE 2=DE·AD ,求线段AE 的长度. 上面各小题的结果反映了什么规律?解:(1)设AC 的长为x ,则BC 的长为1-x ,由题意,得x 2=(1-x)·1,解得x 1=-1+52≈0.618.x 2=-1-52(舍去),即AC 的长度为0.618.(2)AD 2=CD·AC =(AC -AD)·AC , ∴AD 2+AC·AD -AC 2=0,解得AD =-1+52AC ≈0.6182.(3)AE 2=DE·AD =(AD -AE)·AD ,∴AE 2+AD·AE -AD 2=0,解得AE =-1+52AD ≈0.6183.规律:C 是线段AB 的黄金分割点,D 是线段AC 的黄金分割点,E 是线段AD 的黄金分割点.能力培优21.3 实际问题与一元二次方程专题一 利用一元二次方程解决面积问题1.在高度为2.8m 的一面墙上,准备开凿一个矩形窗户.现用9.5m 长的铝合金条制成如图所示的窗框.问:窗户的宽和高各是多少时,其透光面积为3m 2(铝合金条的宽度忽略不计).2.如图:要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?3. 数学的学习贵在举一反三,触类旁通.仔细观察图形,认真思考,解决下面的问题: (1)在长为a m ,宽为b m 的一块草坪上修了一条1m 宽的笔直小路(如图(1)),则余下草坪的面积可表示为 2m ;(2)现为了增加美感,设计师把这条小路改为宽恒为1m 的弯曲小路(如图(2)),则此时余下草坪的面积为 2m ;(3)聪明的鲁鲁结合上面的问题编写了一道应用题,你能解决吗?相信自己哦!(如图(3)),在长为50m ,宽为30m 的一块草坪上修了一条宽为xm 的笔直小路和一条m.求小路的宽x.长恒为xm的弯曲小路(如图3),此时余下草坪的面积为14212专题二利用一元二次方程解决变化率问题4.据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2012年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增5.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?6.【2012·广元】某中心城市有一楼盘,开发商准备以每平方米7000元的价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价后,决定以每平方米5670 元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开放商建议:先公布下调5%,再下调15%,这样更有吸引力.请问房产销售经理的方案对购房者是否更优惠?为什么?专题三利用一元二次方程解决市场经济问题7.【2012·济宁】一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?8.【2012·南京】某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的售价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部;月底厂家根据销售量一次性返利给销售公司,销售10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元.(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)专题四利用一元二次方程解决生活中的其他问题n n9. (1)经过凸边形(>3)其中一个顶点......的对角线有条.(2)一个凸多边形共有14条对角线,它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.10.如图,每个正方形是由边长为1的小正方形组成.1P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.知识要点:列方程解决实际问题的常见类型:面积问题、增长率问题、经济问题、疾病传播问题、生活中的其他问题.温馨提示:1.若设每次的平均增长(或降低)率为x,增长(或降低)前的数量为a,则第一次增长(或降低)后的数量为a(1±x),第二次增长(或降低)后的数量为a(1±x)2.2.面积(体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与已知量的内在联系,根据面积(体积)公式列出一元二次方程.3.列方程解决实际问题时,方程的解必须使实际问题有意义,因此要注意检验结果的合理性. 方法技巧:1.变化率问题中常用a(1±x)n=b,其中a是起始量,b是终止量,n是变出次数,x是变化率.变化率问题用直接开平方法求解简单.2.解决面积问题常常用到平移的方法,利用平移前后图形面积不变建立等量关系.参考答案1.【解】设高为x 米,则宽为9.50.523x --米.由题意,得9.50.5233x x --⨯=. 解得121.5,3x x == (舍去,高度为2.8m 的一面墙上).当x=1.5时,宽9.50.529.50.53233x ----==. 答:高为1.5米,宽为2米.2.【解】设横、竖彩条的宽度分别为2x cm 、3x cm ,由题意,得(20-6x )(30-4x )=(1-13)×20×30.整理,得6x 2-65x +50=0. 解得x 1=56,x 2=10(不合题意,舍去).∴2x =53,3x =52. 答:每个横、竖彩条的宽度分别为53cm ,52cm . 3.【解】(1)(1)a b -(或ab a -);(2) (1)a b -(或ab a -);(3)将笔直的小路平移到草坪的左边,则余下部分的长为(50-x )m,将弯曲的小路的两侧重合,则余下部分的宽为(30-x )m,由题意得:(50-x )(30-x )=1421. 解得 x 1=1, x 2=79(舍去).答:小路的宽为1m.4.【解】设我省每年产出的农作物秸杆总量为a ,合理利用量的增长率是x ,由题意,得30%a (1+x )2=60%a .∴x 1≈0.41,x 2≈-2.41(不合题意舍去).∴x ≈0.41.答:每年的增长率约为41%.5.【解】设每轮感染中平均每一台电脑会感染x 台电脑,依题意,得1+x +(1+x )x =81.整理得(1+x )2=81.∴x 1=8,x 2= -10(舍去).∴(1+x )3=(1+8)3=729>700.答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后被感染的电脑会超过700台.6.【解】(1)设平均每次下调%p ,则有5670%)1(70002=-p .∴81.0%)1(2=-p . ∵1—p%>0,∴1—p %=0.9. p%=0.1=10%.答:平均每次下调10%;(2)先下调5%,再下调15%,这样最后单价为7000元×(1—5%)×(1—15%)=5652.5元. ∴ 销售经理的方案对购房者更优惠一些.7.【解】因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵. 设该校共购买了x 棵树苗,由题意,得()1200.5608800x x --=⎡⎤⎣⎦ .解得12220,80x x ==.当1220x =时,()1200.52206040100--=<,∴1220x =不合题意,舍去; 当280x =时,()1200.58060110100--=>,∴280x =.∴80x =.答:该校共购买了80棵树苗.8.【解】(1)26.8(2)设需要销售出x 部汽车可盈利12万元.①当销售10部以内(含10部)时,依题可得﹝28-27+0.1(x -1)﹞x +0.5x =12. 解得6)(2021=-=x x ,不合题意,舍去.当销售6部汽车时,当月可盈利12万元. ②当销售10部以上时,依题可得﹝28-27+0.1(x -1)﹞x +x =12.解得24,521-==x x ,均不合题意,应舍去.答:当销售6部汽车时,当月可盈利12万元.9.【解】(1)n -3(2)设这个凸多边形是边形,由题意,得(3)142n n -=. 解得127,4n n ==- (不合题意,舍去).答:这个凸多边形是七边形.(3)不存在.理由:假设存在边形有21条对角线. 由题意得(3)212n n -=. 解得3177n ±=.因为多边形的边数为正整数,但3177±不是正整数,故不合题意.所以不存在有21条对角线的凸多边形.10.【解】(1)1 5 9 13 2n -1;4 8 12 16 2n(2)由(1)可知n 为偶数时P 1=2n .∴P 2=n 2-2n .根据题意得n 2-2n =5×2n ,n 2-12n =0,解得n =12,n =0(舍去).∴存在偶数n =12使得P 2=5P 1.素材六 数学素养提升列一元二次方程解决阅读理解问题阅读理解问题是给出一些材料,让学生在阅读的基础上理解材料中所提供的定义、公式、思想方法及解题技巧等知识,用于解决后面的问题.因此,在用一元二次方程解决阅读理解问题时要注意:①认真阅读材料,留心知识情景、数据、关键词句;②全面分析,理解材料的基本原理;③对相关信息进行归纳,加工提炼,进而构建方程模型来解答.例.(2014•凉山州)实验与探究:三角形点阵中前n 行的点数计算下图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点…第n 行有n 个点….容易发现,10是三角点阵中前4行的点数的和.你能发现300是前多少行的点数的和吗?如果用实验的方法,由上而下地逐行相加其点数,虽然你能发现1+2+3+······+23+24=300,得知300是前24行的点数的和,但是这样寻找答案需要花费较多时间,能否更简捷地得出结果呢?我们先探究三角点阵中前 n 行的点数和与 n 的数量关系.前 n 行的点数和是1+2+3+···+(n+2)+(n-1)+n 。

一道数学趣题的联想——例谈巧构图形(图像)解代数题

一道数学趣题的联想——例谈巧构图形(图像)解代数题

一道数学趣题的联想——例谈巧构图形(图像)解代数题
张良江
【期刊名称】《中学数学》
【年(卷),期】2012(000)006
【摘要】“数形结合”是一种重要的数学思想方法.在初中数学中,存在着大量与图形有关的问题难以用几何方法解决,而用代数方法却能轻松化解.同样,又不乏用图形等几何方法解决代数问题的经典范例.本文试从一道数学趣题说开去,谈谈如何巧构图形使代数问题几何化,即用构造图形(图像)的方法解决代数问题,以期窥一斑而见全豹.
【总页数】3页(P82-84)
【作者】张良江
【作者单位】浙江省宁波市北仑区顾国和中学
【正文语种】中文
【相关文献】
1.巧构几何图形解题例谈 [J], 李德忠;赵同娟
2.巧构几何图妙解代数题 [J], 苏建强
3.巧构几何图形解题例谈 [J], 李德忠;赵同娟
4.巧构三角形妙解代数题 [J], 谢春如;曹贱如
5.例谈构造几何图形解代数题 [J], 邢喜莲;冯陆平
因版权原因,仅展示原文概要,查看原文内容请购买。

七年级数学上册4.2代数式用代数式解图形问题素材浙教版(new)

七年级数学上册4.2代数式用代数式解图形问题素材浙教版(new)

用代数式解图形问题例1一套住房的平面图如右图所示,其中卫生间、厨房的面积和是( ).(A )4xy (B ) 3xy (C )2xy (D )xy解析:结合图形,分别计算出卫生间和厨房的长和宽,然后算出面积的和.具体作法是:卫生间的长为x x x x =--24,宽为y ,因此面积为xy ;厨房的长为y y y 224=-,宽为x ,因此面积为2xy 。

所以面积的和是3xy ,选择答案(B ).例2 一天,需要小明计算一个L 形花坛的面积,在动手测量前,小明依花坛形状画了如图2所示的示意图,并用字母表示了将要测量的边长,小明在列式进行面积计算时,发现还需要再测量一条边的长度,你认为他还需测哪条边的长度?请你在图中标示出来,并用字母n 表示,然后再求出花坛的面积.简析 如图3所示,可以用两种方法量以下部位的尺寸。

即L 型花坛的面积为:(1)am +(b -m ) n =am +bn -mn ,(2)ab -n (b -m )=ab -bn +mn .例3 某学校欲建如图4所示的草坪(阴影部分),请你计算一下一共需要铺设草评多少平方米?如果每平方米草坪需100元,则学校为铺设草坪一共需投资多少元(单位:米)?简析 图中阴影部分的面积为a ·3a +2a ·3a + a ·4a + 2a ·4a =21a 2 b m a 图2 nb m a (1)b m a n (2)图33a 2a 4aa 图4(平方米),则学校为铺设草坪一共需投资2100a 2 元。

例4窗户形状如图5,上部是半圆形,下部是边长相同的四个小正方体,计算:(1)窗户的面积及窗框的总长。

(2)当a=50厘米时,窗户的面积及窗框的总长的值分别是多少?(结果精确到0。

1厘米)分析:窗户的面积包括两大部分,上面的半圆的面积和下面四个正方形的面积,半圆的半径是a ,而窗框的总长应包括所有框架的长.解:(1)面积为:4a 2+221a π,窗框的总长为15a+πa. (2)当a=50厘米,窗户的面积是4a 2+221a π=4×502+25014.321⨯⨯=13925.0平方厘米;窗框的总长为15a +πa=15×50+3。

12初中数学“一元二次方程与几何图形问题”全解析

12初中数学“一元二次方程与几何图形问题”全解析

初中数学“一元二次方程与几何图形问题”全解析一、引言一元二次方程与几何图形问题是初中数学中的重要内容,也是考试中的常见题型。

这类问题结合了代数与几何的知识,旨在考察学生的综合分析和解决问题的能力。

本文将详细解析一元二次方程与几何图形问题的基本概念、解题方法及应用,帮助同学们更好地掌握这一知识点。

二、基本概念1.一元二次方程:形式为ax²+bx+c=0(a≠0)的方程称为一元二次方程。

2.几何图形:初中数学中常见的几何图形有直线、角、三角形、四边形、圆等。

3.方程与图形的关联:在几何问题中,常利用一元二次方程来表示某些特定的条件或关系,如长度、面积、角度等。

三、解题方法1.建立方程:根据几何问题的条件,设定未知数并建立与问题相关的一元二次方程。

这一步是关键,要求能正确理解和转化几何条件为代数表达式。

2.解方程:利用一元二次方程的求解方法(如配方法、公式法等)解出未知数。

3.回归几何:将求得的代数解回归到原几何问题中,解释其实际意义,并验证其合理性。

四、应用举例1.直线与圆的位置关系:已知圆的半径r和圆心到直线的距离d,判断直线与圆的位置关系(相离、相切、相交)。

可通过比较d与r的大小来判断,若d=r,则直线与圆相切;若d<r,则直线与圆相交;若d>r,则直线与圆相离。

在此过程中,可通过建立一元二次方程求解d或r。

2.三角形的形状判断:已知三角形的三边a、b、c(满足a²+b²=c²),判断三角形的形状。

由勾股定理知,若满足上述条件,则三角形为直角三角形。

若不满足,则可通过比较a²+b²与c²的大小关系,进一步判断三角形为锐角三角形或钝角三角形。

在此过程中,也可能涉及到一元二次方程的求解。

3.面积问题:在求解某些特定形状(如矩形、梯形等)的面积时,可能会遇到需要利用一元二次方程来解决的问题。

例如,已知矩形的周长和一条边的长度,求矩形的面积。

第03讲 线段的垂直平分线、角平分线性质、尺规作图(3大考点6种解题方法)(原卷版)

第03讲 线段的垂直平分线、角平分线性质、尺规作图(3大考点6种解题方法)(原卷版)

第03讲线段的垂直平分线、角平分线性质、尺规作图(3大考点6种解题方法)考点考向一.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C 在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE二.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.三.作图—基本作图基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.四.作图—复杂作图复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.五.作图—应用与设计作图应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.六.作图—代数计算作图代数计算作图是实际问题中要求所作图形具备一定的条件,如角的度数或边的长度.(1)根据题意计算出图形所具备的条件,边长,角度等,在网格纸上作图或利用圆规和直尺作图.(2)直接利用尺规作图做出符合题意的图形.如在数轴上找到表示无理数的点.要熟悉几何图形的性质和5种基本作图的步骤,才能灵活运用熟练作图.考点精讲一.角平分线的性质(共5小题)1.(2021秋•温岭市期末)如图,OP平分∠AOB,E为OA上一点,OE=4,P到OB的距离是2,则△OPE 的面积为()A.2B.3C.4D.82.(2021秋•北仑区期中)如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC的长是()A.2B.3C.4D.53.(2021秋•东阳市期末)如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N 为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC 于点E.已知CE=3,BE=5,则AC的长为()A.8B.7C.6D.54.(2021秋•新昌县期末)如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P且与AB垂直.若AD=8,BC=10,则△BCP的面积为()A.16B.20C.40D.805.(2021秋•诸暨市校级月考)如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.二.线段垂直平分线的性质(共8小题)6.(2021秋•海曙区期末)如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠EAG=40°,则∠BAC的度数是()A.140°B.130°C.120°D.110°7.(2021秋•温州期末)如图,已知线段AB,以点A,B为圆心,5为半径作弧相交于点C,D.连结CD,点E在CD上,连结CA,CB,EA,EB.若△ABC与△ABE的周长之差为4,则AE的长为()A.1B.2C.3D.48.(2021秋•余杭区月考)如图,在△ABC中,DE是AC的中垂线,分别交AC、AB于点D、E,若△BCE 的周长为8,BC=3,求AB的长.9.(2021秋•义乌市期中)如图,已知△ABC中,边AB、AC的垂直平分线分别交BC于E、F,若∠EAF =90°,AF=3,AE=4.(1)求边BC的长;(2)求出∠BAC的度数.10.(2021秋•柯桥区月考)已知:如图,△ABC中,∠A=90°,BC的垂直平分线DE交BC于点E,交AC于点D.(1)若∠C=35°,求∠DBA的度数;(2)若△ABD的周长为30,AC=18,求AB的长.11.(2021秋•余杭区期中)如图,△ABC中,∠BAC=130°,AB,AC的垂直平分线分别交BC于点E,F,与AB,AC分别交于点D,G,则∠EAF的度数为()A.65°B.60°C.70°D.80°12.(2021秋•上城区期中)如图,在△ABC中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC 于点E,F.(1)若∠DAC=20°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系,并说明理由.13.(2021秋•西湖区期末)如图,线段AB,BC的垂直平分线l1、l2相交于点O.若∠1=40°,则∠AOC=()A.50°B.80°C.90°D.100°三.作图—基本作图(共4小题)14.(2021秋•鄞州区期中)如图,在△ABC中,∠B=65°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.45°B.55°C.60°D.65°15.(2021秋•诸暨市期末)下列尺规作图分别表示:①作一个角的平分线,②作一条线段的垂直平分线.其中作法正确的是()A.①B.②C.①②D.无16.(2021秋•新昌县期末)如图,已知△ABC.(1)请用直尺和圆规作∠ABC的角平分线BD,交AC于点D.(保留作图痕迹,不写作法)(2)在(1)的条件下,若∠A=100°,∠C=28°,求∠BDA的度数.17.(2021秋•余姚市期末)如图,在△ABC中,CE⊥AB于点E.(1)用尺规作BD⊥AC,垂足为点D.(不写作法,保留痕迹)(2)在(1)所画的图中,若BE=CD.求证:AB=AC.四.作图—复杂作图(共5小题)18.(2021秋•临海市期末)如图,已知△ABC,点D在边AB上.(1)求作点D,使点D到点B,C的距离相等;(尺规作图,保留作图痕迹,不写作法)(2)连接DC,已知∠B=32°,求∠ADC的度数.19.(2021秋•缙云县期末)(拓展创新)如图所示,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点以顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,;(在图①中画一个即可)(2)使三角形为钝角三角形且面积为4.(在图②中画一个即可)20.(2021秋•新昌县期中)如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.(1)则MN是BC的线.(2)若AB=8,AC=4,求△ACD的周长.21.(2021秋•西湖区校级期中)如图,已知△ABC.(1)尺规作图:①作出△ABC的角平分线CD;②作出BC的中垂线交AB于点E.(2)连结CE,若∠ABC=60°,∠A=40°,则∠DCE=.22.(2021秋•拱墅区期中)如图,△ABC中,AC>AB.(1)作AB边的垂直平分线交BC于点P,作AC边的垂直平分线交BC于点Q,连接AP,AQ.(尺规作图,保留作图痕迹,不需要写作法)(2)在(1)的条件下,若BC=14,求△APQ的周长.五.作图—应用与设计作图(共6小题)23.(2021秋•临海市期末)如图,在5×5的网格纸中,△ABC的三个顶点都在格点上.请仅用直尺,按要求画图.(1)在图1中画出过点B的直线l,使其平分△ABC的面积;(2)在图2中画出线段BD,使其平分∠ABC,且点D在格点上.24.(2021秋•椒江区期末)如图,两条公路OA,OB相交于点O,在∠AOB内部有两个村庄C,D.为方便群众接种新冠疫苗,该地决定在∠AOB内部再启动一个方舱式接种点P,要求同时满足:(1)到两条公路OA,OB的距离相等.(2)到两村庄C,D的距离相等.请你用直尺和圆规作出接种点P的位置(保留作图痕迹).25.(2021秋•宁波期末)定义:如果三角形的两个内角α和β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.如图,在△ABC中,∠C=90°,AC=8,BC=6.请把这个三角形分割成两个三角形,使得其中一个为“类直角三角形”,并求出这个“类直角三角形”的面积.(备注:要求尺规作图)26.(2021秋•婺城区校级月考)如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.27.(2021春•南岗区校级月考)如图,网格中的每个小正方形的边长都是2,线段交点称做格点.(1)画出△ABC的高CD;(2)连接格点,用一条线段将图中△ABC分成面积相等的两部分;(3)直接写出△ABC 的面积是.28.(2021春•鼓楼区校级月考)我们知道,三角形具有性质:三条角平分线相交于一点,三条中线相交于一点.事实上,三角形还具有性质:三条高所在直线相交于一点.如图,在由小正方形组成的4×3的网格中,三角形的顶点都在小正方形的格点上.请运用上述三角形的性质,在该网格中,仅用无刻度的直尺,作出AC边上的高BH,再作出BC边上的高AK.(不写作法,保留作图痕迹)六.作图—代数计算作图(共1小题)29.(2021秋•诸暨市期中)如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在所给网格中解答下面问题.(1)图中线段AB的两端点都落在格点(即小正方形的顶点)上,求出AB的长度;(2)再以AB为一边画一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(3)请直接写出符合(2)中条件的等腰三角形ABC 的顶点C的个数.巩固提升一、单选题1.(2021·衢州市实验学校教育集团(衢州学院附属学校教育集团)八年级期末)如图,在,OA OB 上分别截取,OD OE ,使OD OE =,再分别以点,D E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C ,作射线,OC OC 就是AOB ∠的角平分线.这是因为连结,CD CE ,可得到COD COE ≌,根据全等三角形对应角相等,可得COD COE ∠=∠.在这个过程中,得到COD COE ≌的条件是( )A .SASB .AASC .ASAD .SSS2.(2021·浙江八年级期末)如图是用直尺和圆规作一个角等于已知角的示意图,说明O O ∠'=∠的依据是( )A .SASB .SSSC .AASD .ASA3.(2020·浙江八年级期末)ABC 内找一点P ,使P 到B 、C 两点的距离相等,并且P 到C 的距离等于A 到C 的距离.下列尺规作图正确的是( )A .B .C .D .4.(2020·浙江八年级期末)如图,在AOB ∠的两边上,分别取OM ON =,再分别过点M 、N 作OA 、OB 的垂线,交点为P ,画射线OP ,则OP 平分AOB ∠的依据是( )A .SSSB .SASC .AASD .HL5.(2020·浙江八年级期末)如图,已知ABC ,求作一点P ,使P 到A ∠的两边的距离相等,且PA PB =、下列确定P 点的方法正确的是( )A .P 为AB ∠∠、两角平分线的交点B .P 为AC AB 、两边上的高的交点 C .P 为AC AB 、两边的垂直平分线的交点D .P 为A ∠的角平分线与AB 的垂直平分线的交点二、填空题 6.(2019·浙江八年级期末)如图,依据尺规作图的痕迹,计算∠α=________°.7.(2019·浙江杭州·八年级月考)用直尺和圆规作一个角等于已知角的示意图如下,则要说明D O C DOC '''∠=∠,需要证明D O C DOC '''∆∆≌,则两个三角形全等的依据是________(写出全等简写).8.(2018·浙江全国·)用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是_______.9.(2020·浙江高照实验学校八年级月考)如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=_____度.10.(2019·浙江杭州市·)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是_________.三、解答题11.(2019·浙江八年级期中)如图,在△ABC中,AB=AC,∠ABC=76°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.12.(2021·浙江八年级期末)电信部门要修建一座电视信号发射塔,如图,按照设计要求,发射塔到两个城镇A,B的电网必须相等,到两条高速公路m和n的距离也必须相等,发射塔应修建在什么位置,从图中标出.(保留作图痕迹,说明理由)13.(2020·浙江)已知ABC ,用尺规作图:(1)作AC 边上的中线;(2)画AB 边上的高.14.(2019·浙江宁波·八年级期中)某小区为方便M 、N 两幢住宅楼的住户投放分类后的垃圾,拟在小区主路AB AC 、的交叉区域内设置一个垃圾投放点P ,现要求P 点到两条道路的距离相等,且使PM PN =,请你通过尺规作图找出这一P 点(不写作法,保留作图痕迹)15.(2020·浙江八年级期末)已知:线段c 和αβ∠∠,求作:ABC ,使得AB c A B αβ=∠=∠∠=∠,,(不写作法,但保留作图痕迹)16.(2020·浙江)已知线段a 及锐角α,用直尺和圆规作ABC ,使B α∠=∠,AB BC a ==.17.(2020·浙江)如图,线段a ,利用直尺和圆规按照下列要求作出图形.(保留作图痕迹,不要求写作法)(1)作一个等边三角形,边长为a ;(2)在第(1)题的图中,作一个α∠,使30︒=α.18.(2020·浙江八年级期末)如图,BAC ∠和点D .在BAC ∠内部,试求作一点P ,使得点P 到BAC ∠两边的距离相等,同时到点A ,D 的距离也相等.(不写作法,保留作图痕迹)19.(2021·浙江八年级期末)如图,已知ABC ,请按下列要求作图:(1)作BC边上的中线.(2)用直尺和圆规作ABC的角平分线CG.≌(使点D与A对应,点E与B对应,点F与C对应).(3)用直尺和圆规作DEF,使DEF ABC20.(2020·浙江八年级期中)如图,已知ABC(1)用直尺和圆规按下列要求作图:(保留作图痕迹)在BC上作点D,使点D到AB和AC的距离相等;过BE AD交CA的延长线于E;点B作//(2)若AF BE⊥,垂足为F,证明BF EF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形问题(三)——代数法解图形
【设而要求,构造方程】
例1如图(1)所示的三角形沿着虚线折叠成如图(2)所示的图形,S1是S2的1.5倍。

已知(2)中阴影部分的面积为1cm²,求重叠部分的面积。

例2如图,一个长方形,恰好被分成六个正方形,其中最小的正方形面积是1平方厘米,求这个长方形的面积。

例3如图,在三角形ABC中,BE和CD交于O点,三角形DOB、三角形BOC、三角形EOC的面积分别是5、10、8,求阴影部分面积。

例4如图,三角形ABC的面积是1平方厘米,且BE=2EC,F是CD的中点。

那么,阴影部分面积是多少平方厘米?
【设而不求,整体代换】
例5 如图,在腰长为10cm,面积为34平方厘米的等腰三角形的底边任意取一点,设这个点到两腰的垂直线段分别长a cm、b cm,那么(a+b)的长度是多少厘米?
例6 如图,阴影部分的面积是50cm²,求环形面积。

例7 如图,三角形ABC中,D、E为BC边上的点,且BD=DE=EC,F、G为AC边上的点,且AF=FG=GC,三角形ABC的面积为1。

求图中阴影部分的面积。

相关文档
最新文档