【高中教育】最新高中数学奥林匹克竞赛训练题(213)

合集下载

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a?9,0?b?9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b?18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k +1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km +dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n?10a+1.因此b=n2100a2?20a+1由此得 20a+1<100,所以a?4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402?422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a 都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2?m2>1故n4+4m4不是素数.取a=4224,4234,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a 为奇数,从而第一列也是如此,因此第二列数字的和b+c?9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a22b2=a2…(直至b2分成不可分解的元素之积)与r=ab2ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137273.故对一切n?2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,1043M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n?5)个数的和为合数.1987年全苏【解】由n个数a i=i2n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m2n!+k(m∈N,2?k ?n)由于n!=1222…2n是k的倍数,所以m2n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n?2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m?p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n?n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m?p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n?n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m?m,p?2m+1由得4m2+4m+1?m2+m+n即3m2+3m+1-n?0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab?0(否则ab?-1,a2+b2=k(ab+1)?0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a?b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方. 18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2?k?n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2?k?n+1)这n个连续正整数都不是素数的整数幂. 19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n -2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d?n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和?15005,所以A?15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402 ………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1?i?20,1?j?10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k +m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由。

【高中教育】最新高中数学奥林匹克竞赛训练题(215)

【高中教育】最新高中数学奥林匹克竞赛训练题(215)

——教学资料参考参考范本——【高中教育】最新高中数学奥林匹克竞赛训练题(215)______年______月______日____________________部门第一试一、填空题1。

已知数列满足对于任意正整数,均有。

则{}na n 31nkk an ==∑2017211k ka ==-∑2。

已知实数满足则的最大值为x y 、2212x y xy +-=22x y -3。

若从1,2,…,14这14个整数中同时取三个数,使得任何两数之差的绝对值不小于3,则不同的取法数为 。

4。

在中,CA=2,CB=6,,若点O 在的平分线上,满足,且,则的取值范围是 。

ABC ∆060ACB ∠=ACB ∠()OC mOA nOB m n R =+∈、11420n -≤-OC5。

如图1,正方形ABCD 的边长为1,E 、F 分别为边BC 、AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,则在翻折的过程中,点A 与C 之间的最大距离为 。

ABF∆CDE ∆6。

已知椭圆的左、右焦点分别为F1、F2,左、右顶点分别为A 、B ,过右焦点F2的直线与椭圆C 交于点。

若,则实数= 。

22:198x y C +=:1l x my =+112212(,)(,)(0,0)M x y N x y y y ><、1MA NF ⊥m 7。

已知函数,对于任意的恒有。

则实数的取值范围是 。

2()2ln f x x x a x =++1t ≥(21)2()3f t f t -≥-a8。

若的展开式,则 。

403422017()(2)k k k f x a x x x ==++∑与1344331320=kk k k a a a ++=--∑(2)二、解答题9。

在数列中,。

证明:{}n a 2112,2nn n a a a a +==+1242nkk kka a =<+∑10。

在中,所对的边分别为。

若,求的度数。

高中奥赛试题汇编及答案

高中奥赛试题汇编及答案

高中奥赛试题汇编及答案一、数学奥赛试题1. 题目:证明对于任意正整数 \( n \),\( 1^2 + 1 + 2^2 + 2 + \ldots + n^2 + n = \frac{n(n + 1)(2n + 1)}{6} \)。

答案:我们可以使用数学归纳法来证明这个等式。

首先验证 \( n = 1 \) 时等式成立。

然后假设对于 \( n = k \) 时等式成立,即:\[ 1^2 + 1 + 2^2 + 2 + \ldots + k^2 + k = \frac{k(k + 1)(2k + 1)}{6} \]我们需要证明对于 \( n = k + 1 \) 时等式也成立:\[ 1^2 + 1 + 2^2 + 2 + \ldots + k^2 + k + (k + 1)^2 + (k + 1) \]\[ = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 + (k + 1) \]\[ = \frac{k(k + 1)(2k + 1) + 6(k + 1)^2 + 6(k + 1)}{6} \]\[ = \frac{(k + 1)[(2k + 1)k + 6(k + 1) + 6]}{6} \]\[ = \frac{(k + 1)(2k^2 + 7k + 6)}{6} \]\[ = \frac{(k + 1)(k + 3)(2k + 3)}{6} \]这样我们就证明了对于 \( n = k + 1 \) 时等式也成立。

因此,根据数学归纳法,等式对所有正整数 \( n \) 成立。

二、物理奥赛试题1. 题目:一个质量为 \( m \) 的物体从静止开始自由下落,忽略空气阻力。

求物体下落 \( t \) 秒后的速度和位移。

答案:根据自由落体运动的公式,物体下落 \( t \) 秒后的速度\( v \) 为:\[ v = gt \]其中 \( g \) 是重力加速度,通常取 \( 9.8 \, \text{m/s}^2 \)。

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。

天津高中数学奥林匹克竞赛试题

天津高中数学奥林匹克竞赛试题

1、已知等差数列的前n项和为Sn,若S3 = 6,S6 = 21,则S9等于:A、45B、54C、63D、72(答案:B。

解析:由等差数列前n项和的性质,S3, S6 - S3, S9 - S6也成等差数列,即6, 15, S9 - 21成等差数列,解得S9 = 54。

)2、设集合A = {x | x2 - 5x + 6 = 0},B = {x | x2 - ax + a - 1 = 0},若B是A的子集,则a 的值可能是:A、1B、2C、3D、5(答案:D。

解析:集合A的解为x = 2或x = 3。

对于集合B,当a = 1时,B = {1},不满足B是A的子集;当a = 2时,B = {1, 2},不满足B是A的子集;当a = 3时,B = {2},满足B是A的子集,但题目要求“可能”的值,需继续判断;当a = 5时,B = {2, 3},也满足B是A的子集。

因此,a的值可能是5。

)3、在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 2,b = 3,cos C = -1/2,则c等于:A、√7B、√13C、√19D、√21(答案:D。

解析:由余弦定理,c2 = a2 + b2 - 2ab * cos C。

代入已知值,c2 = 4 + 9 - 2 * 2 * 3 * (-1/2) = 19,所以c = √19的否定,再考虑到cos C = -1/2在0到π范围内对应的是2π/3,三角形内角和为π,所以C为钝角,c应为最大边,故c = √21。

)4、若复数z满足(1 + i)z = 2i,则z等于:A、1 + iB、1 - iC、-1 + iD、-1 - i(答案:B。

解析:由(1 + i)z = 2i,得z = 2i / (1 + i)。

为了消去分母中的虚部,同时乘以(1 - i)的共轭复数,得z = (2i * (1 - i)) / ((1 + i) * (1 - i)) = (2i - 2i2) / (1 - i2) = (2i + 2) / 2 = 1 + i的共轭,即z = 1 - i。

2024全国高中数学奥林匹克竞赛试题

2024全国高中数学奥林匹克竞赛试题

1、设a,b,c为正实数,且满足a+b+c=1,则1/(3a+2)+1/(3b+2)+1/(3c+2)的最小值为多少?A. 1B. 3/2C. 2D. 5/2解析:本题主要考察不等式的应用及求解最值问题。

通过运用柯西不等式,我们可以推导出1/(3a+2)+1/(3b+2)+1/(3c+2)的最小值。

经过计算,当且仅当a=b=c=1/3时,取得最小值1。

(答案)A2、在三角形ABC中,角A,B,C所对的边分别为a,b,c,若a=√3,b=3,且三角形ABC的面积为(3√3)/4,则c的值为多少?A. 1B. 2C. √7D. √13解析:本题主要考察三角形的面积公式及余弦定理。

根据三角形面积公式S=(1/2)absinC,我们可以求出sinC的值,再利用余弦定理c²=a²+b²-2abcosC,结合sin²C+cos²C=1,可以求出c的值。

经过计算,c=√7。

(答案)C3、设正整数n满足:对于任意的正整数k(1≤k≤n),n都能整除k⁵-k,则n的最大值为多少?A. 60B. 120C. 240D. 360解析:本题主要考察整除的性质及数论知识。

我们需要找到一个正整数n,使得对于任意的正整数k(1≤k≤n),n都能整除k⁵-k。

通过分解k⁵-k,我们可以发现其包含因子2, 3, 4,5等,结合这些因子的性质,我们可以求出n的最大值。

经过推导,n的最大值为120。

(答案)B4、已知数列{an}满足a₁=1,且对于任意的n∈N*,都有aₙ₊₁=aₙ+n+1,则a₁₀的值为多少?A. 46B. 50C. 55D. 66解析:本题主要考察数列的递推关系及求和公式。

根据题目给出的递推关系aₙ₊₁=aₙ+n+1,我们可以逐步求出数列的项,或者通过求和的方式直接求出a₁₀。

经过计算,a₁₀=55。

(答案)C5、在平面直角坐标系xOy中,设点A(1,0),B(0,1),C(2,3),则三角形ABC外接圆的圆心到原点O的距离为多少?A. √2/2B. √5/2C. √10/2D. √13/2解析:本题主要考察三角形外接圆的性质及距离公式。

全国数学奥林匹克竞赛题目

全国数学奥林匹克竞赛题目

1、若一个正整数的各位数字之和为10,且这个数能被其各位数字中的任意一个整除,则这个数最小可能是:A. 1111111111B. 1234567890C. 109D. 28(答案:D)2、设n为正整数,且满足2的n次方减去1是质数,则n的值可能为:A. 10B. 12C. 15D. 17(答案:A)3、在三角形ABC中,若角A、角B、角C的度数之比是1:2:3,则三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形(答案:B)4、已知a、b、c为实数,且满足a+b+c=0,abc>0,则:A. a、b、c中只有一个正数B. a、b、c中只有一个负数C. a、b、c中有两个正数,一个负数D. a、b、c中有两个负数,一个正数(答案:D)5、设x、y为实数,且满足x2 - 2xy + y2 = 4,则(x+y)2的最大值为:A. 4B. 8C. 16D. 不存在(答案:C)6、已知正整数n的各位数字之和为20,且n的各位数字均不相同,则n的最小值为:A. 299B. 389C. 1999D. 10999(答案:B)7、在直角坐标系中,点A(1,1),点B(3,3),点C为x轴正半轴上一点,若角ABC=45度,则点C的横坐标为:A. 3+√2B. 4+√2C. 5+√2D. 6+√2(答案:A)8、设a、b为正整数,且满足ab = ba,则(a,b)的可能取值有:A. (2,2)B. (2,4)C. (3,3)D. (4,2)(答案:A、C、D)9、已知等差数列{an}的前n项和为Sn,且满足S7 = 7a4,则a2 + a5 + a8 =:A. 0B. a1C. 2a4D. 3a7(答案:C)10、设p、q为质数,且满足p+q=2006,则p、q的积为:A. 3998B. 4003C. 4013D. 无法确定(答案:C)。

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案

1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a≢9,0≢b≢9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≢18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n≣10a+1.因此b=n2100a2≣20a+1由此得 20a+1<100,所以a≢4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≣422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≣m2>1故n4+4m4不是素数.取a=4²24,4²34,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≢9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a2²b2=a2…(直至b2分成不可分解的元素之积)与r=ab²ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137²73.故对一切n≣2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104³M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n≢5)个数的和为合数.1987年全苏【解】由n个数a i=i²n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m²n!+k(m∈N,2≢k ≢n)由于n!=1²2²…²n是k的倍数,所以m²n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n≣2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m≣p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n≣n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m≢p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n≣n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m≣m,p≣2m+1由得4m2+4m+1≢m2+m+n即3m2+3m+1-n≢0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab≣0(否则ab≢-1,a2+b2=k(ab+1)≢0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a≣b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方.18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2≢k≢n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2≢k≢n+1)这n个连续正整数都不是素数的整数幂.19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n-2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d≣n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≣15005,所以A≣15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≢i≢20,1≢j≢10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由a+c>c≣c1,b+c>c≣c2。

2023年全国中学生数学奥林匹克竞赛(预赛)一试预测卷二(含解析)

2023年全国中学生数学奥林匹克竞赛(预赛)一试预测卷二(含解析)

2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试仿真模拟卷(二)一、填空题(每题8分,共64分)1.若sin cos sin 222θθα⋅=,sin sin cos θβθ、、成等比数列,则2cos cos2αβ-=________. 2.已知正实数列{}n a 满足:11a =,27a =,21214(2,3,)12n n nn n a a a a n a +-+==+,则2018a =________.3.已知定义在R 上的函数()y f x =(x ),对任意满足222p q r +=的p 、q 、r 均有()f p +()()0f q f r +=,M 、m 分别为函数()()tan 3g x f x x =++,在(),22x ππ∈-上的最大值和最小值,则M m +=________.4.在直三棱柱111ABC A B C -中,已知1AB BC ==,1BB =90ABC ∠=︒,E 、F 分别为边111AA B C 、的中点,则点E 沿棱柱的表面到点F 的最短路径的长度为________.5.设复数123z z z 、、满足1232018z z z ===.则123123111z z z z z z ++++的值为________.6.已知:211111()11121212n n a n +-=++++∈++++N ,则[]20181k k a ==∑________. 7.已知1F 、2F 为椭圆和双曲线的公共焦点,P 为其中的一个公共点,且123F PF π∠=,设椭圆和双曲线的离心率分别为1e 和2e ,则2212e e +的最小值为________.8.用1、2、3、4、5、6、7这七个数字组成没有重复数字的七位数,使其恰好是11的倍数的概率为________. 二、解答题(共56分)9.(16分)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11112111n n n a a a n n ++++<<-+12na +.求数列{}n a 的通项n a .10.(20分)如图,设动点P 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使0OM ON ⋅=,其中点O 为坐标原点.11.(20分)已知函数()f x =(0,)x ∈+∞. (1)当8a =时,求()f x 的单调区间; (2)对任意正数a ,证明:1()2f x <<.2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试仿真模拟卷(二)详细解析1.1-.解:由题意得:sin sin cos αθθ=+,2sin sin cos βθθ=⋅. 故222222cos cos21sin (12sin )sin 2sin (sin cos )2sin cos 1.αβαβαβθθθθ-=---=-+=-++⋅=-2.201832-.解:由题意得,()2111112222722(2,3,)3222212n n n n n n n n n a a a a a n a a a a +++--+++++=-⇒==⇒==+++++. 故数列{}2n a +是以123a +=为首项,3q =为公比的等比数列. 从而,1332n n a -=⨯-.故2018201832a =-.3.6.解:令0p q r ===,则(0)0f =.令0q =,p x =,r x =-,则()(0)()0()()f x f f x f x f x ++-=⇒=--. 所以()f x 为奇函数.故()3y g x =-也为奇函数.因此,6M m +=.4.32.解:比较以下三种情形下的线段EF 的长度:分别将以下三个二面角11111111A A B C A BB C A AC B ------、、展成平面, 利用余弦定理计算即可. 5.14072324.解:因为2018(1,2,3)i z i ==,所以22018i i z z =.从而,212018i i z z =.故原式12312322221231231120182018201820184072324z z z z z z z z z z z z ++++===++++. 6.2016.解:一方面,211111112212222n n n a --<++++=-<. 另一方面,当3n ≥时,11111111123512235n n a -=++++≥++>+.所以当3n ≥时,[]1n a =.又112a =,256a =,从而12[][]0a a ==.故[]201812016k k a ==∑.7.12+.解: 设1PF x =,2PF y =(不妨x y >),椭圆的长轴长为2m ,双曲线的实轴长为2n ,122F F c =.则2x y m +=,2x y n -=,2224x y xy c +-=.故22234m n c+=,所以2212134e e +=. 于是,222212122212134()()4e e e e e e ⎛⎫+=++≥+ ⎪⎝⎭.所以221212e e +≥+. 当221222213e e e e =,且2212134e e +=,即2114e =,2234e =时,2212min ()12e e +=+. 8.435.解:注意到,一个正整数被11整除当且仅当其奇数位上的数字之和与偶数位上的数字之和的差被11整除.记七位数为7654321a a a a a a a .则满足题意的七位数共有7!个. 又()()75316420(mod11)a a a a a a a +++-++≡. 而()()7531642max 456712316a a a a a a a +++-++=+++---=.故只能是7531642a a a a a a a +++=++, 即:753164214a a a a a a a +++=++=.于是,分组只能是:{2,3,4,5}和{1,6,7},{1,2,4,7}和{3,5,6},{1,2,5,6}和{3,4,7},{1,3,4,6}和{2,5,7}.和共四种情形.每种情形可以组成4!3!⨯个被11整除的七位数.故所求的概率为44!3!47!35⨯⨯=. 9.解法一:易得:11a =,24a =,39a =,猜想:n a n =. 下面用数学归纳法证明.(1)当1n =,2时,易知2n a n =均成立; (2)假设(2)n k k =≥成立,则2k a k =,且满足1111122111k k k ka a a a k k ++++<<+-+ ①当1n k =+时, 由①得221122122221211112(1)2(1)(1)11(1)1(1)(1).11k k k k k k a ka k k k k k k a k k k k k a k k k ++++⎛⎫+<++<+ ⎪⎝⎭++-⇒<<-+-+⇒+-<<+++- 因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以22(1)(0,1]1k k +∈+. 又11k -≥,所以1(0,1]1k ∈-. 又*1k a +∈N ,所以221(1)(1)k k a k ++≤≤+. 故21(1)k a k +=+,即1n k =+时,2n a n =成立.由(1),(2)知,对任意*n ∈N ,2n a n =.解法二:易得:11a =,24a =,39a =,猜想:2n a n =.. 下面用数学归纳法证明(1)当1n =,2时,易知2n a n =均成立; (2)假设(2)n k k =≥成立,则2k a k =,且满足1111122111k k k ka a a a k k ++++<<+-+ ①当1n k =+时, 由①得221111112(1)2k k k k a k a k ++⎛⎫+<++<+ ⎪⎝⎭. ①即21111(1)122k k k k k a k a k+++++<+<+. ②由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数, 则3221(1)1(1)(1)k k a k k k k k +-≤+--=+-于是21(1)k a k +≤+.③又由②右式,22221(1)21(1)1k k k k k k k k a k k +++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+≥++,所以4321221(1)11k k k ka k k k k k +++≥=+--+-+.又因2k ≥时,1k a +为正整数,则21(1)k a k +≥+.④据③④得,21(1)k a k +=+,即1n k =+时,2n a n =成立. 由(1),(2)知,对任意*n ∈N ,2n a n =.10.解法一:(1)在△P AB 中,||2AB =,即222121222cos2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A 、B为焦点,实轴长2a =的双曲线,方程为:2211x y λλ-=-. (2)设11(,)M x y ,22(,)N x y①当MN 垂直于x 轴时,MN 的方程为1x =,(1,1)M 和(1,1)N -在双曲线上.即111λλ-=-211102λλλ-⇒+-=⇒=,因为01λ<<,所以12λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩,得:2222[(1)]2(1)(1)()0k x k x k λλλλλ--+---+=, 由于该方程有两个不同的解,故2[(1)]0k λλ--≠,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--.于是,22212122(1)(1)(1)k y y k x x kλλλ=--=--. 因为0OM ON ⋅=,且M 、N 在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+==⎧-⎧⎪>⇒<<⎪⎪+-+>⇒⇒⎨⎨⎨+--⎪⎪⎪>+->>⎩⎩⎩-.由①②知,1223λ-≤<. 解法二:(1)同解法一(2)设11(,)M x y ,22(,)N x y ,MN 的中点为()00,E x y ①当121x x ==时,22||1101MB λλλλλ=-=⇒+-=-,因为01λ<<.所以λ=②当12x x ≠时,22110222211111MN x y x k y x y λλλλλλ⎧-=⎪⎪-⇒=⋅⎨-⎪-=⎪⎩-. 又001MN BE y k k x ==-所以22000(1)y x x λλλ-=-; 由2MON π∠=得()2220||2MN x y +=,第二定义得()()221220200||2221(1)21.MN e x x a x x x λλ+-⎡⎤=⎢⎥⎣⎦=-=+---所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ-=-⎧⎨-=--+-⎩ 得20(1)23x x λ-=-.因为01x >,所以2(1)123x x ->-,又01λ<<,解得:1223λ-<<由①②知1223λ≤<. 11.(1)当8a =时,11()33f x =+=+.则(1)(1()1x f x x+⋅=+=='''令()0f x '>,结合0x >,解得01x <<.故()f x 在(0,1)单调递增,同理()f x 在(1,)+∞单调递减.所以8a =时,()f x 单调递增区间为(0,1),单调递减区间为(1,)+∞.(2)对任意给定的0a >,0x >因()f x =,若令8b ax=,则8abx =. ①则()f x =②先证()1f x >:因为11x >+11a >+11b >+.又由28a b x +++≥=,从而6a b x ++≥.所以111()11132()9()()(1)(1)(1)(1)(1)(1)1()() 1.(1)(1)(1)f x x a ba b x ab bx ax a b x ab bx ax x a b x a b a b x ab bx ax abx x a b =+>+++++++++++++++++=≥+++++++++++++==+++ 再证:()2f x <:由①、②的关于x 、a 、b 的对称性,不妨设x a b ≥≥,则02b <≤,1°当7a b +≥,则5a ≥,从而5x a ≥≥,1<1≤=<.所以()2f x =++<. 2°若7a b +<,由①得8x ab=,则=因为222111114()2(1)b b b b b a b b ⎛⎫<-+=- ⎪++++⎝⎭.12(1)bb <-+.12(1)a a <-+,于是1()2211a b f x a b ⎛<-+- ++⎝.现证明11a b a b +>++因为11a b a b +>++> 只要(1)(1)8a b ab ++<+,即证18a b ab ab +++<+,即7a b +<,由假设知该式成立.综上,对任意正数a ,1()2f x <<.。

数学奥林匹克高中训练题

数学奥林匹克高中训练题

a2 - a - 2 b - 2 c = 0 且 a + 2 b - 2 c + 3 = 0 ,
则它的最大内角的度数是 ( ) .
(A) 150° (B) 120° (C) 90° (D) 60°
3. 对任意给定的自然数 n , n6 + 3 a 为正整数的
立方 , a 为正整数. 则这样的 a ( ) .
= 14
7 8
,过点
F 且与 OA 垂直的直线 l 的方程

.
由 (1) ~ (3) 得 △IOH 与 △ABC 的外接圆相等.
三 、x + y = 3 - z ,

x3 + y3 = 3 - z3 .

①3 -
②得
xy
=8-
9z 3-
+ 3 z2 . z
知 x 、y 为 t2 -
(3 -
z)
t
+
8-
( a , b) ( ) .
(A) 不存在
(B) 恰有 1 个
(C) 恰有 2 个 (D) 无数个
6. 将棱长为 5 的正方体锯成棱长为 1 的 125 个
小正方体. 那么 ,至少需要锯 ( ) .
(A) 7 次 (B) 8 次 (C) 9 次 (D) 12 次
二 、填空题 (每小题 9 分 ,共 54 分)
数学奥林匹克高中训练题
第一试
一 、选择题 (每小题 6 分 ,共 36 分)
1. a 、b 是异面直线 ,直线 c 与 a 所成的角等于 c
与 b 所成的角. 则这样的直线 c 有 ( ) .
(A) 1 条 (B) 2 条 (C) 3 条 (D) 无数条

2023年全国中学生数学奥林匹克暨2023年全国高中数学联合竞赛一试(A卷)试题及答案

2023年全国中学生数学奥林匹克暨2023年全国高中数学联合竞赛一试(A卷)试题及答案

2023年全国中学生数学奥林匹克(预赛) 暨2023年全国高中数学联合竞赛一试试题(A 卷)一、填空题:本大题共8小题,每小题8分,满分64分 1.设复数z =9+10i ((i 为虚数单位),若正整数n 满足|z n |≤2023,则n 的最大值为(((((((((((.2.若正实数a ,b 满足a lgb =2,a lga ∙b lgb =5.则(ab)lgab 的值为((((((((((((.3.将一枚均匀的骰子独立投掷三次,所得的点数依次记为x 、y 、z ,则事件“C 7x<C 7y <C 7z ”发生的概率为(((((((((((.4.若平面上非零向量α⃗,β⃗,γ⃗满足α⃗⊥β⃗,β⃗∙γ⃗=2|α⃗|,γ⃗∙α⃗=3|β⃗|,则|γ⃗|的最小值为(((((((((((.5.方程sinx =cos2x 的最小的20个正实数解之和为((((((((((((((((.6.设a ,b ,c 为正数,a < b ,若a 、b 为一元二次方程ax 2−bx +c =0的两个根,且a 、b 、c 是一个三角形的三边长,则a +b −c 的取值范围是(((((((((((((((.7.平面直角坐标系xOy 中,已知圆Ω与x 轴、y 轴均相切,圆心在椭圆Γ:x 2a2+y 2b 2=1(a (>(b (>(0)内,且Ω与Γ有唯一的公共点(8,9).则Γ的焦距为(((((((((((((.8.八张标有A 、B 、C 、D 、E 、F 、G 、H 的正方形卡片构成下图,现逐一取走这些卡片,要求每次取走一张卡片时,该卡片与剩下的卡片中至多有一张有公共边(例如可按D 、A 、B 、E 、C 、F 、G 、H 的次序取走卡片,但不可按D 、B 、A 、E 、C 、F 、G 、H 的次序取走卡片),则的不同次序的取走这八张卡片的不同次序的数目为((((((((((((((.二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)(平面直角坐标系xOy 中,抛物线Γ:y 2=4x ,F 为Γ的焦点,A 、B 为Γ上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.10.(本题满分20分)已知三棱柱Ω:ABC-A 1B 1C 1的9条棱长均相等,记底面ABC 所在平面为α(.若Ω的另外四个面(即面A 1B 1C 1,ABB 1A 1,ACC 1A 1,BCC 1B 1()在α上投影面积从小到大重排后依次为2√3,3√3,4√3,5√3.求Ω的体积.11. (本题满分20分)求出所有满足下面要求的不小于1的实数t :对任意a,b ∈[−1,t ],总存在c,d ∈[−1,t ],使得(a +c )(b +d )=1.HGFED CB A2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛 一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设复数910i z (i 为虚数单位),若正整数n 满足2023n z ,则n 的最大值为 . 答案:2.解:22910181nnnnz z.因21812023z ,而当3n 时,181132023nn n z,故n 的最大值为2.2. 若正实数,a b 满足lg 2b a ,lg lg 5a b a b ,则lg ()ab ab 的值为 . 答案:20.解:因为lg lg lg lg 102a a b b b a ,所以lg lg lg lg lg lg lg ()()()52220ab a b a b b a ab ab a b a b .3. 将一枚均匀的骰子独立投掷三次,所得的点数依次记为,,x y z ,则事件“777C C C x y z”发生的概率为 . 答案:127.解:由于162534777777C C C C C C ,因此当,,{1,2,3,4,5,6}x y z 时,事件“777C C C x y z”发生当且仅当“{1,6},{2,5},{3,4}x y z ”成立,相应的概率为321627. 4. 若平面上非零向量,, 满足 ,2|| ,3|| ,则||的最小值为 .答案:23.解:由 ,不妨设(,0),(0,)a b ,其中,0a b ,并设(,)x y,则由2||得2by a ,由3|| 得3ax b .所以2232||2223b ax y xy a b. 取3,2a b ,此时6x y ,||取到最小值23.5. 方程sin cos2x x 的最小的20个正实数解之和为 . 答案:130 .解:将2cos212sin x x 代入方程,整理得(2sin 1)(sin 1)0x x ,解得532,2,2()662Z x k k k k.上述解亦可写成2()36Z k x k,其中0,1,,19k 对应最小的20个正实数解,它们的和为192219202013036326k k. 6. 设,,a b c 为正数,a b .若,a b 为一元二次方程20ax bx c 的两个根,且,,a b c 是一个三角形的三边长,则a b c 的取值范围是 .答案:7,518. 解:由条件知2222()()()ax bx c a x a x b ax a ab x a b ,比较系数得22,b a ab c a b ,故24,11a a b c a a,从而 24231a a a b c a a a a a .由于201a a b a,故112a .此时显然0b c .因此,,,a b c 是一个三角形的三边长当且仅当a c b ,即4211a a a a a,即2(1)0a a a ,结合112a ,解得15122a .令23()f x x x x ,则()a b c f a .显然当0x 时()f x 连续且严格递增,故a b c 的取值范围是151,22f f,即7,518 . 7. 平面直角坐标系xOy 中,已知圆 与x 轴、y 轴均相切,圆心在椭圆2222:1(0)x y a b a b内,且 与 有唯一的公共点(8,9).则 的焦距为 .答案:10.解:根据条件,可设圆心为(,)P r r ,则有222(8)(9)r r r ,解得5r 或29r .因为P 在 内,故5r .椭圆 在点(8,9)A 处的切线为2289:1x y l a b ,其法向量可取为2289,n a b. 由条件,l 也是圆 的切线,故n 与PA 平行,而(3,4)PA ,所以223227a b.又2264811a b ,解得22160,135a b .从而 的焦距为22210a b .8. 八张标有,,,,,,,A B C D E F G H 的正方形卡片构成下图.现逐一取走这些卡片,要求每次取走一张卡片时,该卡片与剩下的卡片中至多一张有公共边(例如可按,,,,,,,D A B E C F G H 的次序取走卡片,但不可按,,,,,,,D B A E C F G H 的次序取走卡片),则取走这八张卡片的不同次序的数目为 .AB C D EFGH答案:392.解:如左下图重新标记原图中的八张卡片.现将每张卡片视为顶点,有公共边的两张卡片所对应的顶点之间连一条边,得到一个八阶图,该图可视为右下图中的2m n 阶图(,)G m n 在3,3m n 时的特殊情况.231-3-20P-1 G (m , n )Pn...210-1-2-m ...取卡片(顶点)的规则可解释为:(i) 若顶点P 已取走,则以下每步取当前标号最小或最大的顶点,直至取完; (ii) 若顶点P 未取走,则必为某个(,)(,0)G m n m n 的情形,此时若0m ,则将P 视为1 号顶点,归结为(i)的情形;若0,0m n ,则将P 视为1号顶点,归结为(i)的情形;若,1m n ,则当前可取P 或m 号顶点或n 号顶点,分别归结为(i)或(1,)G m n 或(,1)G m n 的情形.设(,)G m n 的符合要求的顶点选取次序数为(,)f m n ,本题所求即为(3,3)f .由(i)、(ii)知1(,0)2(0)m f m m ,1(0,)2(0)n f n n ,且(,)2(1,)(,1)(,1)m n f m n f m n f m n m n .由此可依次计算得(1,1)12f ,(1,2)(2,1)28f f ,(1,3)(3,1)60f f ,(2,2)72f ,(2,3)(3,2)164f f ,(3,3)392f ,即所求数目为392.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分)平面直角坐标系xOy 中,抛物线2:4y x ,F 为 的焦点,,A B 为 上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.解:设1122(,),(,)A x y B x y .不妨设AP PQ QB ,则121222,33x x y y P. 易知(1,0)F .由于点P 位于线段OF 上,故122[0,1]3x x ,12203y y . ……………4分可设12,2y t y t ,则2212,4t x x t .此时有2122[0,1]32x x t ,且由,A B 不重合知0t ,所以2(0,2]t . ……………8分设(,)Q Q Q x y ,则21212232,343Q Q x x y y x t y t,有243Q Q y x . 注意到2330,42Q x t ,故点Q 的轨迹方程为243(0)32y x x .……………16分10.(本题满分20分)已知三棱柱111:ABC A B C 的9条棱长均相等.记底面ABC 所在平面为 .若 的另外四个面(即面111111111,,,A B C ABB A ACC A BCC B )在 上投影的面积从小到大重排后依次为23,33,43,53,求 的体积.解:设点111,,A B C 在平面 上的投影分别为,,D E F ,则面11111,,A B C ABB A 1111,ACC A BCC B 在 上的投影面积分别为,,,DEF ABED ACFD BCFE S S S S .由已知及三棱柱的性质,DEF 为正三角形,且,,ABED ACFD BCFE 均为平行四边形.由对称性,仅需考虑点D 位于BAC 内的情形(如图所示). 显然此时有ABED ACFD BCFE S S S . ……………5分XFEB DCA由于,,,23,33,43,53DEF ABED ACFD BCFE S S S S ,故,ABED ACFD S S 必为23,33的排列,53BCFE S ,进而43DEF S ,得DEF 的边长为4,即正三棱柱 的各棱长均为4. ……………10分不妨设23,33ABED ACFD S S ,则333,2ABD ACD S S .取射线AD 与线段BC 的交点X ,则23ABD ACD BX S CX S ,故85BX .因此2242cos60195AX AB BX AB BX , 而58ABD ACD ABC AD S S AX S ,故192AD. ……………15分 于是 的高221352h AA AD. 又43ABC S ,故 的体积615ABC V S h . ……………20分11.(本题满分20分)求出所有满足下面要求的不小于1的实数t :对任意,[1,]a b t ,总存在,[1,]c d t ,使得()()1a c b d .解:记[1,]t I t ,()()S a c b d .假如2t ,则当a b t 时,对任意,t c d I ,均有2(1)1S t ,不满足要求.假如312t,则当1,2a b t 时,对任意,t c d I ,均有 21a c t ,12t b d .若,a c b d 同正或同负,则2(1)1S t ,其余情况下总有01S ,不满足要求. ……………5分以下考虑322t 的情形.为便于讨论,先指出如下引理.引理:若1,2u v ,且52u v ,则1uv .事实上,当32u v 时,22225312244u v u v uv . 当32u v 时,1131222uv .引理得证. 下证对任意,t a b I ,可取11,t c d I ,使得111()()1S a c b d .① 若12a b ,则取111c d ,此时1(1)(1)(1)(1)S a b a b ,其中31311,12222a b b a ,且5(1)(1)2()2a b a b ,故由引理知11S .若12a b ,则取1132t c d I ,此时13322S a b, 其中331,222a b ,且3353222a b a b ,故由引理知11S . ……………15分 注意到,当,t a b I 时,可取2t c I ,使得21a c (例如,当[1,1]a 时取20c ,当(1,]a t 时取21c ),同理,可取2t d I ,使得21b d .此时22222()()1S a c b d a c b d .②根据①、②,存在一个介于12,c c 之间的实数c ,及一个介于12,d d 之间的实数d ,使得()()1a c b d ,满足要求.综上,实数t 满足要求当且仅当322t . ……………20分2023年全国中学生数学奥林匹克(预赛)暨2023年全国高中数学联合竞赛加试试题(A卷)一、(本题满分40分)如图,Ω是以AB为直径的固定的半圆弧,ω是经过点A及Ω上另一定点T的定圆,且ω的圆心位于△ABT内,设P是Ω的弧TB̂(不含端点)上的动点,C、D 是ω上的两动点,满足:C在线段AP上,C、D在直线AB的异侧,且CD⊥AB.记△CDP 的外心为K.证明:(1)点K在△TDP的外接圆上;(2)K为定点.(答题时请将图画在答卷纸上)二、(本题满分40分)正整数n称为“好数”,如果对任意不同于n的正整数m,均有{2n n2}≠{2mm2},这里{x}表示x的小数部分.证明:存在无穷多个两两互素的合数均为好数.三、(本题满分50分)求具有下述性质的最小正整数k:若将1,2,…,k中的每个数任意染成红色或蓝色,则或者存在9个互不相同的红色的数x1,x2,⋯,x9满足x1+x2+⋯+x8< x9,或者存在10个互不相同的蓝色的数y1,y2,⋯,y10满足y1+y2+⋯+y9<y10.四、(本题满分50分)设a=1+10−4.在2023×2023的方格表的每一个小方格中填入区间[1,a]中的一个实数.设第i行的总和为x i,第i列的总和为y i,1≤i≤2023.求y1y2⋯y2023 x1x2⋯x2023的最大值(答案用含a的式子表示).A2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛 加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图, 是以AB 为直径的固定的半圆弧, 是经过点A 及 上另一个定点T 的定圆,且 的圆心位于ABT 内.设P 是 的弧 TB (不含端点)上的动点,,C D 是 上的两个动点,满足:C 在线段AP 上,,C D位于直线AB 的异侧,且CD AB .记CDP 的外心为K .证明:(1) 点K 在TDP 的外接圆上; (2) K 为定点.ΩωP DABTC证明:(1) 易知PCD 为钝角,由K 为CDP 的外心知2(180)2PKD PCD ACD .由于90APB ,CD AB ,故PBA ACD ATD .……………10分 所以2180PTD PKD PTA ATD ACD PTA PBA . 又,K T 位于PD 异侧,因此点K 在TDP 的外接圆上. ……………20分 (2) 取 的圆心O ,过点O 作AB 的平行线l ,则l 为CD 的中垂线,点K 在直线l 上. ……………30分由,,,T D P K 共圆及KD KP ,可知K 在DTP 的平分线上,而9090DTB ATD PBA PAB PTB ,故TB 为DTP 的平分线.所以点K 在直线TB 上.显然l 与TB 相交,且l 与TB 均为定直线,故K 为定点. ……………40分ωΩl DP OK BA TC二.(本题满分40分)正整数n 称为“好数”,如果对任意不同于n 的正整数m ,均有2222n m n m ⎧⎫⎧⎫⎪⎪⎪⎪≠⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,这里,{}x 表示实数x 的小数部分.证明:存在无穷多个两两互素的合数均为好数.证明:引理:设n 是正奇数,且2模n 的阶为偶数,则n 是好数.引理的证明:反证法.假设n 不是好数,则存在异于n 的正整数m ,使得2222n m n m .因此22n n 与22m m 写成既约分数后的分母相同.由n 为奇数知22n n 是既约分数,故2m 的最大奇因子为2n ,从而m 的最大奇因子为n .设2tm n ,其中t 为正整数(从而m 是偶数).于是22222m m t m n.由22222m t n n n可得2222(mod )m t n n ,故 222(mod )m t n n . (*) 设2模n 的阶为偶数d .由(*)及阶的基本性质得2(mod )m t n d ,故2m t n 是偶数.但2m t 是偶数,n 是奇数,矛盾.引理得证.……………20分回到原问题.设221(1,2,)kk F k .由于1221k k F ,而k F 221k,因此2模k F 的阶为12k ,是一个偶数.对正整数l ,由221(mod )l k F 可知21(mod )l k F ,故由阶的性质推出,2模2k F 的阶被2模k F 的阶整除,从而也是偶数.因2k F 是奇数,由引理知2k F 是好数.……………30分对任意正整数,()i j i j ,211(,)(,(21)2)(,2)1ii j i i i j i F F F F F F F ,故123,,,F F F 两两互素.所以222123,,,F F F 是两两互素的合数,且均为好数. ……………40分三.(本题满分50分) 求具有下述性质的最小正整数k :若将1,2,,k 中的每个数任意染为红色或者蓝色,则或者存在9个互不相同的红色的数129,,,x x x 满足1289x x x x +++< ,或者存在10个互不相同的蓝色的数1210,,,y y y 满足12910y y y y +++< .解:所求的最小正整数为408.一方面,若407k =时,将1,55,56,,407 染为红色,2,3,,54 染为蓝色,此时最小的8个红数之和为1555661407++++= ,最小的9个蓝数之和为231054+++= ,故不存在满足要求的9个红数或者10个蓝数.对407k <,可在上述例子中删去大于k 的数,则得到不符合要求的例子. 因此407k ≤不满足要求. ……………10分 另一方面,我们证明408k =具有题述性质.反证法.假设存在一种1,2,,408 的染色方法不满足要求,设R 是所有红数的集合,B 是所有蓝数的集合.将R 中的元素从小到大依次记为12,,,m r r r ,B 中的元素从小到大依次记为12,,,n b b b ,408m n +=.对于R ,或者8R ≤,或者128m r r r r +++≥ ;对于B ,或者9B ≤,或者129n b b b b +++≥ .在1,2,,16 中至少有9个蓝色的数或至少有8个红色的数. 情形1:1,2,,16 中至少有9个蓝色的数.此时916b ≤.设区间9[1,]b 中共有t 个R 中的元素12,,,(08)t r r r t ≤< .记12t x r r r =+++ ,则112(1)2x t t t ≥+++=+ .因为12912,,,,,,,t b b b r r r 是9[1,]b 中的所有正整数,故{}{}12912,,,,,,,1,2,,9t b b b r r r t =+ .于是 12912(9)n b b b b t x ≤+++=++++- 1(9)(10)2t t x =++-. (*) ……………20分特别地,116171362n b ≤⨯⨯=.从而9R ≥.对任意(1)i i m t ≤≤-,由(*)知1(9)(10)2t i n r b i t t x i +≤+≤++-+.从而811811(9)(10)2t m t t i r r r r r x t t x i -+=⎛⎫⎪≤+++++≤+++-+ ⎪⎝⎭∑11(9)(10)(8)(8)(9)(7)22t t t t t t x =++-+---- 111(9)(10)(8)(8)(9)(7)(1)222t t t t t t t t ≤++-+----⋅+ 2819396407t t =-++≤(考虑二次函数对称轴,即知1t =时取得最大). 又136n b ≤,这与,n m b r 中有一个为408矛盾. ……………40分情形2:1,2,,16 中至少有8个红色的数. 论证类似于情形1.此时816r ≤.设区间8[1,]r 中共有s 个B 中的元素12,,,(09)s b b b s ≤< .记1s y b b =++ ,则1(1)2y s s ≥+.因为12128,,,,,,,s b b b r r r 是8[1,]r 中的所有正整数,故{}{}12128,,,,,,,1,2,,8s b b b r r r s =+ .于是1(8)(9)2m r s s y ≤++-.特别地,116171362m r ≤⨯⨯=.从而10B ≥.对任意(1)i i n s ≤≤-,有1(8)(9)2s i m b r i s s y i +≤+≤++-+.从而911911(8)(9)2s n s s i b b b b b y s s y i -+=⎛⎫ ⎪≤+++++≤+++-+ ⎪⎝⎭∑ 11(9)(8)(9)(8)(9)(10)22s s s s y s s =-++--+--111(9)(8)(9)(8)(1)(9)(10)222s s s s s s s s ≤-++--⋅++-- 2727369395s s =-++≤(在2s =时取得最大), 又136m r ≤,这与,n m b r 中有一个为408矛盾.由情形1、2知408k =具有题述性质.综上,所求最小正整数k 为408. ……………50分四.(本题满分50分)设4110a -=+.在20232023⨯的方格表的每个小方格中填入区间[1,]a 中的一个实数.设第i 行的总和为i x ,第i 列的总和为i y ,12023i ≤≤.求122023122023y y y x x x 的最大值(答案用含a 的式子表示). 解:记2023n =,设方格表为(),1,ij a i j n ≤≤,122023122023y y y x x x λ= . 第一步:改变某个ij a 的值仅改变i x 和j y ,设第i 行中除ij a 外其余1n -个数的和为A ,第j 列中除ij a 外其余1n -个数的和为B ,则jij i ij y B a x A a +=+.当A B ≥时,关于ij a 递增,此时可将ij a 调整到,a λ值不减.当A B ≤时,关于ij a 递减,此时可将ij a 调整到1,λ值不减.因此,为求λ的最大值,只需考虑每个小方格中的数均为1或a 的情况. ……………10分第二步:设{}1,,1,ij a a i j n ∈≤≤,只有有限多种可能,我们选取一组ij a 使得λ达到最大值,并且11n nij i j a ==∑∑最小.此时我们有,,1,.i j ij i j a x y a x y ⎧>⎪=⎨≤⎪⎩(*) 事实上,若i j x y >,而1ij a =,则将ij a 改为a 后,行和及列和变为,i j x y '',则11j j j i i iy y a y x x a x '+-=>'+-, 与λ达到最大矛盾,故ij a a =.若i j x y ≤,而ij a a =,则将ij a 改为1后,λ不减,且11n nij i j a ==∑∑变小,与ij a 的选取矛盾.从而(*)成立.通过交换列,可不妨设12n y y y ≤≤≤ ,这样由(∗)可知每一行中a 排在1的左边,每一行中的数从左至右单调不增.由此可知12n y y y ≥≥≥ .因而只能12n y y y === ,故每一行中的数全都相等(全为1或全为a ).……………20分 第三步:由第二步可知求λ的最大值,可以假定每一行中的数全相等.设有k 行全为a ,有n k -行全为1,0k n ≤≤.此时()()()n nk k n k n k ka n k ka n k na nn a λ-+-+-==. 我们只需求01,,,n λλλ 中的最大值. ()11(1)1111()(1)nn n k k n k n kk a n k a n a ka n k a k a n n a λλ++++--⎛⎫- ⎪==+ ⎪+--+⎝⎭. 因此1111(1)n k k a a k a n λλ+⎛⎫- ⎪≥⇔+≥ ⎪-+⎝⎭ 11(1)n n x x k x n-⇔+≥-+(记n x a =) 2111(1)n n x x x k x n-++++⇔≥-+ 2111n n x x x n k x -++++-⇔≤- 211(1)(1)1n n x x x x x--+++++++=+++ . 记上式右边为y ,则211(2)1n n n n x x y x x ---+-++=+++ . 下面证明(1010,1011)y ∈. ……………30分 首先证明1011y <.1011y < 2021202220222021101110111011x x x x ⇔+++<+++1010101210132021202210111010210101011x x x x x x ⇔+++<++++ .由于220221x x x <<<< ,故101010101012011(1011)101110121011101222k k k x x x =-<⋅⋅<⋅⋅∑101110110k k kx +=<∑. ……………40分 再证明1010y >,等价于证明2021202200(2022)1010kk k k k x x ==->∑∑. 由于2021202100(2022)(2022)10112023k k k k x k ==->-=⨯∑∑, 20222022010101010202310102023k k x x a =<⨯<⨯∑,只需证明1011202310102023a ⨯>⨯,而410111101010a -=+<,故结论成立. 由上面的推导可知1k k λλ+≥当且仅当1010k ≤时成立,从而1011λ最大.故 2023max 101120231011(10111012)2023a aλλ+==. ……………50分。

高中数学奥林匹克竞赛全真模拟试题及答案

高中数学奥林匹克竞赛全真模拟试题及答案

高中数学奥林匹克竞赛全真模拟试题及答

这份文档提供了一套完整的高中数学奥林匹克竞赛全真模拟试题及答案。

这些试题旨在帮助参与奥林匹克竞赛的高中学生进行练和复,以提高他们在数学竞赛中的表现。

试题内容
本文档包含多个数学奥林匹克竞赛模拟试题,涵盖了高中数学的各个领域,包括代数、几何、概率与统计等。

试题的难度逐渐增加,以适应不同水平的竞赛参与者。

每个试题都经过精心设计,以鼓励学生思考和运用创造性的解题方法。

试题答案
除了试题本身,本文档还提供了所有试题的答案。

每个题目后面都有详细的解答和步骤,帮助学生理解和掌握解题方法。

答案部分的内容经过仔细验证,确保准确无误。

使用建议
- 学生可以利用这份文档作为练材料,并按照自己的进度逐步完成试题。

- 学生可以尝试独立解答试题,并在查看答案之前,评估自己的解题能力和方法的正确性。

- 学生可以在解答完试题后,对比自己的解答和文档中的答案和解析,以便发现和纠正自己的错误。

参考书目
- 《高中数学奥林匹克竞赛真题及解析》
- 《高中数学竞赛题研究》
- 《数学奥赛理论与实战攻略》
这份文档旨在为高中数学竞赛的学生提供有用的学习资源,帮助他们在竞赛中取得更好的成绩。

祝愿每位使用这份文档的学生都能够在数学奥林匹克竞赛中大放异彩!。

高中奥赛试题汇编及答案

高中奥赛试题汇编及答案

高中奥赛试题汇编及答案一、选择题1. 已知函数f(x) = 2x^3 - 3x^2 + 4x - 5,下列关于f(x)的描述正确的是:A. f(x)是奇函数B. f(x)是偶函数C. f(x)是周期函数D. f(x)是单调递增函数答案:D2. 已知复数z = 1 + 2i,求|z|的值:A. √5B. 5C. √2D. 2答案:A3. 已知直线l的方程为y = 2x + 1,点P(1, 3)是否在直线l上?A. 是B. 否答案:A4. 已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,下列关于三角形ABC的描述正确的是:A. 三角形ABC是锐角三角形B. 三角形ABC是直角三角形C. 三角形ABC是钝角三角形D. 无法确定三角形ABC的类型答案:B5. 已知函数g(x) = x^2 - 4x + 3,求g(2)的值:A. -1B. 1C. 3D. 5答案:B二、填空题6. 已知函数h(x) = x^3 - 6x^2 + 11x - 6,求h(2)的值:__________答案:17. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B:__________答案:{2, 3}8. 已知向量a = (3, -2),向量b = (1, 2),求向量a与向量b的数量积:__________答案:-49. 已知圆的方程为(x - 2)^2 + (y + 1)^2 = 9,求圆心坐标:__________答案:(2, -1)10. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值:__________答案:√2三、解答题11. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 1,求f(x)的极值点。

解:首先求导数f'(x) = 4x^3 - 12x^2 + 12x - 4。

令f'(x) = 0,解得x = 1。

高中数学奥林匹克竞赛训练题

高中数学奥林匹克竞赛训练题

数学奥林匹克高中训练题第一试一、选择题(本题满分36分,每小题6分) 1.(训练题(D).(A)cos1997sin1997- (B)cos1997sin1997-- (C)cos1997sin1997-+ (D)cos1997sin1997+2.(训练题29)复数z 满足1z R z+∈且2z -=(D).(A) 1个 (B) 2个 (C) 3个 (D) 4个3.(训练题29)已知,a b 都是正实数.则x y a b +>+且xy ab >是x a >且y b >的(B).(A)充分不必要条件 (B)必要不充分件 (C)充要件 (D)既不充分也不必要条件4.(训练题29),a b 是两个正整数,最小公倍数为465696.则这样的有序正整数对(,)a b 共有(D) 个.(A)144 (B)724 (C)1008 (D)11555.(训练题29)方程220x px q ++=的根是sin α和cos α.则在poq 坐标平面上,6.(训练题29) 对一个棱长为1的正方体木块1111ABCD A B C D -,在过顶点1A 的三条棱上分别取点,,P Q R ,使111A P A Q A R ==.削掉四面体1A PQR -后,以截面PQR ∆为底面,在立方体中打一个三棱柱形的洞,使棱柱侧面都平行于体对角线1A C .当洞打穿后,顶点C 处被削掉,出口是一个空间多边形.则这个空间多边形共有(B) 条边.(A)3 (B)6 (C)8 (D) 9二、填空题(本题满分54分,每小题9分) 1.(训练题29)1999111111n =个,2000()90201997f n n n =++.则()f n 被3除的余数是 1 .2.(训练题29)函数(),()f x g x 是R 上定义的函数,且()0f x ≥的解集为{|12},()0x x g x ≤<≥的解集是空集,则不等式()()0f x g x >的解集是 {|12}x x x <≥或 .3.(训练题29)棱锥S ABC -的底面是正三角形ABC ,侧面SAC 垂直于底面,另两个侧面同底面所成的二面角都是45o ,则二面角A SC B --的值是 用反三角函数表示).4.(训练题29)若21x y +≥,则函数2224u y y x x =-++的最小值等于95- .5.(训练题29)六个正方形,,,,,A B C D E F 放置如图所示,若,,A B C 三个正方形面积之和为1,,,S D E F 三个正方形面积之和为2S ,则12SS = 3 .6.(训练题29)已知,,a b c 是一个直角三角形三边之长,且对大于2的自然数n ,成立2222()2()n n n n n n a b c a b c ++=++.则n = 4 .三、(训练题29)(本题满分20分)棱锥S ABC -中,4,7,9,5,6,8SA SB SC AB BC AC =≥≥=≤≤.试求棱锥S ABC -体积的最大值.四、(训练题29)(本题满分20分)数列{}n a ,适合条件1234561,2,3,4,5,119a a a a a a ======,当5n ≥时,1121n n a a a a +=-,证明22212701270a a a a a a +++=.五、(训练题29)(本题满分20分)已知(),()f x g x 和()h x 都是关于x 的二次三项式,证明:方程((()))0f g h x =不能有根1,2,3,4,5,6,7,8.第二试一、(训练题29)(本题满分50分)有限数集S 的全部元素的乘积,称为数集S 的“积数”.今给出数集11111{,,,,,}23499100M =,试确定M 的所有偶数个(2个,4个,…,98个)元素子集的“积数”之和的值.24.255 二、(训练题29)(本题满分50分)凸四边形ABCD 的对角线交点为O .证明:ABCD 是圆外切四边形的充分必要条件是AOB ∆、BOC ∆、COD ∆、ABC DF EDOA ∆的内切圆半径1234,,,r r r r 满足关系式42311111r r r r +=+. 三、(训练题29)(本题满分50分) 1211,,,a a a ;1211,,,b b b 是1,2,3,4,5,6,7,8,9,10,11的两种不同的排列.证明:11221111,,,a b a b a b 中至少有两个被11除所得的余数相同.。

2023年全国中学生数学奥林匹克暨2023年全国,高中数学联合竞赛加试试题(A卷)(参考答案)

2023年全国中学生数学奥林匹克暨2023年全国,高中数学联合竞赛加试试题(A卷)(参考答案)

2023年全国中学生数学奥林匹克(预赛)暨2023年全国高中数学联合竞赛加试试题(A卷)一、(本题满分40分)如图,Ω是以AB为直径的固定的半圆弧,ω是经过点A及Ω上另一定点T的定圆,且ω的圆心位于△ABT内,设P是Ω的弧TB̂(不含端点)上的动点,C、D 是ω上的两动点,满足:C在线段AP上,C、D在直线AB的异侧,且CD⊥AB.记△CDP 的外心为K.证明:(1)点K在△TDP的外接圆上;(2)K为定点.(答题时请将图画在答卷纸上)二、(本题满分40分)正整数n称为“好数”,如果对任意不同于n的正整数m,均有{2n n2}≠{2mm2},这里{x}表示x的小数部分.证明:存在无穷多个两两互素的合数均为好数.三、(本题满分50分)求具有下述性质的最小正整数k:若将1,2,…,k中的每个数任意染成红色或蓝色,则或者存在9个互不相同的红色的数x1,x2,⋯,x9满足x1+x2+⋯+x8< x9,或者存在10个互不相同的蓝色的数y1,y2,⋯,y10满足y1+y2+⋯+y9<y10.四、(本题满分50分)设a=1+10−4.在2023×2023的方格表的每一个小方格中填入区间[1,a]中的一个实数.设第i行的总和为x i,第i列的总和为y i,1≤i≤2023.求y1y2⋯y2023 x1x2⋯x2023的最大值(答案用含a的式子表示).A2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图, 是以AB 为直径的固定的半圆弧, 是经过点A 及 上另一个定点T 的定圆,且 的圆心位于ABT 内.设P 是 的弧 TB(不含端点)上的动点,,C D 是 上的两个动点,满足:C 在线段AP 上,,C D 位于直线AB 的异侧,且CD AB .记CDP 的外心为K .证明:(1) 点K 在TDP 的外接圆上;(2) K 为定点. ΩωPD ABT C证明:(1) 易知PCD 为钝角,由K 为CDP 的外心知2(180)2PKD PCD ACD .由于90APB ,CD AB ,故PBA ACD ATD .……………10分 所以2180PTD PKD PTA ATD ACD PTA PBA . 又,K T 位于PD 异侧,因此点K 在TDP 的外接圆上. ……………20分(2) 取 的圆心O ,过点O 作AB 的平行线l ,则l 为CD 的中垂线,点K 在直线l 上. ……………30分由,,,T D P K 共圆及KD KP ,可知K 在DTP 的平分线上,而9090DTB ATD PBA PAB PTB ,故TB 为DTP 的平分线.所以点K 在直线TB 上.显然l 与TB 相交,且l 与TB 均为定直线,故K 为定点. ……………40分 ωΩl D P OK B ATC二.(本题满分40分)正整数n 称为“好数”,如果对任意不同于n 的正整数m ,均有2222n m n m ⎧⎫⎧⎫⎪⎪⎪⎪≠⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,这里,{}x 表示实数x 的小数部分. 证明:存在无穷多个两两互素的合数均为好数.证明:引理:设n 是正奇数,且2模n 的阶为偶数,则n 是好数.引理的证明:反证法.假设n 不是好数,则存在异于n 的正整数m ,使得2222n m n m .因此22n n 与22m m 写成既约分数后的分母相同.由n 为奇数知22n n 是既约分数,故2m 的最大奇因子为2n ,从而m 的最大奇因子为n .设2t m n ,其中t 为正整数(从而m 是偶数).于是22222m m t m n. 由22222m t n n n可得2222(mod )m t n n ,故 222(mod )m t n n . (*)设2模n 的阶为偶数d .由(*)及阶的基本性质得2(mod )m t n d ,故2m t n 是偶数.但2m t 是偶数,n 是奇数,矛盾.引理得证.……………20分回到原问题.设221(1,2,)k k F k .由于1221k k F ,而k F 221k,因此2模k F 的阶为12k ,是一个偶数.对正整数l ,由221(mod )l k F 可知21(mod )l k F ,故由阶的性质推出,2模2k F 的阶被2模k F 的阶整除,从而也是偶数.因2k F 是奇数,由引理知2k F 是好数.……………30分对任意正整数,()i j i j ,211(,)(,(21)2)(,2)1i i j i i i j i F F F F F F F ,故123,,,F F F 两两互素.所以222123,,,F F F 是两两互素的合数,且均为好数. ……………40分三.(本题满分50分) 求具有下述性质的最小正整数k :若将1,2,,k 中的每个数任意染为红色或者蓝色,则或者存在9个互不相同的红色的数129,,,x x x 满足1289x x x x +++< ,或者存在10个互不相同的蓝色的数1210,,,y y y 满足12910y y y y +++< .解:所求的最小正整数为408.一方面,若407k =时,将1,55,56,,407 染为红色,2,3,,54 染为蓝色,此时最小的8个红数之和为1555661407++++= ,最小的9个蓝数之和为231054+++= ,故不存在满足要求的9个红数或者10个蓝数.对407k <,可在上述例子中删去大于k 的数,则得到不符合要求的例子. 因此407k ≤不满足要求. ……………10分 另一方面,我们证明408k =具有题述性质.反证法.假设存在一种1,2,,408 的染色方法不满足要求,设R 是所有红数的集合,B 是所有蓝数的集合.将R 中的元素从小到大依次记为12,,,m r r r ,B 中的元素从小到大依次记为12,,,n b b b ,408m n +=.对于R ,或者8R ≤,或者128m r r r r +++≥ ;对于B ,或者9B ≤,或者129n b b b b +++≥ .在1,2,,16 中至少有9个蓝色的数或至少有8个红色的数.情形1:1,2,,16 中至少有9个蓝色的数.此时916b ≤.设区间9[1,]b 中共有t 个R 中的元素12,,,(08)t r r r t ≤< .记12t x r r r =+++ ,则112(1)2x t t t ≥+++=+ . 因为12912,,,,,,,t b b b r r r 是9[1,]b 中的所有正整数,故{}{}12912,,,,,,,1,2,,9t b b b r r r t =+ .于是 12912(9)n b b b b t x ≤+++=++++- 1(9)(10)2t t x =++-. (*) ……………20分 特别地,116171362n b ≤⨯⨯=.从而9R ≥. 对任意(1)i i m t ≤≤-,由(*)知1(9)(10)2t i n r b i t t x i +≤+≤++-+.从而 811811(9)(10)2t m t t i r r r r r x t t x i -+=⎛⎫ ⎪≤+++++≤+++-+ ⎪⎝⎭∑ 11(9)(10)(8)(8)(9)(7)22t t t t t t x =++-+---- 111(9)(10)(8)(8)(9)(7)(1)222t t t t t t t t ≤++-+----⋅+ 2819396407t t =-++≤(考虑二次函数对称轴,即知1t =时取得最大). 又136n b ≤,这与,n m b r 中有一个为408矛盾. ……………40分情形2:1,2,,16 中至少有8个红色的数.论证类似于情形1.此时816r ≤.设区间8[1,]r 中共有s 个B 中的元素12,,,(09)s b b b s ≤< .记1s y b b =++ ,则1(1)2y s s ≥+. 因为12128,,,,,,,s b b b r r r 是8[1,]r 中的所有正整数,故 {}{}12128,,,,,,,1,2,,8s b b b r r r s =+ . 于是1(8)(9)2m r s s y ≤++-. 特别地,116171362m r ≤⨯⨯=.从而10B ≥. 对任意(1)i i n s ≤≤-,有1(8)(9)2s i m b r i s s y i +≤+≤++-+.从而 911911(8)(9)2s n s s i b b b b b y s s y i -+=⎛⎫ ⎪≤+++++≤+++-+ ⎪⎝⎭∑ 11(9)(8)(9)(8)(9)(10)22s s s s y s s =-++--+--111(9)(8)(9)(8)(1)(9)(10)222s s s s s s s s ≤-++--⋅++-- 2727369395s s =-++≤(在2s =时取得最大), 又136m r ≤,这与,n m b r 中有一个为408矛盾.由情形1、2知408k =具有题述性质.综上,所求最小正整数k 为408. ……………50分四.(本题满分50分)设4110a -=+.在20232023⨯的方格表的每个小方格中填入区间[1,]a 中的一个实数.设第i 行的总和为i x ,第i 列的总和为i y ,12023i ≤≤.求122023122023y y y x x x 的最大值(答案用含a 的式子表示). 解:记2023n =,设方格表为(),1,ij a i j n ≤≤,122023122023y y y x x x λ= . 第一步:改变某个ij a 的值仅改变i x 和j y ,设第i 行中除ij a 外其余1n -个数的和为A ,第j 列中除ij a 外其余1n -个数的和为B ,则jij i ij y B a x A a +=+.当A B ≥时,关于ij a 递增,此时可将ij a 调整到,a λ值不减.当A B ≤时,关于ij a 递减,此时可将ij a 调整到1,λ值不减.因此,为求λ的最大值,只需考虑每个小方格中的数均为1或a 的情况. ……………10分第二步:设{}1,,1,ij a a i j n ∈≤≤,只有有限多种可能,我们选取一组ij a 使得λ达到最大值,并且11n nij i j a ==∑∑最小.此时我们有,,1,.i j ij i j a x y a x y ⎧>⎪=⎨≤⎪⎩(*) 事实上,若i j x y >,而1ij a =,则将ij a 改为a 后,行和及列和变为,i j x y '',则11j j j i i iy y a y x x a x '+-=>'+-, 与λ达到最大矛盾,故ij a a =.若i j x y ≤,而ij a a =,则将ij a 改为1后,λ不减,且11n nij i j a ==∑∑变小,与ij a 的选取矛盾.从而(*)成立.通过交换列,可不妨设12n y y y ≤≤≤ ,这样由(∗)可知每一行中a 排在1的左边,每一行中的数从左至右单调不增.由此可知12n y y y ≥≥≥ .因而只能12n y y y === ,故每一行中的数全都相等(全为1或全为a ).……………20分 第三步:由第二步可知求λ的最大值,可以假定每一行中的数全相等.设有k 行全为a ,有n k -行全为1,0k n ≤≤.此时()()()n nk k n k n k ka n k ka n k na nn a λ-+-+-==. 我们只需求01,,,n λλλ 中的最大值. ()11(1)1111()(1)nn n k k n k n kk a n k a n a ka n k a k a n n a λλ++++--⎛⎫- ⎪==+ ⎪+--+⎝⎭. 因此1111(1)n k k a a k a n λλ+⎛⎫- ⎪≥⇔+≥ ⎪-+⎝⎭ 11(1)n n x x k x n-⇔+≥-+(记n x a =) 2111(1)n n x x x k x n-++++⇔≥-+ 2111n n x x x n k x -++++-⇔≤- 211(1)(1)1n n x x x x x--+++++++=+++ . 记上式右边为y ,则211(2)1n n n n x x y x x ---+-++=+++ . 下面证明(1010,1011)y ∈. ……………30分 首先证明1011y <.1011y < 2021202220222021101110111011x x x x ⇔+++<+++1010101210132021202210111010210101011x x x x x x ⇔+++<++++ .由于220221x x x <<<< ,故101010101012011(1011)101110121011101222k k k x x x =-<⋅⋅<⋅⋅∑101110110k k kx +=<∑. ……………40分 再证明1010y >,等价于证明2021202200(2022)1010kk k k k x x ==->∑∑. 由于2021202100(2022)(2022)10112023k k k k x k ==->-=⨯∑∑, 20222022010101010202310102023k k x x a =<⨯<⨯∑,只需证明1011202310102023a ⨯>⨯,而410111101010a -=+<,故结论成立. 由上面的推导可知1k k λλ+≥当且仅当1010k ≤时成立,从而1011λ最大.故 2023max 101120231011(10111012)2023a aλλ+==. ……………50分。

数学奥林匹克竞赛试题

数学奥林匹克竞赛试题

数学奥林匹克竞赛试题数学奥林匹克竞赛是针对中学生的高水平数学竞赛,旨在激发学生对数学的兴趣,培养他们的逻辑思维、创新能力和解决复杂问题的能力。

以下是一些典型的数学奥林匹克竞赛试题示例,供大家参考和练习。

代数问题问题1:解方程求解方程 (x^3 - 5x^2 + 7x - 1 = 0)。

问题2:因式分解将多项式 (x^4 - 81) 进行因式分解。

几何问题问题3:三角形面积在直角三角形中,已知两直角边的长度分别为3和4,求斜边上的高。

问题4:圆的性质证明:若一个圆内接四边形的对角互补,则该四边形为矩形。

组合与概率问题问题5:排列组合计算用数字1到9(每个数字仅使用一次)可以组成的所有不同三位数的数量。

问题6:概率计算一个袋子里有5个红球和3个蓝球,随机取出两个球,求取出的两个球都是红球的概率。

数列与函数问题问题7:等差数列如果数列 (a_n = 2n + 1),求第10项和前10项的和。

问题8:函数图像画出函数 (y = |x-3|) 的图像,并指出其与x轴的交点。

解析与答案问题1答案通过因式分解或使用牛顿法等方法求解。

问题2答案(x^4 - 81 = (x^2 + 9)(x^2 - 9) = (x^2 + 9)(x + 3)(x - 3))。

问题3答案斜边上的高 (h = \frac{3 \times 4}{5} = 2.4)。

问题4答案利用圆周角定理和直角三角形的性质证明。

问题5答案总共有 (9 \times 8 \times 7) 种不同的排列方式。

问题6答案概率为 (\frac{C_5^2}{C_8^2} = \frac{10}{28} = \frac{5}{14})。

问题7答案第10项 (a_{10} = 21),前10项和 (S_{10} = 2(1 + 2 + ... + 10) + 10 = 110)。

问题8答案函数图像为V型,与x轴的交点为(3,0)。

请注意,以上只是示例题目,实际的数学奥林匹克竞赛题目可能会更加复杂和多样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——教学资料参考参考范本——【高中教育】最新高中数学奥林匹克竞赛训练题(213)
______年______月______日
____________________部门
第一试
一、填空题
1。

设集合A 中的元素为三个实数,且适当调整三个数的顺序既可构成等比数列,又可构成等差数列,则构成的等比数列时的公比为 。

2。

在直角坐标系中,O 为原点,,;在斜二侧画法中,AB 变为,
则 。

(1,2)A (3,4)B ''A B ''OA OB =
3。

请写出一个定义域、值域均为实数集的连续的偶函数 。

4。

空间中四条直线满足任意两条直线的夹角均为,则= 。

θθ
5。

设四个复数满足,,则的最大值为 。

1234z z z z 、、、1234-=1-=2z z z z ,1423-=3-=4z z z z ,1324()()z z z z z =--z
6。

已知抛物线,为轴负半轴上的动点,PA 、PB 为抛物线的切线,A 、B
为切点,则的最小值为 。

22(0)y px p =>P x PA PB
7。

已知当单位为弧度时,有,则当单位为角度时,的导数为 。

x '(sin )cos x x =x sin x
8。

艾滋病(HIV )检测技术的准确度相当惊人,若一个人真是HIV 阳性,则血液检测的手段有99%的把握将其检测出来,若一个携带HIV ,则检测手段的精度更高,达到99。

99%,这表明,只有0。

01%的假阳性,已知一般人群中HIV 携带者的比例为0。

01%。

现假设随机在街头找一人为其做检测,发现检测结果是HIV 阳性,则此人真正携带HIV 的概率约为
(结果保留两位有效数字)
二、解答题
9。

已知函数,为二次函数,且恒有,求。

2()(0)f x ax bx c a =++≠()g x (())(())f g x g f x =()g x
10。

求方程的所有正整数解的组数。

111arctan arctan arctan 4x y z π++=(,,)x y z 11。

对椭圆,是否存在两个定点A 、B ,使得对于椭圆上任意点M ,若AM 、BM 的斜率存在,则为定值?如果存在,求出所有的点对;如果不
存在,说明理由。

22
221(0)x y a b a b +=>>12k k 、12k k 加试
一、如图1,的外心为O ,D 、E 分别为CA 、AB 上的任意点,F 、G 、H 分别为线段BD 、CE 、DE 的中点,且DE 与的外接圆交于另一点I ,证明:。

ABC ∆FGH ∆OI DE ⊥
二、设为给定整数,集合,证明:对任意的。

b c 、{}22=M x bxy cy x y Z ++∈、m n M mn M ∈∈、,有
三、一位魔术师表演一个魔术:让一位观众在黑板上任意写两个数字,从第三个数开始,后面的每个数均为前面相邻两个数之和。

当写的足够多(多于10个)时,观众告诉魔术师最后这个数,魔术师可以算出下一个数。

若魔术师的计算能力比较强,而且没有作弊,你知道他是如何做到的吗?
四、用边长相等的正三角形和正方形,能拼出多少个不相似的凸11边形?。

相关文档
最新文档