初中数学二元一次方程组知识点+习题

合集下载

数学第八章 二元一次方程组知识点及练习题及解析(1)

数学第八章 二元一次方程组知识点及练习题及解析(1)

数学第八章 二元一次方程组知识点及练习题及解析(1)一、选择题1.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =-2.下列判断中,正确的是( ) A .方程x y =不是二元一次方程B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解3.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( )A .()()45126456x y x y ⎧+=⎪⎨-=⎪⎩B .()312646x y x y ⎧+=⎪⎨⎪-=⎩C .()()31264456x y x y ⎧+=⎪⎨⎪-=⎩D .()()31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩4.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩5.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,46.已知下列各式:①12+=y x;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( ) A .1 B .2 C .3 D .47.已知方程组222x y kx y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .2 8.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .6种B .7种C .8种D .9种9.下列方程组的解为31x y =⎧⎨=⎩的是( )A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩10.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生A 的妻子是__________.12.方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩的解是________.13.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.14.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a +b ﹣m =_____.15.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____.16.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.17.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.18.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.19.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 20.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.三、解答题21.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值; 丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.22.对x ,y 定义一种新运算T ,规定()22,ax byT x y a y+=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示);(2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量 单位:元/吨15吨及以下a超过15吨但不超过25吨的部分 b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.24.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).25.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)a b产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.26.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将x 看做常数移项求出y 即可得. 【详解】由2x-y=3知2x-3=y ,即y=2x-3, 故选C . 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .2.D解析:D 【分析】根据二元一次方程的概念和二元一次方程的解逐项进行判断即可. 【详解】A .方程x y =是二元一次方程,故错误;B .任何一个二元一次方程都有无数个解,故错误;C .方程25x y -=有无数个解,但并不是任何一对x 、y 都是该方程的解,故错误;D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解,故正确;故选:D . 【点睛】本题主要考查了二元一次方程的概念和二元一次方程的解,熟练掌握二元一次方程的概念和解法是解题的关键.3.D解析:D 【解析】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126;又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.4.A解析:A 【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组. 【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩.故选:A . 【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.5.B解析:B 【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值. 【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩,解得:23x y =⎧⎨=⎩,将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩,得:23122313a b b a +=⎧⎨+=⎩,解得:32a b =⎧⎨=⎩,∴a 、b 的值分别是3、2. 故选:B . 【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.6.A解析:A 【分析】根据二元一次方程的定义即可判断. 【详解】①是分式方程,故不是二元一次方程; ②正确;③是二元二次方程,故不是二元一次方程; ④有3个未知数,故不是二元一次方程; ⑤是一元一次方程,不是二元一次方程. 故选:A . 【点睛】考查二元一次方程的定义,含有2个未知数,未知项的最高次数是1的整式方程就是二元一次方程.7.D解析:D 【解析】试题分析:把两个方程相加可得3x+3y=2+k ,两边同除以3可得x+y=23k+=2,解得k=4,因此k 的算术平方根为2. 故选D.8.A解析:A 【解析】试题解析:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10,方程的整数解为:24xy=⎧⎨=⎩,43xy=⎧⎨=⎩,62xy=⎧⎨=⎩,81xy=⎧⎨=⎩,10{xy==,5xy=⎧⎨=⎩.因此兑换方案有6种,故选A.考点:二元一次方程的应用.9.D解析:D【解析】把31xy=⎧⎨=⎩代入选项A第2个方程24x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项B第2个方程3x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项C第1个方程3x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项D两个方程均成立,故正确;故选D.10.C解析:C【分析】根据二元一次方程的定义,列出关于m、n的方程组,然后解方程组即可.【详解】解:根据题意,得121 m nm n-=⎧⎨+-=⎩,解得21mn=⎧⎨=⎩.故选:C.二、填空题11.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且与有相同的奇偶性,即可得出关于x、y 的二元一次方程组,求出x、y的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答. 【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y ,依题意有x 2-y 2=48,即()()48x y x y +-=, ∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性, 又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩,解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件, 同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件, ∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a . 故答案为:c . 【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.12.【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可. 【详解】 解:①+③解得:2x=10,即x=5; 将x=5代入②得y=3; 将x=5,y=3代解析:532x y z =⎧⎪=⎨⎪=⎩【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可. 【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代入③可得z=2.故答案为532x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,观察方程组、寻找各方程的特点、运用整体思想代入消元是解答本题的关键.13.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:∴两式相加得:,即,把代入得到,,故此方程组的解为:.故答案为:.【点睛】本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】 本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.14.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.15.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得: ,①+②得:3m+n =4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x y x y -=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x m y n =⎧⎨=⎩代入方程组得: 20234m n m n -=⎧⎨+=⎩①② , ①+②得:3m +n =4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.16.14或19【解析】【分析】由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即解析:14或19【解析】【分析】由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,∴y 是9的倍数,∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩, ∴这列数的个数n =x +y 为14或19,故答案为:14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.17.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a ,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.18.5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组23233222x yx y+=⎧⎨+=⎩,再求解45xy=⎧⎨=⎩.故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.19.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393 a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.20.【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增解析:1 8【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.三、解答题21.(1)见解析;(2)a和b的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,3274232m n k m n +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:5m =21k ﹣8,解得:m =2185k -, ②×3﹣①×2得:5n =2﹣14k ,解得:n =2145k -, 代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙, 3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)163a b +;(2)①11a b =⎧⎨=-⎩;②53m = 【分析】(1)把(4,-1)代入新运算中,计算得结果;(2)①根据新运算规定和T (-2,0)=-2且T (5,-1)=6,得关于a 、b 的方程组,解方程组即可;②把①中求得的a 、b 代入新运算,并对新运算进行化简,根据T (3m-10,m )=T (m ,3m-10)得关于m 的方程,求解即可.【详解】 解:(1)224(1)16(4,1)413a b a b T ⨯+⨯-+-==-; 故答案为:163a b +; (2)①∵()2,02T -=-且()5,16T -=, ∴42,225 6.4a ab ⎧=-⎪⎪-⎨+⎪=⎪⎩ 解得:1,1.a b =⎧⎨=-⎩②∵a=1,b=1-,且x+y≠0, ∴22()()(,)x y x y x y T x y x y x y x y -+-===-++.∴()310,33103610T m m m m m --=-+=-,()3,3103310610T m m m m m --=--+=-+∵()()310,33,310T m m T m m --=--,∴610610m m -=-+, 解得:53m =. 【点睛】本题考查了解一元一次方程、二元一次方程组的解法及新运算等相关知识,理解新运算的规定并能运用是解决本题的关键23.(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.24.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,34或1,15.【解析】【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.25.(1)3018ab=⎧⎨=⎩;(2)有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)最省钱的方案是购买2 台甲种机器,8 台乙种机器.【解析】【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得12 236 a ba b-=⎧⎨-=⎩,解得,3018ab=⎧⎨=⎩;(2)解:设买了x台甲种机器由题意得:30+18(10-x)≤216解得:x≤3∵x为非负整数∴x=0、1、2、3∴有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)解:由题意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤ 3∴整数x=2 或3当x=2 时购买费用=30×2+18×8=204(元)当 x =3 时购买费用=30×3+18×7=216(元) ∴最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.26.(1) A 型车、B 型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A 型车8辆,B 型车2辆,最少租车费为2080元.【分析】(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,根据题目中的等量关系:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a 、b 为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,依题意列方程组为:32172318x y x y +=⎧⎨+=⎩解得34x y =⎧⎨=⎩答:1辆A 型车辆装满货物一次可运3吨,1辆B 型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=3543b - ∵a、b 都是整数∴92a b =⎧⎨=⎩或55a b =⎧⎨=⎩或18a b =⎧⎨=⎩答:有3种租车方案:方案一:A 型车9辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆;方案三:A 型车1辆,B 型车8辆.(3)∵A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A 型车1辆,B 型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解.。

二元一次方程组的练习题

二元一次方程组的练习题

二元一次方程组的练习题一、选择题1. 已知方程组 $\begin{cases} 2x + 3y = 7 \\ 4x y = 5\end{cases}$,则 $x$ 的值为()A. 1B. 2C. 3D. 42. 下列方程组中,是二元一次方程组的是()A. $\begin{cases} x^2 + y = 1 \\ 2x y = 3 \end{cases}$B. $\begin{cases} x + y = 4 \\ 3x 2y = 7 \end{cases}$C. $\begin{cases} x + 2y = 5 \\ x^2 + y^2 = 10\end{cases}$D. $\begin{cases} x + y = 6 \\ 2x + 3y = 8 \end{cases}$3. 解方程组 $\begin{cases} 3x + 5y = 16 \\ 2x 3y = 7\end{cases}$,得到 $x$ 的值为()A. 2B. 3C. 4D. 5二、填空题1. 方程组 $\begin{cases} 2x + 3y = 9 \\ 4x y = 11\end{cases}$ 的解为 $x=$ ______,$y=$ ______。

2. 若方程组 $\begin{cases} x + y = a \\ 2x y = b\end{cases}$ 的解为 $x=3$,$y=1$,则 $a=$ ______,$b=$ ______。

三、解答题1. 解方程组 $\begin{cases} 5x + 3y = 14 \\ 2x 3y = 8\end{cases}$。

2. 已知方程组 $\begin{cases} 3x + 4y = 10 \\ 2x y = 5\end{cases}$ 的解为 $x=2$,求 $y$ 的值。

3. 某商店进了甲、乙两种商品,甲种商品每件进价80元,乙种商品每件进价50元。

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。

注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。

注:①在方程组中 相同未知数必须代表同一未知量。

②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。

例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

二元一次方程组知识点及练习题

二元一次方程组知识点及练习题

二元一次方程组知识点及练习题
一、基本定义及知识点
1、每个方程都含有两个未知数(x、y)并且含有未知数的项的次数都是1,像这样的方程叫二元一次方程,方程组叫二元一次方程组。

2、二元一次方程组的解法
⑴、带入消元法:将方程组中的一个方程的其中一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程中实现消元,进而求解。


⑵、加减消元法:当方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一元一次方程进而求解。

二、练习题
1、 2、 3、
4、 5、 6、
7、
8、
9、有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大18则这个两位数是多少。

10、一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求员长方形的长、宽各是多少。

(附加题,前三个答对给个棒棒糖)现有A、B、C三箱橘子,其中A、B两箱共100个橘子,A、C两箱共102个,B、C两箱共106个,求每箱各有多少个?(三元一次方程组)。

数学第八章 二元一次方程组知识点及练习题及答案

数学第八章 二元一次方程组知识点及练习题及答案

数学第八章 二元一次方程组知识点及练习题及答案一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -=3.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ). A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩4.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .10011003x y x y +=⎧⎪⎨+=⎪⎩ C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 6.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( ) A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .3624601680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩7.《九章算术》是我国东汉初年编订的一部数学经典著作。

初一数学下册(人教版)第八章二元一次方程8.1组知识点总结含同步练习题及答案

初一数学下册(人教版)第八章二元一次方程8.1组知识点总结含同步练习题及答案

2. 已知 { x = 2, 是方程 kx − y = 3 的解,那么 k 值是 (
y=1
)
D.−1
A.2
答案: A
B.−2
C.1
3. 若方程组 { 3x + y = k + 1, 的解 x = −3 , y = 2 ,则 k 的取值是 (
x + 3y = 3
)
D.−6
A.−4
答案: C
B.−5
C.−8
初一数学下册(人教版)知识点总结含同步练习题及答案
第八章 二元一次方程组 8.1 二元一次方程组
Hale Waihona Puke 一、学习任务 1. 掌握二元一次方程、二元一次方程组和它的解的概念. 2. 会判定所给的未知数的值是不是方程或方程组的解. 3. 提高逻辑思维和分析解决问题的能力. 二、知识清单
二元一次方程(组)
三、知识讲解
解:A.
{
B. { x = 6,
y=1 D. { x = 2, y=3
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 下列各式中是二元一次方程的是 ( A.3x − 2y = 9
答案: A
)
C.
B.2x + y = 6z
1 + 2 = 3y x
D.x − 3 = 4y 2
1.二元一次方程(组) 描述: 二元一次方程 含有两个未知数,含有未知数的项的次数都是 1 ,并且等号两边都是整式的方程叫做二元一次方 程(linear equation in two unknowns).其一般形式是 ax + by + c = 0(a ≠ 0,b ≠ 0 ). 方程组 两个或两个以上的方程的组合叫做方程组.能同时满足方程组中每个方程的未知数的值,称为方 程组的解.求出它所有解的过程称为解方程组. 二元一次方程组 有两个未知数,含有每个未知数的项的次数都是 1 ,等号两边都是整式,并且一共有两个方程, 像这样的方程组叫做二元一次方程组(system of linear equations in two unknowns). 例题: 下列方程中,是二元一次方程的是( A. xy + 4x = 7 解:C. 下列方程组中,是二元一次方程组的是( A. { xy = 1, B. π + x = 7 ) C. x + 3y = 2 D.

数学第八章 二元一次方程组知识点及练习题附解析

数学第八章 二元一次方程组知识点及练习题附解析

数学第八章 二元一次方程组知识点及练习题附解析一、选择题1.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分2.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( )A .5种B .4种C .3种D .2种3.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩ B .32x y =⎧⎨=⎩ C .52x y =⎧⎨=⎩ D .51x y =⎧⎨=⎩4.下列判断中,正确的是( )A .方程x y =不是二元一次方程B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解 5.如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内, 它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A .(4,44)B .(5,44)C . (44,4)D . (44,5)6.小明出门时身上带了100元,下表记录了他今天所有支出,其中饮料与饼干支出的金额被涂黑.若每瓶饮料5元,每包饼干8元,则小明不可能...剩下多少元?()A.4 B.15 C.22 D.447.如图,将正方形ABCD的一角折叠,折痕为AE,点B落在点B′处,B AD∠'比BAE∠大48︒.设BAE∠和B AD∠'的度数分别为x︒和y︒,那么x和y满足的方程组是( )A.4890y xy x-=⎧⎨+=⎩B.482y xy x-=⎧⎨=⎩C.48290x yy x-=⎧⎨+=⎩D.48290y xy x-=⎧⎨+=⎩8.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.; B.; C.; D.9.若x,y均为正整数,且2x+1·4y=128,则x+y的值为( )A.3 B.5 C.4或5 D.3或4或5 10.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩二、填空题11.已知点 C、D是线段AB上两点(不与端点A、B重合),点A、B、C、D四点组成的所有线段的长度都是正整数,且总和为29,则线段AB的长度为__________________ . 12.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a+b﹣m=_____.13.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.14.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________15.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________.16.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价) 17.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .18.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.19.若方程组2313{3530.9a b a b -=+=的解是8.3{ 1.2,a b ==则方程组的解为________ 20.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.23.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.24.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.25.阅读下列材料,然后解答后面的问题.已知方程组372041027x y z x y z ++=⎧⎨++=⎩,求x+y+z 的值. 解:将原方程组整理得2(3)()203(3)()27x y x y z x y x y z ++++=⎧⎨++++=⎩①②, ②–①,得x+3y=7③,把③代入①得,x+y+z=6.仿照上述解法,已知方程组6422641x y x y z +=⎧⎨--+=-⎩,试求x+2y –z 的值. 26.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设投中外环得x 分,投中内环得y 分,根据所给图信息列一个二元一次方程组,解出即可得出答案.【详解】解:设投中外环得x 分,投中内环得y 分,根据题意得2321417x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩, 32332519x y ∴+=⨯+⨯=分即小颖得分为19分,故选A .【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.2.C解析:C【分析】设A 种玩具的数量为x ,B 种玩具的数量为y ,根据共用10元钱,可得关于x 、y 的二元一次方程,继而根据11x y x y ≥≥,,>以及x 、y 均为正整数进行讨论即可得. 【详解】设A 种玩具的数量为x ,B 种玩具的数量为y ,则210x y +=, 即52x y =-, 又x 、y 均为正整数,且11x y x y ≥≥,,>, 当2x =时,4y =,不符合; 当4x =时,3y =,符合;当6x =时,2y =,符合;当8x =时,1y =,符合,共3种购买方案,故选C.【点睛】本题考查了二元一次方程的应用——方案问题,弄清题意,正确进行分析是解题的关键.3.B解析:B【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by c ax by c-=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(), ∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩, ∴142x y +=⎧⎨=⎩, 即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B.【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 4.D解析:D【分析】根据二元一次方程的概念和二元一次方程的解逐项进行判断即可.【详解】A .方程x y =是二元一次方程,故错误;B .任何一个二元一次方程都有无数个解,故错误;C .方程25x y -=有无数个解,但并不是任何一对x 、y 都是该方程的解,故错误;D.21xy=⎧⎨=-⎩既是方程24x y-=的解也是方程231x y+=的解,故正确;故选:D.【点睛】本题主要考查了二元一次方程的概念和二元一次方程的解,熟练掌握二元一次方程的概念和解法是解题的关键.5.A解析:A【分析】设粒子运动到A1,A2,…A n时所用的时间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,由a n-a n-1=2n,则a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,以上相加得到a n-a1的值,进而求得a n来解,再找到运动方向的规律即可求解.【详解】由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,相加得:a n-a1=2(2+3+4+…+n)=n2+n-2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).故选:A.【点睛】本题考查了规律型-点的坐标,分析粒子在第一象限的运动规律得到数列a n的递推关系式a n-a n-1=2n是本题的突破口,对运动规律的探索知:A1,A2,…A n中,奇数点处向下运动,偶数点处向左运动是解题的关键.6.C解析:C【分析】设买了x瓶饮料,y盒饼干,求出买三餐所剩的钱数,对四个选项分别讨论,得到买饮料、饼干的总钱数,列出关于,x y二元一次方程,若这个方程有自然数解,则可能,反之,不可能.【详解】解:设买了x 瓶饮料,y 盒饼干,,x y 为自然数,买三餐还剩100-10-15-18=57元A. 若剩4元,则 58574x y +=-,有整数解9,1x y ==;B. 若剩15元,则 585715x y +=-,有整数解2,4x y ==;C. 若剩22元,则 585722x y +=-,无整数解;D. 若剩44元,则 585744x y +=-,有整数解1,1x y ==;故选:C.【点睛】本题考查了二元一次方程的应用,解题关键是读懂题意,列出二元一次方程,把问题转化为二元一次方程的整数解的问题.7.D解析:D【分析】根据由将正方形ABCD 的一角折叠,折痕为AE ,∠B'AD 比∠BAE 大48°的等量关系即可列出方程组.【详解】解:.设BAE ∠和B AD ∠'的度数分别为x ︒和y ︒由题意可得:48290y x y x -=⎧⎨+=⎩ 故答案为D.【点睛】本题考查了二元一次方程组的应用,根据翻折变换的性质以及正方形的四个角都是直角寻找等量关系是解答本题的关键. 8.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= . 故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 9.C解析:C【解析】∵2x +1·4y =128,27=128, ∴x +1+2y =7,即x +2y =6.∵x,y均为正整数,∴22xy=⎧⎨=⎩或41xy=⎧⎨=⎩∴x+y=4或5.10.D解析:D【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.二、填空题11.8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB ,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利解析:8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∴AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.12.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.13.5【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由题意可得:5x+15y+40z=10(x﹣3)+20(y﹣2)+30(z﹣1)①,z=y﹣7 ②;由①得:x+y﹣2z=20 ③,将②代入③得:x+y﹣2(y﹣7)=20,解得:x﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x﹣3)﹣(y﹣2)=(x﹣y)﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.14.【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y+=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键. 15.152【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y , 把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6, ∴z=53×6=10, x=2663⨯-=4, 又∵x=a ,y=b ,z=c ,∴a 2+b 2+c 2=x 2+y 2+z 2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.16.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a 袋甲种粗粮的利润+b 袋乙种粗粮的利润,列出方程 解析:89【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a 袋,乙销售b 袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a 袋甲种粗粮的利润+b 袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%=45(元), 甲中A 的成本为:3×6=18(元), 则甲中B 、C 的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a 袋,乙销售b 袋使总利润率为24%,则有(45a+60b )×24%=(58.5-45)a+(72-60)b ,整理得:2.7a=2.4b ,所以,a :b=8:9,故答案为89. 【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.17.3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走了x km ,交换位置后走了ykm .分别以解析:3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有+=50003000+=50003000kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩,两式相加,得()()250003000k x y k x y k +++=,则x+y=21150003000+=3750(千米). 故答案为:3750. 点睛:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.18.8【解析】试题分析:设小矩形的长为x ,宽为y ,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.解析:8【解析】试题分析:设小矩形的长为x ,宽为y ,则2 5.7{2 4.5x y x y +=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.19.【解析】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为: .20.520【解析】试题分析:解决此题可以先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可.设0有a 个,1有b 个,2有c 个, 由题意得, 解得,故取值为2的个数为502个考点:(1解析:520【解析】试题分析:解决此题可以先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1)、规律型:(2)、数字的变化类.三、解答题21.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A 型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A 型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B 型号节能灯50只时最省钱,见解析.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a (﹣)只,费用为w 元, 5720021400w a a a +-+=()=-,3200a a ≤-(),150a ∴≤,∴当150a =时,w 取得最小值,此时110020050w a =,﹣=答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.23.(1)C (a+h ,b-1),D (m+h ,n-1);(2)①见解析;②相等,理由见解析【分析】(1)根据平移规律解决问题即可..(2)①证明A ,D 的纵坐标相等即可解决问题;②如图,设AD 交直线l 于J ,首先证明BJ=DJ=1,推出D (m+1,n-1),再证明p=q ,即可解决问题.【详解】解:(1)由题意,C (a+h ,b-1),D (m+h ,n-1);(2)①∵b=n-1,∴A (a ,b ),D (m+h ,n-1),∴点A ,D 的纵坐标相等,∴AD ∥x 轴,∵直线l ⊥AD ,∴直线l ⊥x 轴;②相等,理由是:如图,设AD 交直线l 于J ,∵DE 的最小值为1,∴DJ=1,∵BJ=1,∴D (m+1,n-1),∴二元一次方程px+qy=k (pq≠0)的图象经过点B ,D ,∴mp+nq=k ,(m+1)p+(n-1)q=k ,∴p-q=0,∴p=q ,∴m+n=k p, ∵tp+sp=k ,∴t+s=k p, ∴m+n=t+s .【点睛】本题考查坐标与图形的变化-平移,二元一次方程等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <,83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;EF CD,交y轴于点F,如图所示,(3)证明:过点E作//∠=∠,则ECD CEF∠=∠,2BCE ECD∴∠=∠=∠,BCD ECD CEF33OG AB,交PE于点G,如图所示,过点O作//∠=∠,则OGP BPE∠,PE平分OPB∴∠=∠,OPE BPE∴∠=∠,OGP OPECD AB,由平移得//∴,//OG FE∴∠=∠,FEP OGP∴∠=∠,FEP OPE∠=∠+∠,CEP CEF FEP∴∠=∠+∠,CEP CEF OPE∴∠=∠-∠,CEF CEP OPE∴∠=∠-∠.BCD CEP OPE3()【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.25.3【分析】根据题目的解法,把x+2y-z看成一个整体,进行解方程即可.【详解】。

2023年北师版八年级上册数学二元一次方程组知识点及练习题

2023年北师版八年级上册数学二元一次方程组知识点及练习题

学易佳教育中心八年级上册第五章二元一次方程组基础知识1.二元一次方程具有两个未知数, 并且所含未知数旳项旳次数都是1旳整式方程叫做二元一次方程。

2.二元一次方程旳解适合一种二元一次方程旳一组未知数旳值, 叫做这个二元一次方程旳一种解。

3.二元一次方程组具有两个未知数旳两个一次方程所构成旳一组方程, 叫做二元一次方程组。

4二元一次方程组旳解二元一次方程组中各个方程旳公共解, 叫做这个二元一次方程组旳解。

5.二元一次方程组旳解法(1)代入(消元)法(2)加减(消元)法6.一次函数与二元一次方程(组)旳关系:(1)一次函数与二元一次方程旳关系:直线y=kx+b上任意一点旳坐标都是它所对应旳二元一次方程kx- y+b=0旳解(2)一次函数与二元一次方程组旳关系:二元一次方程组 旳解可看作两个一次函数和 旳图象旳交点。

当函数图象有交点时, 阐明对应旳二元一次方程组有解;当函数图象(直线)平行即无交点时, 阐明对应旳二元一次方程组无解。

【基础训练】1.下列方程是二元一次方程旳有: ___________________(只填序号)①093=-+y x ②012232=+-y x ③202=+y x ④113=-yx ⑤3A-4B=70 ⑥x 2+10=02.甲种物品每个4kg, 乙种物品每个7kg 。

既有甲种物品x 个, 乙种物品y 个, 共76kg.(1)列出有关x,y 旳二元一次方程组_____________________________(2)若x=12,则y=___________(3)若有乙种物品8个, 则甲种物品有_________个。

3、小明从邮局买了面值50分和80分旳邮票共9枚, 花了6.3元, 小明买了50分邮票枚, 买了80分邮票枚, 则根据题意可列方程组:___________________⎩⎨⎧=+=+222111c y b x a c y b x a 22122b c x b a y +-=4.、下列四组数值中, 哪些是二元一次方程旳解_______________(1)⎩⎨⎧=-=;6,2y x (2)⎩⎨⎧==;4,3y x (3)⎩⎨⎧==;3,4y x (4)⎩⎨⎧-==.2,6y x 5.、二元一次方程组旳解是( )(A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x(D )⎩⎨⎧==.2,4y x 6.用代入消元法解下列方程组:1. 2、7、用加减消元法解下列方程组:1. 2、3. 4.【巩固提高】一、填空题:1. 已知/是有关x,y 旳二元一次方程, 则m = .2.假如/是一种二元一次方程, 那么数/= , /= .3.假如/是同类项, 那么 /= , /= .4.请写出方程x+2y=7旳一种正整数解是 .5./中, 若/则/_______.6.由/_______, /_______.7.假如那么_______. 8. 已知二元一次方程/当/时, y = .9. /是二元一次方程2x +by =-2旳一种解, 则b 旳值等于 .10. 已知/和/都是ax +by =7旳解, 则a = , b = .11. 已知/, 则x +y = .12. 若方程组/旳解是/, 则/.13. 某年级有学生246人, 其中男生比女生人数旳2倍少3人, 问男女学生各多少人, 设女生人数为x 人, 男生人数为y 人, 可列方程组为 .⎩⎨⎧=-=+.232,12y x y x =-+-+3962242y x y x14.购面值各为20分, 30分旳邮票共27枚, 用款6.6元。

二元一次方程数学复习题

二元一次方程数学复习题

二元一次方程数学复习题二元一次方程是初中数学中的重要知识点,它是一种含有两个未知数的一次方程。

在解二元一次方程时,我们需要运用代入法、消元法等方法,通过求解未知数的值来找到方程的解。

下面,我们来复习一些二元一次方程的相关题目。

1. 题目一:解方程组2x + y = 7x - y = 1这是一个由两个方程组成的方程组,我们可以通过消元法来解。

首先,将第二个方程两边同时乘以2,得到2x - 2y = 2。

然后,将这个式子与第一个方程相加,消去x的系数,得到-2y + y = 2 + 7,化简得到-y = 9,再将这个结果代入第一个方程,得到2x + 9 = 7,继续化简得到2x = -2,最后解得x = -1。

将x的值代入第二个方程,得到-1 - y = 1,解得y = -2。

所以,方程组的解为x = -1,y = -2。

2. 题目二:解方程组3x - 2y = 42x + 3y = 7这个方程组也可以通过消元法来解。

首先,将第一个方程两边同时乘以3,得到9x - 6y = 12。

然后,将第二个方程两边同时乘以2,得到4x + 6y = 14。

接下来,将这两个式子相加,消去y的系数,得到13x = 26,解得x = 2。

将x的值代入第一个方程,得到3(2) - 2y = 4,解得y = 1。

所以,方程组的解为x = 2,y = 1。

3. 题目三:解方程组4x + 3y = 102x - y = 3这个方程组可以通过代入法来解。

首先,将第二个方程解出y,得到y = 2x - 3。

然后,将这个结果代入第一个方程,得到4x + 3(2x - 3) = 10,化简得到10x - 9 = 10,解得x = 2。

将x的值代入第二个方程,得到2(2) - y = 3,解得y = 1。

所以,方程组的解为x = 2,y = 1。

通过以上三个例题,我们可以看出解二元一次方程的方法有很多种,根据具体的题目情况选择合适的方法来解决。

八年级数学上第八章二元一次方程组练习题(附答案)

八年级数学上第八章二元一次方程组练习题(附答案)

二元一次方程组§8.1二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____ __。

2、在x+3y=3中,若用x 表示y ,则y=__ ___,用y 表示x ,则x=_ _____。

3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=___ ___;当y=0时,则x=__ ____。

5、方程2x+y=5的正整数解是___ ___。

6、若(4x-3)2+|2y+1|=0,则x+2=_____ _。

7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。

8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。

二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2 C、3 D、42、方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=64、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对.6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y xB 、⎩⎨⎧=--=523x y x yC 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x yx7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-19、下列说法正确的是( )A、二元一次方程只有一个解B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是()A、k=6 B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组:(1)有一个解;(2)有无数解;(3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

人教版初中数学第八章二元一次方程组习题及解析

人教版初中数学第八章二元一次方程组习题及解析

一、概念易一、选择题(题型注释)1.下列方程中,属于二元一次方程的是( )A .23x y z -=B .1213a y-=+ C .225x x -= D .2x y = 【答案】D .【解析】试题分析:如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程,根据二元一次方程的定义可得四个选项中只有选项D 符合要求,故答案选D .考点:二元一次方程的定义.2)A.3x-2y=9B.2x+y=6z D.x-3=4y 2 【答案】A【解析】试题分析:二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.A.是二元一次方程;B.是三元一次方程;C.是分式方程;D.2y 是二次,故应选A.考点:二元一次方程的定义3.下列方程组中,属于二元一次方程组的是( )A .53x y x z +=⎧⎨=⎩C.434x y xy x y -+=⎧⎨-=⎩ 【答案】D .【解析】试题分析:A 、有三个未知数,所以A选项不正确;B 、第一个方程不是整式方程,故不是二元一次方程组;C 、未知项xy 的次数为2,故不是二元一次方程组;D 、符合二元一次方程组的定义,是二元一次方程组.故选D .考点:二元一次方程组的定义.4.方程35kx y +=有一组解21x y =⎧⎨=⎩,则k 的值为( ) A B C .1-D .1 【答案】D【解析】试题分析:根据题意把方程的这一组解代入方程可得:2k+3=5,解方程可得k=1.故选D考点:二元一次方程的解5.把方程3x+2y=4,化为用含字母y 的代数式表示x 的形式正确的是( )。

A B C D 【答案】D【解析】试题分析:因为3x+2y=4,所以3x=4-2y ,D . 考点:列代数式.二、填空题(题型注释)6.已知57x y =⎧⎨=⎩是方程kx ﹣2y ﹣1=0的解,则k 的值为 . 【答案】3【解析】试题分析:把57x y =⎧⎨=⎩代入方程kx ﹣2y ﹣1=0,得5k ﹣14﹣1=0,解得k=3. 考点:二元一次方程的解.7.2元的人民币x 张,5元的人民币y 张,共120元,这个关系用方程可以表示为 .【答案】2x+5y=120.【解析】 试题分析:根据等量关系“2元人民币的数量+5元人民币的数量=120”即可得方程2x+5y=120.考点:列二元一次方程.8.请你写出二元一次方程1=-y x 的一个解是 .【答案】见解析.【解析】试题分析:假设x=1,则1-y=1,解得y=0.故答案为:x=1,y=0.(答案不唯一)考点:二元一次方程的解.9.已知2x+y=2,用关于x 的代数式表示y ,则y= .【答案】2-2x.【解析】试题分析:由2x+y=2移项得y=2-2x.考点:等式的性质.难一、选择题1.下列各组数值是二元一次方程x-3y=4的解的是( )A.11x y =⎧⎨=-⎩B.21x y =⎧⎨=⎩C.12x y =-⎧⎨=-⎩D.41x y =⎧⎨=-⎩ 【答案】A【解析】试题分析:A 、将x=1,y=-1代入方程左边得:x-3y=1+3=4,右边为4,本选项正确;B 、将x=2,y=1代入方程左边得:x-3y=2-3=-1,右边为4,本选项错误;C 、将x=-1,y=-2代入方程左边得:x-3y=-1+6=5,右边为4,本选项错误;D 、将x=4,y=-1代入方程左边得:x-3y=4+3=7,右边为4,本选项错误.故选A考点:二元一次方程的解.2.已知xy≠0,下列各式:①x-3=y-32x+2y=0,其中一定正确的有()A.1个B.2个C.3个D.4个【答案】B.【解析】试题分析:①两边都减3,故①正确;②x=y≠±5时,故②错误;③两边都除以同一个不为零的数,故③正确;④x=y≠-xy≠0,故④错误,故选B.考点:等式的性质.3mn+m=7;⑤x+y=6.A.1个B.2个C.3个D.4个【答案】B【解析】①中分母含有未知数,所以不是二元一次方程;②是二元一次方程;③中分母含有未知数,所以不是二元一次方程;④中mn项的次数是2,所以不是二元一次方程;⑤是二元一次方程.所以二元一次方程有2个.4.已知∠A、∠B互余,∠A比∠B大30°,设∠A,∠B的度数分别为x°,y°,下列方程组中符合题意的是()A.180,30x yx y+=⎧⎨=-⎩B.180,30x yx y+=⎧⎨=+⎩C.90,30x yx y+=⎧⎨=+⎩D.90,30x yx y+=⎧⎨=-⎩【答案】C【解析】∠A,∠B互余,所以x+y=90.∠A比∠B大30°,所以x-y=30°即x=y+30.故选C.二、填空题5.已知4x2m﹣n﹣4﹣5y n﹣1=8是关于x,y的二元一次方程,则m= ,n= .【答案】3.5;2.【解析】试题分析:因为4x2m﹣n﹣4﹣5y n﹣1=8是关于x,y的二元一次方程,所以可得:n﹣1=1,2m﹣n﹣4=1,解得:n=2,m=3.5.故答案为:3.5;2.考点:二元一次方程的定义.6x的代数式表示y为________.【解析】将二元一次方程1432x y+=两边同时乘12,得3x+4y=6,再将其变形,得634xy-=.7.在方程3x-4y=10中,如果2y=4【答案】3【解析】由2y=4,得4y=8.把4y=8代入3x-4y=10,得3x-8=10,x=6三、解答题8.已知12x y =-⎧⎨=⎩是某个二元一次方程的一组解,则这个方程可以是. 【答案】2x+y=0【解析】试题分析: 由﹣1和2列出一个算式,即可确定出所求方程.答案不唯一,如2x+y=0等,故答案为:2x+y=0考点:二元一次方程的解.9.(本题4+6分)某校运动会需购买A 、B 两种奖品.若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并确定最少费用W 的值.【答案】(1)A 、B 两种奖品单价分别为10元、15元(2)m W 51500-=,7570≤≤m ,1125元.【解析】试题分析:(1)设A 、B 两种奖品单价分别为x 元、y 元,然后根据等量关系列二元一次方程组解答即可;(2)根据条件可写出w 与x 的函数关系式,然后根据:购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,列出不等式组,解不等式组可得到x 的取值范围,利用一次函数的增减性可确定w 的最小值. 试题解析:解:(1)设A 、B 两种奖品单价分别为x 元、y 元,由题意,得32605395x y x y +=⎧⎨+=⎩, 解得:1015x y =⎧⎨=⎩. 答:A 、B 两种奖品单价分别为10元、15元.由题意,得1015(100)W m m =+-10150015m m =+-15005m =-由1500511503(100)m m m -≤⎧⎨≤-⎩,解得:7075m ≤≤.因为m 为整数,所以m 的值为70、71、72、73、74、75 由一次函数15005W m =-可知,W 随m 增大而减小∴当75m =时,W 最小,最小为150********W =-⨯=(元)考点:1.二元一次方程组;2.一元一次不等式组;3.一次函数的性质与应用.二、代入法、加减法解方程组易一、选择题1.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a 、b 分别为( )A .a=8,b=﹣2B .a=8,b=2C .a=12,b=2D .a=18,b=8【答案】C.【解析】试题分析:计算题.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.将x 与y 的值代入方程组即可求出a 与b 的值.解:将x=5,y=b 代入方程组得:1053b a b +=⎧⎨-=⎩, 解得:a=12,b=2,故选C.考点:二元一次方程组的解.2.解以下两个方程组:①21758y x x y =-⎧⎨+=⎩,862517648s t s t +=⎧⎨-=⎩,较为简便方法的是() A.①②均用代入法 B.①②均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法【答案】C .【解析】试题分析:①是用x 表示y 的形式,用代入法解答合适;②中的方程中的t 项互为相反数,用加减法比较合适;故选C .考点: 解二元一次方程组.3.对于方程组⎩⎨⎧⋯-=⋯=-②①12352x y y x 把②代入①,得( ) A .2x -10x+5=3 B .2x -10x -1=3C .2(2x -1)一5y=3D .2x -10x -5=3【答案】A .【解析】试题分析:用2x-1代替方程①中的y 可得2x-5(2x-1)=3,去括号得,2x -10x+5=3,故答案选A .考点:代入消元.4.若二元一次方程2x+y=3,3x -y=2和2x -my=-1有公共解,则m 取值为( )A .-2B .-1C .3D .4【答案】C【解析】试题分析:解方程组可得:x=1,y=1,将x 和y 的值代入2x -my=-1可得:2-m=-1,解得:m=3. 考点:二元一次方程组.5.解方程组35123156x y x y +=⎧⎨-=-⎩比较简便的方法为( ) A .代入法 B .加减法 C .换元法 D .三种方法都一样【答案】B【解析】试题分析:这两个方程中,x 的系数相同,则利于加减消元法比较简单.考点:解二元一次方程组.6.m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,则m 2的值为( )A 、4B 、49C 、4或49D 、1或49【答案】A【解析】 试题分析:解:, ①+②得:(3+m )x=10,即x=③,把③代入②得:y=④,∵方程的解x 、y 均为整数,∴3+m 既能被10整除也能被15整除,所以31,m +=±或35m +=±,解得m=-4,-2,2,-8,因为m 为正整数,所以m=2.所以m 2=22=4.故选:A .考点:二元一次方程组的整数解.7.若x 、y 满足方程组3735x y x y +=⎧⎨+=⎩,则x ﹣y 的值等于( ) A .﹣1 B .1 C .2 D .3【答案】A.【解析】试题分析:3735x y x y +=⎧⎨+=⎩①②, ②﹣①得:2x ﹣2y=﹣2,则x ﹣y=﹣1,故选A【考点】解二元一次方程组.二、填空题8.若2x y 2|4x 3y 7|0+++=(﹣)﹣,则8x ﹣3y 的值为 . 【答案】5.【解析】试题分析:已知2x y 2|4x 3y 7|0+++=(﹣)﹣,可得x+y=2,4x+3y=7,把这两个方程联立可得方程组2437x y x y +=⎧⎨+=⎩,解得x=1,y=1,所以8x ﹣3y=5.考点:a 和2a 的非负性;二元一次方程组的解法.9.方程组120x y x y +=⎧⎨+=⎩的解是 . 【答案】21x y =⎧⎨=-⎩ 【解析】试题分析:方程1-方程2得:-y=1,所以y=-1,代入方程2得x=2,所以方程组的解是21 xy=⎧⎨=-⎩.考点:二元一次方程组的解.10.方程组23328y xx y=-⎧⎨+=⎩的解是【答案】21 xy【解析】试题分析:将①代入②得:3x+2(2x-3)=8,解得:x=2,将x=2代入①得:y=4-3=1.考点:二元一次方程组的解法.11.方程组52239x yx y-=⎧⎨+=-⎩的解为.【答案】31 xy=-⎧⎨=-⎩【解析】试题分析:52239x yx y-=⎧⎨+=-⎩①②,①×2-②得:-13y=13,所以y=-1,把y=-1代入①得x+5=2,所以x=-3,所以方程组的解是31 xy=-⎧⎨=-⎩.考点:二元一次方程组.三、解答题12.解方程组:230 311x yx y+=⎧⎨-=⎩.【答案】32 xy=⎧⎨=-⎩.【解析】试题分析:利用加减消元法求出解即可.试题解析:230 311x yx y+=⎧⎨-=⎩①②由②得:y=3x-11③,将③代入①:2x+9x-33=0,解得:x=3,把x=3代入③得:y=-2,则原方程组的解是32 xy=⎧⎨=-⎩.考点:解二元一次方程组.13.(7分)解方程组231 328x yx y+=⎧⎨-=⎩.【答案】21 xy=⎧⎨=-⎩【解析】试题分析:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组利用加减消元法求出解即可.试题解析:解:231328x yx y+=⎧⎨-=⎩①②,①×2+②×3得:13x=26,即x=2,把x=2代入①得:y=﹣1,则方程组的解为21xy=⎧⎨=-⎩.考点:解二元一次方程组.14.解方程组:(1)3215x yx y-=⎧⎨+=⎩(2)43524x yx y+=⎧⎨-=⎩.【答案】(1)63xy=⎧⎨=⎩;(2)21xy=⎧⎨=-⎩.【解析】试题分析:两方程组利用加减消元法求出解即可.试题解析:(1)3215x yx y-=⎧⎨+=⎩①②,①+②得:3x=18,即x=6,把x=6代入①得:y=3,则方程组的解为63 xy=⎧⎨=⎩;(2)43524x yx y+=⎧⎨-=⎩①②,①×2+②×3得:11x=22,即x=2,把x=2代入②得:y=-1,则方程组的解为21 xy=⎧⎨=-⎩.考点:解二元一次方程组.15.解方程组33814x yx y-=⎧⎨-=⎩①②.【答案】21x y =⎧⎨=-⎩【解析】试题分析:通过观察,采用代入法比较简单.试题解析:由①得:x=3+y ③,把③代入②得:3(3+y )﹣8y=14,所以y=﹣1.把y=﹣1代入③得:x=2,∴原方程组的解为21x y =⎧⎨=-⎩. 考点: 解二元一次方程组.难一、选择题1.方程组23x y k x y k-=+⎧⎨+=⎩的解适合方程x+y=2,则k 值为( )A .2B .-2C .1D .【答案】C .【解析】 试题解析:解:23x y k x y k -=+⎧⎨+=⎩①②,①+②得,x+y=k+1,由题意得,k+1=2,解答,k=1,故选C .考点:二元一次方程组的解.2.二元一次方程组2521x y x y -=⎧⎨-=⎩的解为( ) A .13x y =⎧⎨=-⎩ B .21x y =⎧⎨=-⎩ C .31x y =⎧⎨=-⎩ D .31x y =⎧⎨=⎩ 【答案】D【解析】试题分析:本题利用加减消元法或代入消元法进行求解.考点:解二元一次方程组3.甲、乙两人同求方程ax -by=7的整数解,甲正确地求出一个解为⎩⎨⎧-==11y x ,乙把ax -by=7看成ax -by=1,求得一个解为⎩⎨⎧==21y x ,则a,b 的值分别为( ) A 、⎩⎨⎧==52b a B 、⎩⎨⎧==25b a C 、⎩⎨⎧==53b a D 、⎩⎨⎧==35b a 【答案】B【解析】试题分析:把甲的解代入ax-by=7可得a+b=7,把乙的解代入可得a-2y=1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩. 故选B考点:二元一次方程组的解4.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2n m -的平方根为( ) A .4 B .2 CD .±2【答案】D【解析】 试题分析:根据二元一次方程组的解的意义,把⎩⎨⎧==12y x 代入方程组⎩⎨⎧=-=+18my nx ny mx ,可得2821m n n m +=⎧⎨-=⎩,解这个方程组可得32m n =⎧⎨=⎩,因此2m-n=4,所以可求得4的平方根为±2.故选D考点:解二元一次方程组,平方根5.已知 2 1x y ⎧⎨⎩==是二元一次方程组81mx ny nx my ⎩-⎨+⎧==的解,则 ) A 、±3 B 、3 CD 、【答案】C.【解析】试题分析:将x和y 的值代入方程组求出m 和n. 试题解析:将x=2,y=1代入方程组得:2821m n n m +-⎧⎨⎩=①=②①+②×2得:5n=10,即n=2,将n=2代入②得:4-m=1,即m=3,∴m+3n=3+6=9故选C.考点:1.二元一次方程组的解;2.算术平方根.6.方程组的解x 、y 满足x >y ,则m 的取值范围是( )AB C D 【答案】D 43283y x m x m +=⎧⎨-=⎩【解析】试题分析:解方程组43283yx mx m+=⎧⎨-=⎩得因为x>y,故选:D.考点:1.二元一次方程组;2.不等式的解集.7.已知2,1xy=⎧⎨=⎩是二元一次方程组8,1mx nynx my+=⎧⎨-=⎩的解,则2m-n的算术平方根是()A.4 B.2CD.±2【答案】B【解析】将2,1xy=⎧⎨=⎩代入二元一次方程组8,1mx nynx my+=⎧⎨-=⎩中,得28,21,m nn m+=⎧⎨-=⎩解这个方程组得3,2,mn=⎧⎨=⎩则2m-n=2×3-2=4,4的算术平方根是2.二、填空题8.已知(3x+2y-5)2与│5x+3y-8│互为相反数,则x=______,y=________.【答案】1;1【解析】试题分析:两个非负数之和为零,则说明这两个数为零.根据题意可得:325538x yx y+=⎧⎨+=⎩,解得:x=y=1.考点:非负数的性质.9.若-3x a-2b y7与2x8y5a+b是同类项,则a=________,b=________.【答案】2-3【解析】由题意可知28,57,a ba b-=⎧⎨+=⎩解得2,3.ab=⎧⎨=-⎩10.若方程组4,2ax byax by-=⎧⎨+=⎩与方程组234,456x yx y+=⎧⎨-=⎩的解相同,则a=________,b=________.【解析】解方程组234, 456, x yx y+=⎧⎨-=⎩得11.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是(用a,b的代数式表示)【答案】ab【解析】试题分析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,⎩⎨⎧=-=+bx x a x x 212122 大正方形中未被小正方形覆盖部分的面积=22=ab . 故答案为:ab .考点:1、方程组 2、正方形面积 3、整式的运算三、简答题12.解下列方程组(1)41216x y x y -=-+=⎧⎨⎩ (2)()()()3155135x y y x -=⎧+-=+⎪⎨⎪⎩. 【答案】(1)72x y ==⎧⎨⎩;(2)57x y ==⎧⎨⎩.【解析】试题分析:(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.试题解析:(1)41216x y x y -=+=⎨-⎧⎩①②, ①+②×4得:9x=63,即x=7,把x=7代入①得:y=2,则方程组的解为72x y ==⎧⎨⎩; (2)方程组整理得:383520x y x y -=-=-⎧⎨⎩①②,①-②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为57x y ==⎧⎨⎩. 考点:解二元一次方程组.13.解方程组:2()3()34()3153x y x y x y x y+--=⎧⎨++=+⎩. 【答案】方程组的解是21x y =⎧⎨=⎩. 【解析】试题分析:方程组整理后,利用加减消元法求出解即可.试题解析:方程组整理得:2()3()34()3()15x y x y x y x y +--=⎧⎨++-=⎩①② ①+②得x+y=3③,把③代入①,得x-y=1④,③+④得:x=2,③-④得:y=1,则原方程组的解是21x y =⎧⎨=⎩.考点:解二元一次方程组.14.求满足方程组24014320x y m x y --=⎧⎨-=⎩中的y 值是x 值的3倍的m 的值,并求的值。

七年级下册数学二元一次方程组练习题

七年级下册数学二元一次方程组练习题

七年级下册数学二元一次方程组练习题一、选择题1. 若一个二元一次方程组的两个方程相加,结果为3x+y=7,方程相减,结果为5x-y=1,则该二元一次方程组的解是:A. (x,y) = (2,1)B. (x,y) = (1,2)C. (x,y) = (3,1)D. (x,y) = (1,3)2. 解方程组:2x+y=5x-y=7的解为:A. (x,y) = (4,-3)B. (x,y) = (1,2)C. (x,y) = (3,4)D. (x,y) = (2,1)3. 解方程组:x+y=62x-3y=7的解为:A. (x,y) = (-1,7)B. (x,y) = (2,4)C. (x,y) = (3,3)D. (x,y) = (4,2)二、填空题4. 解方程组:3x+y=8x-2y=7的解为:(x,y) = ( , )5. 若一个二元一次方程组的两个方程相加,结果为4x-y=12,方程相减,结果为3x+y=0,则该二元一次方程组的解是:(x,y) = ( , )6. 解方程组:x+y=102x+5y=35的解为:(x,y) = ( , )三、解答题7. 解方程组:2x+y=11x+3y=13的解。

8. 解方程组:3x-2y=16x+7y=29的解。

9. 解方程组:x+y=73x-4y=10的解。

10. 解方程组:2x+y=53x-y=2的解。

四、应用题11. 小明与小红两人的年龄之和是27岁,小明的年龄是小红年龄的2倍。

求解小明和小红的年龄。

12. 有一辆公交车从A地出发,到B地需要2小时,全程120公里。

如果公交车的速度再快10km/h,则只需要1小时50分钟到达B 地。

求解公交车的速度。

13. 甲、乙两人贷款共计5000元,甲先借了3000元,之后每个月还款200元;乙先借了2000元,之后每个月还款300元。

假设没有利息,求多少个月后两人的贷款还清。

14. 一件商品原价200元,现在进行打折促销,降价20%出售。

七年级数学二元一次方程组练习题

七年级数学二元一次方程组练习题

七年级数学二元一次方程组练习题一、选择题1. 二元一次方程组的一般形式是()A. ax + = cB. ax + + cz = dC. ax + = c, dx + ey = fD. ax^2 + ^2 = c2. 解二元一次方程组时,常用的方法有()A. 代入法B. 加减法C. 图像法3. 二元一次方程组中,两个方程的系数分别记为a, b, c, d, e, f,则方程组有唯一解的条件是()A. ad be ≠ 0B. ad be = 0C. ad + be ≠ 0D. ad + be = 0二、填空题1. 二元一次方程组 {x + y = 5, 2x y = 1} 的解为()2. 已知二元一次方程组 {ax + = c, dx + ey = f},其中a, b, c, d, e, f均为实数,且ad be ≠ 0,则该方程组有________个解。

3. 二元一次方程组 {x + y = 7, 3x 2y = 1} 中,x的系数是________,y的系数是________。

三、解答题1. 解二元一次方程组 {2x + 3y = 8, x y = 1}。

2. 已知二元一次方程组 {ax + = c, dx + ey = f},其中a, b, c, d, e, f均为实数,且ad be ≠ 0。

证明:该方程组有唯一解。

3. 二元一次方程组 {x + y = 6, 2x y = 8} 中,x和y的值各是多少?四、拓展题1. 二元一次方程组 {x + y = 5, 2x 3y = 7} 中,如果x的值增加1,y的值减少2,那么新的方程组是什么?2. 二元一次方程组 {ax + = c, dx + ey = f} 中,如果a, b, c, d, e, f均为整数,且ad be = 1,那么该方程组有________个整数解。

3. 二元一次方程组 {x + y = 10, 3x 2y = 4} 中,如果x和y 的值都是正整数,那么x和y的值各是多少?七年级数学二元一次方程组练习题四、拓展题1. 二元一次方程组 {x + y = 5, 2x 3y = 7} 中,如果x的值增加1,y的值减少2,那么新的方程组是什么?解答思路:确定原方程组中的x和y的值。

二元一次方程组练习题84道含答案初一下

二元一次方程组练习题84道含答案初一下

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x x y 的解是方程3x -2y =13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( ) 5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( )10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a ………( )12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437y x +=( ) 二、选择:13、任何一个二元一次方程都有( )(A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个15、如果⎩⎨⎧=+=-423y x a y x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( )(A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是() (A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于()(A )a =-3,b =-14 (B )a =3,b =-7(C )a =-1,b =9 (D )a =-3,b =1421、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32(B )23(C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( )(A )无解 (B )有唯一一个解(C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4 (D )21-=k ,b =-4□x +5y =13 ①4x -□y =-2 ②25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______若x 、y 都是正整数,那么这个方程的解为___________;26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______; 32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________; 36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m n m ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x y x y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ; 43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

七年级下册数学二元一次方程组习题及答案

七年级下册数学二元一次方程组习题及答案

七年级下册数学二元一次方程组习题及答案8.1 二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y的值分别为-4,1,6,11.2、在x+3y=3中,用x表示y,则y=(3-x)/3;用y表示x,则x=3-3y。

3、已知方程(k^2-1)x^2+(k+1)x+(k-7)y=k+2,当k=2或k=-2时,方程为一元一次方程;当k不等于2或-2时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=16;当y=0时,则x=20/3.5、方程2x+y=5的正整数解是(1,3)。

6、若(4x-3)^2+|2y+1|=0,则x+2=-1/2.7、方程组x+y=ax=2的一个解为(2,a-2),那么这个方程组的另一个解是(0,a)。

8、若x=1/2时,关于x、y的二元一次方程组ax-2y=1x-by=2的解互为倒数,则a-2b=-1/2.二、选择题1、方程2x-3y=5,xy=3,二元一次方程的有(B)个。

2、方程2x+y=9在正整数范围内的解有(C)个。

3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是(C)20x-4y=3.4、若是5x^2 ym与4xn+m+1y^2n-2同类项,则m-2n的值为(B)-1.5、在方程(k^2-4)x^2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为(B)-2.6、若x=2y=-1是二元一次方程组的解,则这个方程组是(A)x-3y=5y=x-32x-y=5x=2y7、在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,则(A)y=5x-3.8、已知x=3-k,y=k+2,则y与x的关系是(A)x+y=5.9、下列说法正确的是(B)二元一次方程组有无数个解。

8.1 二元一次方程组一、填空题1.已知二元一次方程 4x-3y=12,当 x=0、1、2、3 时,分别解得 y=-4、1、6、11.2.对方程 x+3y=3,用 x 表示 y,则 y=(3-x)/3;用 y 表示 x,则 x=3-3y。

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。

有几个方程组成的一组方程叫做方程组。

如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。

二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。

二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:代入消元法例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89 y=59/7把y=59/7带入③,x=5-59/7 即x=-24/7 ∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elim ination by substitution),简称代入法。

加减消元法例:解方程组x+y=9①x-y=5②解:①+②2x=14 即x=7 把x=7带入①得7+y=9 解得y=-2∴x=7 y=-2 为方程组的解像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。

二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。

第5章 二元一次方程组 北师大版八年级上册习题课件 认识二元一次方程组

第5章 二元一次方程组 北师大版八年级上册习题课件 认识二元一次方程组

__2__,m=
__1_8___
11 . 已 知 方 程 组
3m-2n=5, 2m+3n=12
的解是
m=3, n=2,
则方程组
3(x-1)-2(y+1)=5, 2(x-1)+3(y+1)=12
的解是
(
B
)
A.
x=3, y=2
B.
x=4, y=1
C.
x=3, y=1

D.
x=2, y=3
12.已知
x=2, y=1
的解,且 m
-n=b2+2b-4,求 b 的值.
解:因为
x=1, y=m,
x=n, y=2
都是关于 x,y 的二元一次方程 y=x+b 的解,所以
m=1+b, 2=n+b.
所以 m-n=2b-1.又因为 m-n=b2+2b-4,所以 b2+2b-4=2b-1.
解得 b=± 3
14.已知二元一次方程 x+3y=10. (1)直接写出它的所有正整数解; (2) 请 你 写 出 一 个 二 元 一 次 方 程 , 使 它 与 已 知 方 程 组 成 的 方 程 组 的 解 为 x=-2, y=4.
4.下列每对 x,y 的值,是二元一次方程 3x+y=5 的解是 ( A )
A.
x=1, y=2
B.
x=2, y=1
C.
x=-2, y=1
D.
x=-2, y=-1
5.(益阳中考)同时满足二元一次方程 x-y=9 和 4x+3y=1 的 x,y 的值为 ( A )
x=4, A. y=-5
x=-4, B. y=5
是二元一次方程组
2x+(m-1)y=2, (n-2)x-y=1
的解,求 mn 的值.

二元一次方程组(2个知识点+4类热点题型讲练+习题巩固)(原卷版)七年级数学下册

二元一次方程组(2个知识点+4类热点题型讲练+习题巩固)(原卷版)七年级数学下册

第01讲二元一次方程(组)课程标准学习目标①二元一次方程(组)的定义②二元一次方程(组)的解1.掌握二元一次方程(组)的定义,能够准确判断二元一次方程(组)以及根据其定义求值。

2.掌握二元一次方程(组)的解的定义,能判断方程(组)的解以及根据方程(组)的解求值。

知识点01二元一次方程(组)的定义1.二元一次方程的定义:含有个未知数,且含有未知数的项的次数都是的整式方程,像这样的方程叫做二元一次方程。

2.二元一次方程组的定义:把多个方程放在一起叫做方程组。

若一个整式方程组中一共只含有个未知数,且含有未知数的项的次数都是的方程组叫做二元一次方程组。

【即学即练1】1.下列各方程中,是二元一次方程的是()A .B .x +y =1C .D .3x +1=2xy【即学即练2】2.|m﹣2|x+3y|m﹣1|=23是关于x,y的二元一次方程,则m=()A.2B.0C.1D.—1【即学即练3】3.下列方程组中,属于二元一次方程组的是()A.B.C.D.知识点02二元一次方程(组)的解1.二元一次方程的解:一般地,使二元一次方程等号左右两边的值的两个未知数的值,叫做二元一次方程的解。

一个二元一次方程可以由组解。

2.二元一次方程组的解:一般地,二元一次方程组中两个方程的叫做二元一次方程组的解。

【即学即练1】4.下列哪对x,y的值是二元一次方程x+2y=6的解()A.B.C.D.【即学即练2】5.若是方程kx+y=﹣5的一个解,则k的值是()A.B.﹣3C.3D.题型01判断二元一次方程(组)【典例1】下列是二元一次方程的是()A.x+2y=3B.x2+y=1C.y+D.2x﹣1=5【变式1】方程2x﹣3y=4,,,2x+3y﹣z=5,x2﹣y=1中,是二元一次方程的有()A.1个B.2个C.3个D.4个【典例2】下列方程组是二元一次方程组的是()A.B.C.D.【变式1】下列方程组中,二元一次方程组的个数是()①;②;③;④;⑤.A.1B.2C.3D.4题型02根据二元一次方程的定义求值【典例1】若3x|k|+(k﹣1)y=2是关于x,y的二元一次方程,则k的值为()A.1或﹣1B.1C.﹣1D.0【变式1】若方程(a+1)x+3y|a|=1是关于x,y的二元一次方程,则a的值为()A.﹣1B.±1C.0D.1【变式2】若(m﹣2)x+3y|m﹣1|=12是关于x,y的二元一次方程,则m的值是()A.2B.2或0C.0D.任何数【变式3】已知x|m|﹣1+(m+2)y=7是关于x,y的二元一次方程,则m=.【变式4】若4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,则a+b的值为()A.﹣2B.﹣1C.0D.1题型03判断二元一次方程的解以及根据求求值【典例1】下列4组数值中,不是二元一次方程2x﹣y=4的解的是()A.B.C.D.【变式1】下列二元一次方程的其中一个解是的是()A.x+y=﹣2B.x+y=1C.2x﹣y=7D.2x+3y=﹣1【变式2】已知是二元一次方程mx+3y=2的一组解,则m的值为()A.﹣B.1C.D.2【变式3】若,是关于x和y的二元一次方程mx+ny=3的解,则2m﹣4n的值等于()A.3B.6C.﹣1D.﹣2【变式4】已知是方程mx+ny=5的解,则代数式4m+6n﹣1的值为.题型04二元一次方程的特殊解【典例1】写出二元一次方程x+y=5的一组整数解.【变式1】二元一次方程2x+3y=12的正整数解有()组.A.1B.2C.3D.4【变式2】在二元一次方程2x+3y=21中,若x,y均为正整数,则该方程的解的组数有()A.5组B.4组C.3组D.2组【变式3】关于x、y的二元一次方程2x+y=7的自然数解有()A.3组B.4组C.5组D.6组1.下列方程是二元一次方程的是()A.x2﹣2x=0B.x+2y=1C.x﹣y+z=0D.2x﹣3=4+x2.下列方程组中是二元一次方程组的是()A.B.C.D.3.黑板上,老师要求嘉嘉和淇淇各写出一个二元一次方程:嘉嘉:xy=1;淇淇:,对于两人所写的结果,下列说法正确的是()A.嘉嘉对B.淇淇对C.两人均对D.两人均不对4.下列4组数中,是二元一次方程2x+y=4的解是()A.B.C.D.5.已知关于x、y的二元一次方程2x+y=k的解是,则k的值为()A.1B.2C.3D.46.若关于x、y的二元一次方程x+2y=2a﹣1的一组解为x=3,y=1,则a的值是()A.3B.2C.1D.﹣17.若方程(a+1)x+3y|a|=1是关于x,y的二元一次方程,则a的值为()A.﹣1B.±1C.±2D.18.方程2x+3y=9的非负整数解有()A.无数个B.2个C.1个D.0个9.已知关于x,y的二元一次方程2x﹣3y=t,其取值如下表,则p的值为()x m m+2y n n﹣3t5pA.17B.18C.19D.2010.若关于x、y的方程组的解满足x+y=2023,则k等于()A.2021B.2022C.2023D.202411.若x|2m﹣3|+(m﹣2)y=6是关于x、y的二元一次方程,则m的立方根是12.若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2025的值为.13.二元一次方程2x+3y=16的自然数解有个.14.和都是方程y=kx+b的解,则k=.15.若关于x,y的方程组的解中x与y互为相反数,则m=.16.已知是关于x,y的二元一次方程3x+ay=14的一组解.(1)求a的值;(2)请用含有x的代数式表示y.17.定义:二元一次方程y=ax+b与二元一次方程y=bx+a互为“反对称二元一次方程”,如二元一次方程y=2x+1与二元一次方程y=x+2互为“反对称二元一次方程”.(1)直接写出二元一次方程y=4x﹣1的“反对称二元一次方程”:.(2)二元一次方程y=3x+5的解,又是它的“反对称二元一次方程”的解,求出m,n的值.18.已知关于x,y的二元一次方程kx+y=3﹣k,k是不为零的常数.(1)如果是该方程的一个解,求k的值;(2)当k每取一个不为零的值时,都可得到一个方程,而这些方程都有一组公共的解,试求出这个公共解.19.已知二元一次方程5x+3y=18.(1)把方程写成用含x的代数式表示y的形式;(2)填表,使x、y的值是方程5x+3y=18的解;x01234y6(3)根据表格,请直接写出方程的非负整数解.20.若关于x、y的二元一次方程变形为y=ax+b的形式(a、b是常数,a≠0),则其中一对常数a、b称为该二元一次方程的“相伴系数对”,记为(a,b).例如二元一次方程3x﹣2y=1变形为,则二元一次方程3x﹣2y=1的“相伴系数对”为(,﹣).(1)二元一次方程x+3y=0的“相伴系数对”为;(2)已知是关于x、y的二元一次方程的一个解,且该方程的“相伴系数对”为(2k,k+3),写出这个二元一次方程;(3)关于x、y的二元一次方程(m2+n2)x﹣2y+2mn=0,已知该方程的“相伴系数对”之和为2,求m+n的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二元一次方程含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——分母中不能含有字母; ②有两个未知数——“二元”;③含有未知数的项的最高次数为1——“一次”.关于x 、y 的二元一次方程的一般形式:ax by c +=(0a ≠且0b ≠). 二、二元一次方程的解使二元一次方程两边的值相等的两个未知数的一组取值叫做二元一次方程的解.在写二元一次方程解的时候我们用大括号联立表示.如:方程2x y +=的一组解为11x y =⎧⎨=⎩,表明只有当1x =和1y =同时成立时,才能满足方程.一般的,二元一次方程都有无数组解,但如果确定了一个未知数的值,那么另一个未知数的值也就随之确定了.【例1】 若211350a b x y +-+=是关于x 、y 的二元一次方程,则a =______,b =______.【例2】 已知方程()21320m n m x y ---+=是关于x 、y 的二元一次方程,则m =______,n =______. 【例3】 下列方程中,属于二元一次方程的是()A .10x y +-=B .54xy +=-C .2389x y +=D .12x y+= 【例4】 在方程325x y -=中,若2y =-,则x =________.【例5】 二元一次方程21x y -=有无数多个解,下列四组值中不是该方程的解的是()A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩ 【例6】 求二元一次方程25x y +=的所有非负整数解.例题解析知识精讲模块一:二元一次方程二元一次方程组的概念及解法【例7】 已知23x y =⎧⎨=⎩是关于x 、y 的二元一次方程432x y a =+的一组解,求231a a -+的值.一、二元一次方程组由几个一次方程组成并且一共..含有两个未知数的方程组叫做二元一次方程组. 特别地,134x y x +=⎧⎨-=⎩和31x y =⎧⎨=-⎩也是二元一次方程组.二、二元一次方程组的解二元一次方程组中所有方程(一般为两个)的公共解...叫做二元一次方程组的解. 注意:(1)二元一次方程组的解一定要写成联立的形式,如方程组2397x y x y -=⎧⎨+=⎩的解是61x y =⎧⎨=⎩.(2)二元一次方程组的解必须同时满足所有方程,即将解代入方程组的每一个方程时,等号两边的值都相等.例如:因为12x y =⎧⎨=⎩能同时满足方程3x y +=、1y x -=,所以12x y =⎧⎨=⎩是方程组31x y y x +=⎧⎨-=⎩的解.【例8】 下列方程组中是二元一次方程组的是()A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .57x y =⎧⎨=⎩【例9】 下列各组数中,_________是方程32x y -=的解;_________是方程29x y -=的解; ________是方程组3229x y x y -=⎧⎨-=⎩的解.①.11x y =-⎧⎨=-⎩;②.51x y =⎧⎨=⎩;③.32x y =⎧⎨=⎩;④.25x y =⎧⎨=-⎩【例10】 下列方程中,与方程325x y +=所组成的方程组的解是32x y =⎧⎨=-⎩的是()A .34x y -=B .434x y +=C .1x y +=D .432x y -=例题解析知识精讲模块二:二元一次方程组的概念【例11】 请以122x y ⎧=⎪⎨⎪=-⎩为解,构造一个二元一次方程组__________________.【例12】 若x ay b =⎧⎨=⎩是方程31x y +=的一个解,则934_______a b ++=.【例13】 若关于x 、y 的二元一次方程组2x y m x my n-=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m n -的值是()A .1B .3C .5D .2【例14】 已知方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组()()()()223113325130.9x y x y ⎧+--=⎪⎨++-=⎪⎩的解是_________.一、消元思想二元一次方程组中有两个未知数,如果能“消去”一个未知数,那么就能把二元一次方程组转化为我们熟悉的一元一次方程.这种将未知数的个数由多化少、逐一解决的思想,叫做“消元”.使用“消元法”减少未知数的个数,使多元方程组最终转化为一元方程,再逐步解出未知数的值. 二、代入消元法1、代入消元法的概念将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法.2、用代入消元法解二元一次方程组的一般步骤:①等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y ),用另一个未知数(如x )的代数式表示出来,即将方程写成y ax b =+的形式;②代入消元:将y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程; ③解这个一元一次方程,求出x 的值;④回代:把求得的x 的值代入y ax b =+中求出y 的值,从而得出方程组的解; ⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式.三、加减消元法1、加减消元法的概念当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去知识精讲模块三:二元一次方程组的解法这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法.2、用加减消元法解二元一次方程组的一般步骤:①变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求得一个未知数的值;④回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值; ⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式.【例15】 把方程513yx y +=+写成用含x 的式子表示y 的形式,下列各式正确的是()A .352y x =+B .3102y x =-C .31522y x =--D .31522y x =-+ 【例16】 若222x ty t⎧=⎪⎨=⎪⎩,则x 与y 之间的关系式为_________. 【例17】 已知代数式133m x y --与52n m n x y +是同类项,那么m 、n 的值分别是()A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩【例18】 若()2523100x y x y +-+--=,则()A .32x y =⎧⎨=⎩B .23x y =⎧⎨=⎩C .50x y =⎧⎨=⎩D .05x y =⎧⎨=⎩【例19】 用代入消元法解下列二元一次方程组:(1)2342x y y +=⎧⎨=⎩(2)50180x y x y =-⎧⎨+=⎩(3)53210x y x y -=-⎧⎨+=⎩(4)34194x y x y +=⎧⎨-=⎩【例20】 解二元一次方程组345527x y x y +=⎧⎨-=⎩①②正确的消元方法是()A .53⨯+⨯①②,消去xB .35⨯-⨯①②,消去xC .2-⨯①②,消去yD .2+⨯①②,消去y【例21】 用加减消元法解下列二元一次方程组:例题解析(1)37232x y x y +=⎧⎨-=⎩(2)3263524x y x y -=⎧⎨-=⎩(3)3210512x y x y +=⎧⎨+=⎩(4)324432x y y x -=⎧⎨-=-⎩【例22】已知x 、y 满足方程组2100721006x y x y +=⎧⎨+=-⎩,则x y -的值为_________.【例23】在方程组2122x y mx y +=-⎧⎨+=⎩中,若未知数x 、y 满足0x y +>,则m 的取值范围为()A.3m >B.3m <C.3m ≥D.3m ≤【例24】 解下列二元一次方程组:(1)235455y x x y =⎧⎨+=⎩(2)2333215x y x y -=-⎧⎨+=⎩(3)()()()()31425125y x x y ⎧-=-⎪⎨-=+⎪⎩(4)2153224111466x y x y ⎧+=-⎪⎪⎨⎪-=-⎪⎩ 【例25】 解二元一次方程组:(1)1243231y x x y ++⎧=⎪⎨⎪-=⎩(2)21322453132045y x y x --⎧+=⎪⎪⎨++⎪-=⎪⎩ (3)2320.40.7 2.8yx x y ⎧+=⎪⎨⎪+=⎩【例26】已知关于x 、y 的方程组227x y kx y k -=-⎧⎨+=⎩,则:________x y =.【习题1】下列各式是二元一次方程的是()A .30x y z -+=B .30xy y x -+=C .12023x y -=D .210y x +-=【习题2】若2211a b a b x y -+--=是关于x 、y 的二元一次方程,那么a 、b 的值分别是()A .10a b =⎧⎨=⎩B .01a b =⎧⎨=-⎩C .21a b =⎧⎨=⎩D .23a b =⎧⎨=-⎩【习题3】二元一次方程组224x y x y -=⎧⎨+=⎩的解是()随堂练习A .12x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .02x y =⎧⎨=-⎩D .20x y =⎧⎨=⎩【习题4】由4360x y -+=,可以得到用y 表示x 的式子为________________.【习题5】解下列方程:(1)2328y x y x =⎧⎨+=⎩(2)1035x y x y +=⎧⎨-=⎩(3)233511x y x y +=⎧⎨-=⎩(4)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩(5)372513x y x y -=⎧⎨+=⎩(6)347910250m n m n -=⎧⎨-+=⎩【作业1】若24341358m n m n x y --+--=是关于x 、y 的二元一次方程,则22()()m n m mn n -++的值为_________. 【作业2】若12x y =⎧⎨=⎩是关于x 、y 的二元一次方程31ax y -=的解,则a 的值为()A .5-B .1-C .2D .7【作业3】下列方程组:①220x y x y -=⎧⎨+=⎩;②11x y y z -=⎧⎨-=⎩;③12xy x y =⎧⎨+=⎩;④120x y =⎧⎨-=⎩其中,是二元一次方程组的是_________.【作业4】已知12x y =-⎧⎨=⎩是关于x 、y 的方程组12x ay bx y +=-⎧⎨-=⎩的解,则a b +=______.【作业5】若12x y =⎧⎨=-⎩是关于x 、y 的方程1ax by -=的一组解,且3a b +=-,求52a b -的值.【作业6】解下列二元一次方程组:(1)45805620x y y x -=⎧⎨+=⎩(2)23953x y x y +=-⎧⎨-=⎩(3)()39312x y y x +=⎧⎪⎨-=⎪⎩(4)1243231y x x y ++⎧=⎪⎨⎪-=⎩(5)734628x y x y +=⎧⎨+=⎩(6)134723m nm n ⎧-=-⎪⎪⎨⎪+=⎪⎩课后作业。

相关文档
最新文档