变桨系统1
(完整版)变桨系统.doc
变桨系统8.1 变桨系统原理整个系统结构如上图所示,包括三个相对独立的变桨轴箱,分别编号为轴箱 A 、轴箱 B 和轴箱 C ,以及与各轴箱连接的伺服电机、位置传感器和限位开关。
每个轴箱单独控制一个桨叶,轴箱与轴箱、轴箱与电机之间通过电缆连接。
电机通过减速箱连接至桨叶法兰齿轮。
电机减速齿轮和法兰齿轮装置为轮毂部件。
系统外部进线经滑环接入系统,其进线有3*400V+N+PE 三相供电电源回路,PROFIBUS-DP通讯回路,其次还有安全链回路。
如图 1 所示。
以上三路由机舱柜引出连接至 A 柜,再由 A 柜连接至 B 柜,B 柜到 C 柜。
三相电源在送入下一轴箱前倒换了相位,以避免各轴箱加热器、电机风扇等单相负载均使用同一相供电而造成三相电源不平衡。
三个轴箱内部布置基本相同,布置详见安装说明,其右侧 A 区安装电容2C1 、2C2、2C3、2C4,四个电容串联接线,以及安装有进线开关1Q1 、 1F2,接线端子 1X1 、 1X2,转换开关6S1、 6S2。
左侧底部 B 区安装电源管理模块 1G1 ,交流伺服驱动器2U1,以及加热器 1E1 。
考虑到 B 区散热需求,功率器件均安装于散热板上。
C 区为控制板, C 板一侧装有合页,作夹层设计安装于 B 区上方, C 板安装有控制PLC,24V 电源 2T1 、2T2,温度控制开关 1S1 ,接线端子排2X1 、 4X1,继电器组以及控制空开2F2 、 2F3、2F4、1F4、1F5。
轴箱背面为外部接线插头,其连接都经过过压保护端子4X1 。
轴箱正面装有系统总开关和模式转换开关。
桨叶的位置由电机内置的光电编码器送出信号至PLC 运算获得。
为了校准和监视桨叶位置,桨叶上装有两只接近开关,一只负责3°~5°桨叶位置监视与校准,另外一只负责90°桨叶位置监视与校准。
正常情况下,桨叶运行区间为0°到 89°。
SL1500风电机组变桨系统 ppt课件
16
伺服电机
带位置反馈和电热调节器 相关参数:1.5MW 功率: 4.8kW 额定扭矩:23Nm 额定转速:2000rpm
ppt课件
17
制动器
当制动器供电时,叶片能够向两个方向运行; 当制动器断电时,叶片只能向顺桨的方向运动, 不能向工作位置运动。1.5MW变桨制动器都是单向 的,工作时,一直供电,双方向都能运动,只有 出现紧急情况才断电,限制一个方向运动。
变桨限ppt课位件撞块
24
当叶片变桨趋 于顺桨位置时,顺 桨接近撞块就会运 行到接近开关上方, 接近开关接受信号 后会传递给变桨系 统,提示叶片已经 处于顺桨位置。
ppt课变件 (顺)桨接近撞块
25
顺桨接近撞块和变桨限位撞块的基本维护
a.检查变桨接近开关的清洁度,以保证能够 正常接受信号。
b.检查易损件缓冲块,做到及时更换。 c.检查各撞块螺栓的紧固。
ppt课件
4
二、变桨系统工作示意图
变桨调节范围
风向
顺桨位置
极限工作位置
变桨驱动装置
ppt课件
变桨齿轮边缘
5
顺桨位置
停机
启动
变桨保护
满发
ppt课件
6
工作位置
1.5MW轮毂装置示意图
导流帽
轮毂
极限工作位置撞块
轮毂变 桨控制 柜
变桨限 位撞块
轮毂罩 分隔壁
极限工作位置 开关
变桨制动器
ppt课件
缓冲器 变桨接 近开关
ppt课件28Fra bibliotek1.5MW变桨调节范围
ppt课件
29
ppt课件
30
置撞块、接近开关、限位开关、缓冲器
ppt课件
变桨系统1
1.变桨轴承与轮毂连接
规格
强度 数量 其它
M30×290
10.9 48×3=144 HytorcXLT3 SW46mm; Ma=1750 Nm
2.变桨轴承用螺栓(包括安装撞块)
规格 强度 M30 10.9
数量 其它
54×3=162 HytorcXLT3 46mm套筒
3.齿轮安装压板
规格 M20x50(全螺纹) 强度 10.9S 数量 1×3=3
变桨系统
风速过大,超过额定风速时,如果叶片迎角 不变,机组将受到的过大的风力载荷,发电机等 零部件也将过载。
变桨系统
变桨机构就是在额定风速附近(以上),依据风速的 变化随时调节桨距角,控制吸收的机械能,一方面保 证获取最大的能量(与额定功率对应),同时减少风力对 风力机的冲击。在并网过程中,变桨距控制还可实现 快速无冲击并网。变桨距控制系统与变速恒频技术相 配合,最终提高了整个风力发电系统的发电效率和电 能质量。
图4 变桨轴承附件
接近开关的工作原理 当叶片变桨趋近于顺桨位置时,接近撞快上的感应片 会运行到接近开关上方。接近开关接受到信号后会传递 给变桨系统,提示叶片已处于顺桨位置。此时变桨电机 减速,直至顺桨动作完成,以保护变桨系统,保证系统 正常运行。
5 限位开关的工作原理 当变桨轴承趋于极限工作位置时,极限工作位置 撞块就会运行到限位开关上方,与限位开关撞杆作 用,限位开关撞杆安装在限位开关上,当其受到撞 击后,限位开关会把信号通过电缆传递给变频柜, 提示变桨轴承已经处于极限工作位置。
当动态失速时连续气流变化情况
失速调节风电机组叶片安装角度变化的功率特性
上图中,大风下超过20m/s风速时,失速消失,而功 率又达到额定值,而且会进一步提高。 此时必须在失速机组中设计一套刹车装置在某一风速 下刹车,一面飞车。 与变桨距机组相比,失速机产生的轴向推力会在超过 额定风速后,随风速增加而增加,而且在功率恒定或稍微 下降时也仍然增加。因此,失速机的机身和塔架与变桨距 机组相比所受载荷要高。
变桨系统原理及维护
变桨系统原理及维护变桨系统是风力发电系统中的核心部件,用于控制风机的叶片角度,以适应不同风速下的转速和输出功率。
它由电气控制系统、机械传动系统和叶片角度测量系统组成。
本文将介绍变桨系统的原理和维护。
首先,变桨系统的原理是根据环境气象条件和主轴转速实时监测风力发电机的转速和功率输出,通过调整叶片角度控制风机的输出功率。
当风速较低时,变桨系统将自动调整叶片角度,使风机转矩增加,从而提高转速和功率输出;当风速较高时,变桨系统将减小叶片角度,减少风机转矩,以防止过载。
变桨系统的主要任务是保证风机在不同风速下的安全运行和最大功率输出。
变桨系统的维护包括定期检查和维修工作。
首先,需要定期检查变桨系统的电气控制部件,包括传感器、控制器、电机和电缆等,确保其运行正常。
其次,需要检查机械传动系统,包括转动轴、齿轮和传动带等,保证其没有松动或磨损,并注油润滑。
同时,应定期检查叶片角度测量系统,确保测量准确,及时调整或更换传感器。
另外,还需检查电缆连接是否牢固,机械部件是否有异常噪声和振动等。
如果发现故障或异常,应及时维修或更换受损部件。
对于变桨系统的维护,还需要注意以下几点。
首先,要定期清洁变桨系统的尘埃和污垢,以防止对系统运行产生干扰。
其次,应定期校准传感器,确保测量准确。
此外,需要备好备件,以备紧急更换。
在维护期间,应使用专业工具和设备,以确保操作安全和有效。
最后,为了保证变桨系统的正常运行和延长使用寿命,还应定期对系统进行性能测试和分析,通过数据监测和故障诊断,及时发现和解决潜在问题。
此外,还应进行系统的升级和改进,以适应新的技术和需求。
总之,变桨系统是风力发电系统中不可缺少的关键部件,通过调整叶片角度实现对风机输出功率的控制。
正确维护和保养变桨系统可以保证其正常运行和延长使用寿命,同时还需不断通过技术升级和改进提高系统性能和可靠性。
变桨系统1
12.控制柜用螺栓
规格 强度 数量 其它 M10×90(全螺纹) A2-70 3×4=12
13.轮毂与齿轮箱上用螺柱
规格 强度 M36 10.9
数量
其它3Biblioteka 16=48Hydac XLT3,SW55, 叉 形 力 矩 扳 手 , SW 55;Ma=2700 Nm
变桨系统
风速过大,超过额定风速时,如果叶片迎角 不变,机组将受到的过大的风力载荷,发电机等 零部件也将过载。
变桨轴承(偏航)要承受很大的倾覆力矩,承受不定风 力所产生的冲击载荷,具有间歇工作,启停较为 频繁,传递扭矩较大,传动比高的特点
变桨系统
变桨机构就是在额定风速附近(以上),依据风速的 变化随时调节桨距角,控制吸收的机械能,一方面保 证获取最大的能量(与额定功率对应),同时减少风力对 风力机的冲击。在并网过程中,变桨距控制还可实现 快速无冲击并网。变桨距控制系统与变速恒频技术相 配合,最终提高了整个风力发电系统的发电效率和电 能质量。
其它 1.力矩扳手 SW 30 ;Ma=550 Nm 2. 涂 Loctite 243 胶
4.变桨驱动器与轮毂支架
规格 M12(螺母)
强度 10H 数量 3×12=36 其它 1.力矩扳手 SW 19 ;Ma=95 Nm 2. 涂 Loctite 243 胶
5.顺桨接近撞块
规格 强度 数量 其它 M8×15(全螺纹) 8.8s 3×2=6 1. 力矩扳手 SW 13 ; Ma=23Nm 2. 涂 Loctite 243 胶
变桨电机
1轮毂 3变桨轴承 30变桨驱动器 12垫圈(12) 53螺母(M12)
3.1安装位置
变桨驱动装置通过螺柱与轮毂配合联接。变 桨齿轮箱前的小齿轮与变桨轴承内圈啮合,并要 保证啮合间隙应在0.2~0.5mm之间,间隙由加工 精度保证,无法调整。
风电机组变桨系统PPT演示课件
在安装好控制系统后要设计合理的接线方法,把各控 制系统组件的线固定好,以防止轮毂在转动时发生接 线的故障。
18
变桨系统工作流程: 机组主控通过滑环传输的控制指令; 将变桨命令分配至三个轴柜; 轴柜通过各自独立整流装置同步变换直流
8
9
通过机舱上面的风速仪测量风速,把信息传 送到塔底柜,经过分析信息把变桨的信息传送到 轮毂变桨系统的中心箱,中心箱再把信息转发给3 个轴箱,轴箱在通过变桨驱动来调节叶片的变桨 角度。
变桨角度的信息是通过绝对编码器组件来测 量的。叶片轴承的内齿圈和绝对编码器的测量小 齿轮啮合,测量小齿轮把叶片转动的信息传给绝 对编码器,经过绝对编码器的记数作用把叶片转 动的角度进行测量
6
叶片轴承 变桨齿轮箱 叶片锁组件
7
叶片轴承是连接轮毂和叶片的组件。叶片轴承的内 圈连接叶片,外圈固定在轮毂上。叶片轴承的内齿 与变桨齿轮箱啮合。 变桨齿轮箱固定在轮毂的工艺安装面上,通过变桨 齿轮箱齿轮的转动实现叶片轴承内圈的转动完成叶 片的变桨。 (注意叶片轴承和变桨齿轮箱之间要调整合理的齿 隙) 叶片锁组件是为了对叶片检修或轮毂检修而设计的 防止叶片转动的机械装置。
当电池由于故障导致较长时间未被使用时, 风机主控制器将引发一个充电操作和电池状 况检查以检查电池的功能是否正常。
29
LUST变桨系统故障列表
30
LUST变桨系统故障列表
31
LUST变桨系统故障列表
32
SSB变桨系统故障列表
33
SSB变桨系统故障列表
34
SSB变桨系统故障列表
叶片锁组件:是为了对叶片检修或轮毂检修而设计 的防止叶片转动的机械装置。
变桨系统分析
变桨系统分析变速变桨距风力发电机组目前已成为大型风力发电机组研发和应用的主流机型。
与定桨距风力发电机组相比,变桨距风力发电机组具有在额定功率点以上输出功率平稳、相同功率机组额定风速低、不受气流密度变化等环境因素影响和良好的启动和制动性能等优点。
变桨距风力机是指整个叶片绕叶片中心轴旋转,使叶片功角在一定范围内变化,以便调节输出功率不超过设计容许的值。
在机组出现故障时,需要紧急停机,一般应先使叶片顺桨,这样机组结构中受力小,可以保证机组运行的安全可靠性1.1变桨系统概述变桨控制系统实现风力发电机组的变桨控制,在额定功率以上通过控制叶片桨距角使输出功率保持在额定状态。
变桨控制柜主电路采用交流--直流--交流回路,由逆变器为变桨电机供电,变桨电机采用交流异步电机,变桨速率由变桨电机转速调节。
变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。
从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。
如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。
变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。
通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。
在90度迎角时是叶片的工作位置。
在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。
一般变桨角度范围为0~86度。
采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。
变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。
变桨控制系统有四个主要任务:●通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。
●当安全链被打开时,使用转子作为空气动力制动装置把叶片转回到羽状位置(安全运行)。
●调整叶片角以规定的最低风速从风中获得适当的电力。
变桨系统的工作原理
变桨系统的工作原理
变桨系统是指风力发电机组中的一种机电系统,用于调整叶片的角度,以最大化风能转化为机械能,并通过发电机产生电能。
这种系统通常由以下几个主要部件组成:
1. 变桨驱动机构:由电机、减速器和传动装置组成。
电机通过传动装置将转动力传递给叶片的桨叶根部,驱使桨叶进行转动。
2. 桨叶角度传感器:用于感知当前桨叶的角度。
常见的传感器包括光电编码器、霍尔传感器等。
传感器将角度信息发送给控制系统。
3. 控制系统:根据风速、转速和其他相关参数,通过对桨叶角度进行调整,以最大化风能转化效率。
控制系统通常包括主控制器、数据采集系统和执行器。
主控制器负责处理和分析传感器数据,并制定相应的桨叶调整策略。
数据采集系统用于实时监测发电机组的工作状态,并将数据传输给主控制器。
执行器根据主控制器的指令,调整变桨系统的工作状态。
整个系统的工作流程如下:
1. 控制系统通过数据采集系统获取当前的风速和转速等参数。
2. 主控制器根据当前的参数,计算出最优的桨叶角度。
3. 主控制器将桨叶角度指令发送给执行器。
4. 执行器根据指令,调整变桨驱动机构中的电机工作状态,实现桨叶角度的调整。
5. 变桨驱动机构将桨叶转到指定的角度。
6. 控制系统持续监测风速和转速等参数,并不断更新桨叶角度,以确保风能转化效率的最大化。
通过不断调整桨叶角度,变桨系统能够根据当前的风速和转速,使得风能能够以最高效率地转化为机械能,从而提高风力发电机组的发电效率。
变桨系统介绍范文
变桨系统介绍范文变桨系统是风力发电机组中的重要组成部分,主要用于调节和控制风力发电机的桨叶角度,以实现风力发电机的最佳风能捕捉和发电效率。
本文将详细介绍变桨系统的工作原理、组成部分、类型和应用。
一、工作原理变桨系统的主要工作原理是根据风力发电机的工作状态和风速的变化来调整桨叶角度,从而确保风能的最大化转换和最佳发电效率。
当风速较低时,变桨系统会调整桨叶角度使风能更好地捕捉并转化为机械能;当风速较高时,变桨系统会调整桨叶角度以减小风力对发电机组的影响,保证发电机组的安全运行。
二、组成部分1.桨叶:桨叶是变桨系统的核心部分,主要由复合材料制成,具有轻质、高强度和耐腐蚀的特点。
桨叶的角度调节直接影响到风能捕捉和发电效率。
2.变桨机构:变桨机构是用于调整桨叶角度的装置。
常见的变桨机构有液压变桨机构、电动变桨机构和气动变桨机构等。
液压变桨机构是目前应用最广泛的一种,可以通过液压系统实现桨叶角度的快速调整。
3.桨叶角度传感器:桨叶角度传感器用于测量桨叶的实际角度,并将数据传输给变桨控制系统,以实现对桨叶角度的准确控制。
4.变桨控制系统:变桨控制系统是整个变桨系统的核心,负责接收和处理来自桨叶角度传感器的数据,并根据风速和发电机组的工作状态来调整桨叶角度。
三、类型1.常规变桨系统:常规变桨系统通过调整桨叶角度来响应风速变化,以实现风能捕捉和发电效率的最大化。
常见的常规变桨系统包括液压变桨系统和电动变桨系统。
2.主动变桨系统:主动变桨系统是基于外部风速信息来主动调整桨叶角度的变桨系统。
通过接收来自气象站或其他风速监测设备的风速信息,主动变桨系统可以根据实时风速变化来调整桨叶角度,以实现最佳风能捕捉和发电效率。
3.响应变桨系统:响应变桨系统是基于发电机组内部状态变化来调整桨叶角度的变桨系统。
它通过监测发电机组的负载情况和发电机组的机械振动等指标,调整桨叶角度以保证发电机组的安全稳定运行。
四、应用变桨系统广泛应用于风力发电机组中。
变桨系统原理及维护
变桨系统原理及维护一、变桨系统原理变桨系统是风能发电机组的关键部件之一,主要负责控制风轮桨叶的角度,以实现最佳风能转换效率。
其主要原理如下:1.控制原理:变桨系统通过感知风速、桨叶角度和发电机输出功率等参数,并根据实时监测的风速变化情况来控制桨叶的角度调整,以使风轮桨叶能够始终迎向风速的最佳方向。
2.传动原理:变桨系统通过主轴和传动电机等组件完成角度调整。
其中,主轴连接了风轮和齿轮箱,通过传动电机以及相应的齿轮传动机构控制风轮桨叶的角度调整。
3.控制模式:一般来说,变桨系统可以采用定角控制模式和变角控制模式。
定角控制模式适用于大部分工况,根据实时风速的大小选择恰当的桨叶角度。
而变角控制模式则可以在遇到特定工况时,根据不同的发电机输出功率等参数来调整桨叶角度。
4.安全保护机制:变桨系统还需要具备一定的安全保护机制,以应对突发情况。
比如,当变桨控制系统出现故障时,可以自动切断桨叶的调整功能,确保风轮系统的稳定运行。
二、变桨系统维护为确保变桨系统的正常运行和延长其使用寿命,需要进行定期的维护和保养。
下面是一些常见的维护措施:1.日常巡检:定期对变桨系统进行巡视,检查主轴、传动电机以及传动装置的工作情况。
特别要关注是否存在松动、磨损或损坏等问题,并及时进行维修或更换。
2.清洁保养:通过对变桨系统的清洁保养,去除积灰、杂物等异物,防止其对系统的正常运行产生影响。
3.润滑维护:应定期对润滑系统进行检查,确保润滑油的质量符合要求,并及时更换润滑油,以保持传动装置的正常运转。
4.故障排除:一旦发现变桨系统出现异常情况,应及时排除故障。
对于无法解决的故障,应请专业维修人员进行处理。
5.数据分析:通过对变桨系统监测数据的分析,可以及时发现潜在的问题和异常,对系统进行精确的调整和维护。
综上所述,变桨系统的原理是通过感知风速和发电机输出功率等参数,控制风轮桨叶角度的调整,以实现最佳风能转换效率。
为保证变桨系统的正常运行和延长使用寿命,需要定期进行维护和保养,包括日常巡检、清洁保养、润滑维护、故障排除和数据分析等措施。
变桨系统的基本操作
变桨系统的基本操作变桨系统是一种高效利用风能的技术工具,它能够根据风速和风向的变化,自动调整桨叶的角度和转速,以使风能被最大程度地转化为电能。
下面将介绍变桨系统的基本操作。
一、变桨系统的概述变桨系统主要由变桨控制器、变桨驱动机构和变桨机构组成。
变桨控制器负责监测风速和风向,根据设定的参数控制变桨驱动机构的动作,进而调整桨叶的角度。
变桨驱动机构根据控制器的指令,通过液压或电动机等手段实现桨叶的转动。
变桨机构则是桨叶和驱动机构的连接部分,它能够使桨叶绕轴心转动。
二、变桨系统的基本操作步骤1.初始化:启动变桨系统前,需要对系统进行初始化。
包括检查并确保变桨控制器和驱动机构的工作状态良好,检查桨叶和机构的连接是否牢固,以及确认各通信线路是否连接正确。
2.监测环境:变桨系统需要实时监测环境中的风速和风向,通常会配备风速风向传感器。
传感器将风速和风向信息传递给变桨控制器。
3.判断风速:变桨控制器接收到风速信息后,根据预设的参数判断当前风速是否超过了设定值。
如果风速低于设定值,则不需要调整桨叶的角度;如果风速高于设定值,则需要根据参数设定的规则调整桨叶的角度。
4.调整桨叶角度:当风速超过设定值时,变桨控制器会通过信号传递给变桨驱动机构。
驱动机构根据控制器的指令,调整桨叶的角度。
如果风速过大,驱动机构会将桨叶的角度调整为最佳状态,以减小风对桨叶的影响,保证风能的最大利用率。
如果风速逐渐减小,则桨叶的角度也会随之调整。
5.监测桨叶状态:变桨系统还需要监测桨叶的工作状态,包括桨叶的转速、角度以及叶片表面的磨损程度等。
如果发现桨叶存在异常情况,如转速过高、角度偏差过大或磨损过度等,需要及时修复或更换。
同时,系统也应该随时准备好进行维护和保养。
6.停止系统:当风力不足或需要对系统进行检修时,可以选择停止变桨系统的运行。
这时,变桨控制器会发送停止信号给变桨驱动机构,桨叶会被固定在一些角度上,不再调整。
三、变桨系统的注意事项1.变桨系统的操作和维护需要由专业人员进行。
金风变桨系统1
20
发电机转速 (Ω—rpm)
相同容量的定桨距和变桨距机组功率曲线的对比
三、变桨系统的硬件组成
变桨控制柜内的布局
变桨系统分布结构
90度限位开关 0度接近开关 变桨电机1 旋转编码器 电磁刹车 动力电源线 连接器 变桨柜1 滑环
90度限位开关 0度接近开关 变桨电机2 旋转编码器 电磁刹车 动力电源线 变桨柜1
90度限位开关 0度接近开关 变桨电机3 旋转编码器 电磁刹车 动力电源线 变桨柜1
线路连接
滑环
3× 2.5mm2
DP总线 (3)
安 全 链
DP总线 (3)
DP总线 (3)
安 全 链
DP总线 (3)
DP总线 (3)
3× 400V AC 供电 x5c 4× 2.5mm
2
x5b x5a
x10a x10b Pitchbox1 x10c x9 x8 x6 x7
Harting连接端子
变桨电机 • 类型:IM3001(3相笼型转子异 步电机) • 额定功率:4.5kW,1500rpm, S2 60min • 最大转矩:75Nm • 制动转矩:100Nm • 额定电压:29V • 额定电流:125A • 额定功率因数:0.89 • 绝缘等级:F • 转动惯量:0.0148kgm2 • 防护等级:IP54
3× 400V AC 供电 4× 2.5mm2
x5b x5a x5c
x10a x10b Pitchbox2 x10c x8 x6 x7
3× 400V AC 供电 4× 2.5mm2
x5b x5a x5c Pitchbox3 x9 3× 35mm2 x8 x6 x7
x9 3× 35mm2 2× 1mm
0° 接近开关
变桨系统的基本操作
变桨系统的基本操作变桨系统是一种船上用于控制和操作船桨的装置。
通过变桨系统,船员可以方便地改变船的方向和速度,而无需进行繁琐的手动操作。
在本文中,我们将讨论变桨系统的基本操作,包括操作原理、组件功能和操作流程。
变桨系统的操作原理是基于船桨的变桨机构。
这个机构可以调整船桨的位置和角度,从而改变船的推进力。
变桨系统的核心是一个电动或液压驱动的变桨机构,通过电动机或液压系统提供的能量,可以使船桨在不同的角度上移动。
变桨系统通常由以下几个主要组件组成:1.变桨机构:变桨机构是变桨系统的核心部件,由电动机或液压驱动。
它可以通过齿轮、传动杆和连杆等装置使船桨在水中转动,从而改变船的方向和速度。
2.控制阀:控制阀是变桨系统中起关键作用的组件之一、它可以控制液压系统中的液压流向,从而控制船桨的移动。
通过操作控制阀,船员可以根据需要控制船桨的角度和位置。
3.控制器:控制器是变桨系统的核心控制单元,它可以接收并处理船员的指令,并将相应的指令发送给变桨机构和控制阀。
通过控制器,船员可以调整船桨的角度和位置,以实现船舶的操纵。
基本的变桨系统操作流程如下:1.启动变桨系统:首先,船员需要启动变桨系统,这可以通过启动变桨机构的电动机或液压系统来完成。
一旦变桨系统启动,船员可以进一步操作系统。
2.设定船桨角度:在航行中,船员可能需要根据需要改变船桨的角度。
为了实现这一点,船员可以通过操纵控制器来设定所需的船桨角度。
船员可以将船桨角度调整到适当的位置,以实现船舶的操纵。
3.调整船桨位置:在一些情况下,船员可能需要调整船桨的位置,以改变船舶的运动方向和速度。
这可以通过操作控制器,将所需的指令发送给变桨机构来完成。
变桨机构将接收到的指令转化为相应的动作,从而调整船桨的位置。
4.停止变桨系统:在完成船舶操纵后,船员可以选择停止变桨系统的运行。
这可以通过关闭变桨机构的电动机或液压系统来实现。
一旦变桨系统停止,船舶将恢复到停止操作状态。
变桨系统的工作原理
变桨系统的工作原理
变桨系统是风力发电机组中的重要组成部分,它通过控制桨叶
的角度,使风力发电机组能够更高效地转换风能为电能。
其工作原
理主要包括风速检测、角度调节和系统保护三个方面。
首先,变桨系统需要实时监测风速。
风速是影响风力发电机组
发电效率的重要因素,因此变桨系统需要安装风速传感器,实时监
测风速的变化。
当风速超过一定阈值时,变桨系统会启动,调整桨
叶的角度,以适应不同风速下的发电要求。
其次,变桨系统通过调节桨叶的角度来控制风力发电机组的转速。
当风速较小时,变桨系统会使桨叶的角度变大,增大受风面积,从而提高风力发电机组的转速;当风速较大时,变桨系统会使桨叶
的角度变小,减小受风面积,以避免风力发电机组过载运行。
通过
这种方式,变桨系统能够使风力发电机组在不同风速下保持稳定的
运行状态,提高发电效率。
最后,变桨系统还具有系统保护功能。
在极端天气条件下,如
台风、暴风雨等恶劣天气,风力发电机组需要停止运行以避免损坏。
变桨系统会根据风速和风向的变化,自动调整桨叶的角度,使风力
发电机组进入安全状态。
此外,变桨系统还会监测风力发电机组的运行状态,一旦发现异常情况,如超速、过载等,会立即采取相应的保护措施,确保风力发电机组和设备的安全运行。
综上所述,变桨系统通过实时监测风速、调节桨叶角度和系统保护等方式,能够使风力发电机组在不同风速下保持稳定运行,提高发电效率,保障设备安全。
这些工作原理的有效实施,为风力发电行业的发展和风力发电技术的进步提供了重要的支持和保障。
变桨系统.doc
变桨系统一、系统构成变桨控制系统采用三套直流电机伺服控制系统分别对每个桨叶的桨角进行控制,桨距角的变化速度一般不超过每秒,桨叶控制范围0°-90°每个桨叶分别采用一个带转角反馈的伺服电机进行单独调节,电机转角反馈采用光电编码器,安装在电动机轴上,采集电机转动角度,由伺服驱动系统实现转速速度闭环控制和变桨控制器实现的转角位置闭环控制。
伺服电机连接减速箱,通过主动齿轮与桨叶轮毂内齿圈相连,带动桨叶进行转动,实现对桨叶节距角的直接控制。
在轮毂内齿圈的安装第二个转角传感器,直接检测内齿圈转动的角度,即桨距角变化,该传感器作为冗余控制的参考值。
当电机输出轴、联轴器或转角传感器出现故障时,会出现两个转角传感器所测数据不一致的现象,控制器即可据此判断此类故障。
在轮毂内齿圈边上还装有两个接近开关,起限位作用。
变桨距控制系统的供电来自主控制室向上提供的三相400V(带零线)的交流电源,该电源通过滑环引入轮毂中的变桨系统,机舱内部智能充电器将交流电整流成直流电经蓄电池后向逆变单元和备用电源供电。
如果交流供电系统出现故障,需要一套备用电源系统向伺服控制器供电,在一段设定的允许时间内将桨叶调节为顺桨位置。
备用电源主要由基于铅酸蓄电池的储能机构和充放电管理模块构成,充放电管理模块向储能机构供电,并实现充放电过程的控制管理均采用直流永磁伺服电机实现桨叶驱动。
直流电机伺服控制器硬就件分为控制电路和功率逆变电路两大部分。
传统伺服控制采用从内到外依次为电流、速度、位置三闭环的控制结构。
采用蓄电池实现储能。
使用专用充电装置对蓄电池的充放电进行管理,在不同的温度情况下实现对温度补偿功能。
在充电初期实现大电流快速充电,充电时间短。
随着的电流的下降进入恒压充电状态,当充电器检测到充电电流足够小的时候,进入涓流充电,其到对电池的保护作用。
二、变桨系统的保护种类位置反馈故障保护:为了验证冗余编码器的可利用性及测量精度,将每个叶片配置的两个ENCODER采集到的桨距角信号进行实时比较,冗余编码器完好的条件是两者之间角度偏差小于2°;所有叶片在91°与95°位置各安装一个限位开关,在0°方向均不安装限位开关,叶片当前桨距角是否小于0°,由两个ENCODER传感器测量结果经过换算确定。
变桨系统的工作原理
变桨系统的工作原理
变桨系统是风力发电机组中的关键部件,其工作原理是根据风机的转速和风向来调整风机叶片的角度,以最大限度地利用风能并提高发电效率。
变桨系统包括传感器、控制器和执行机构三个主要部分。
传感器用于监测风机的转速和风向情况,控制器根据传感器的反馈信号,判断并采取相应的控制策略,最终控制执行机构来调整叶片的角度。
在变桨系统中,传感器通过测量风机转速和风向来获取相关的数据。
转速传感器通常使用磁敏传感器或光电传感器,能够测量风机叶轮的旋转速度。
风向传感器可以是基于风向传感器或风向电子罗盘,用于判断风的方向。
控制器是变桨系统的核心部分,它根据传感器的反馈信号进行数据处理和判断,采取相应的控制策略来调整叶片角度。
常见的控制策略包括最大功率跟踪控制(MPPT),即调整叶片角度以使风机输出功率最大化;以及风机保护控制,即在高风、低风或故障情况下保护风机的安全运行。
执行机构是根据控制器的指令来实际调整叶片角度的部件。
常见的执行机构包括液压执行机构和电动执行机构。
液压执行机构通过控制液压系统来调整叶片角度,电动执行机构通过电机驱动来实现叶片角度的调整。
综上所述,变桨系统通过传感器监测风机转速和风向,控制器
根据传感器反馈信号来采取相应的控制策略,最终通过执行机构调整风机叶片角度,以实现有效利用风能并提高发电效率的目的。
变桨系统
风力发电机组变桨系统介绍一.风机变桨系统概述风力发电机组控制系统硬件分别安装在三个不同部分:1. 机舱控制,安装在机舱内2. 地面控制,安装在塔架底部3. 变桨控制,安装在轮毂内部人机界面触摸屏显示风机的运行状况和参数,或者启动或停止风机.风力发电机组四种控制方式:1. 定速定浆距控制(Fixed speed stall regulated)发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制2. 定速变浆距控制(Fixed speed pitch regulated)发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率3. 变速定浆距控制(Variable speed stall regulated)变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平.4. 变速变浆距控制(Variable speed pitch regulated)变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,浆距控制用于调节功率.二. 变桨系统的工作原理定浆距风机通过叶片的失速,即改变叶片横断面周围流动的气流,导致效率的损失,从而控制风机的最大输出功率;变浆距风机是通过叶片沿其纵向轴转动,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定.变桨伺服控制系统作为风力发电控制系统的外环,在风力发电机组的控制中起着十分重要的作用.它控制风力发电机组的叶片节距角可以随风速的大小进行自动调节.在低风速起动时,桨叶节距可以转到合适的角度,使风轮具有最大的起动力矩;当风速过高时,通过调整桨叶节距,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,使发电机功率输出保持稳定.三. 变桨系统和定桨系统的比较定桨距失速调节型风力发电机组定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化,桨叶翼型本身所具有的失速特性.当风速高于额定风速时,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。
风力发电机组变桨系统设计原理解析
风力发电机组变桨系统设计原理解析风力发电机组是一种利用风能转化为电能的装置,其中变桨系统是其重要组成部分。
本文将从设计原理的角度对风力发电机组变桨系统进行深入解析。
一、风力发电机组概述风力发电机组是利用风能转动叶片,通过传动系统驱动发电机发电的设备。
其工作原理是当风速达到一定程度时,叶片受到风的作用而转动,进而带动转子旋转,驱动发电机发电。
而变桨系统则在风力发电机组运行过程中起着至关重要的作用。
二、变桨系统功能风力发电机组在运行过程中,受到风速的影响较大。
为了更好地利用风能,确保发电机组的稳定性和安全性,变桨系统被设计为一个关键的控制系统。
其主要功能包括:1. 调节叶片角度,使风力发电机组在不同风速下的转速和输出功率保持在合适的范围内;2. 在风速发生突变或超出限定范围时,自动调整叶片角度,保障风力发电机组的安全运行;3. 提高风力发电机组的整体效率,最大限度地利用风能资源。
三、变桨系统设计原理1. 变桨系统传动机构变桨系统的传动机构通常由变桨电机、减速器和转动叶片的机械结构组成。
变桨电机通过减速器驱动叶片转动,控制叶片的角度。
减速器的设计是为了将电机高速输出的转矩通过减速装置转化为叶片所需要的低速高转矩输出。
2. 变桨系统控制原理变桨系统的控制原理主要包括两种方式:定时控制和传感器反馈控制。
定时控制是通过风力发电机组的控制系统按照预设的时间对叶片进行角度调整;传感器反馈控制则是通过传感器实时监测风速和叶片位置,根据监测数据对叶片的角度进行调整。
3. 变桨系统安全保护为了保证风力发电机组的运行安全,变桨系统还配备有多种安全保护装置。
例如,当风力发电机组运行中出现极端状况时,比如风速过大或传感器失效等,变桨系统会自动切断电源,避免事故的发生。
四、变桨系统的发展趋势随着风力发电技术的不断发展,变桨系统也在不断创新和完善。
未来的风力发电机组变桨系统将更加智能化、自动化和高效化。
例如,采用先进的控制算法和传感技术,实现对叶片角度的精准控制,提高风力发电机组的发电效率。
变桨系统简介
◆ 采用冷板技术,变频器取 消传统散热风扇紧贴在大 功率散热板上
◆ 采用铸铝大功率散热板
◆ 铸铝散热器制造材质本身 具有升温快、散热效率高 的特性
◆ 铝的耐氧化腐蚀性能好,重 量轻
二、变桨系统接口定义
变桨系统结构简图
滑环进线包括
一根400VAC电源线,一根Profibus DP通讯线, 一根12芯24VDC电源线。
EFC紧急顺桨信号分别接入三个轴箱的继电 器,当发生EFC时,继电器失电,风机顺桨。
? 自动模式:正常工作,接受 风电主控位置指令。
? 手动模式:
手动顺时针转(DI)
本桨叶位置<94°
AND
顺时针转,转速2°/s
任意两桨叶>85° 手动逆时针转(DI)
本桨叶位置>-2°
AND
逆时针转,转速2°/s
风电主控→变桨PLC(下行)
1、位置指令 2、速度限制 3、加速度限制 4、桨叶位置反馈 5、复位 6、心跳 7、润滑油泵
变桨PLC→风电主控(上行)
1、变频器Can通讯故障 2、95°限位开关动作 3、主电源故障 4、手动模式 5、强制手动模式 6、SSI状态故障 7、心跳
变桨PLC→风电主控(上行)
进入紧急模式
紧急模式桨叶转到95°位置的故障包括:
(14)Can通讯故障 (15)编码器故障 (16)Enable故障
复位
(1) 90°位置传感器故障; (2) 3°位置传感器故障; (3) 编码器故障; (4) Profibus通讯故障; (5) Can通讯故障; (6) 欠压; (7) 电机堵转; (8) 变频器超温; (9) 轴箱超温; (10) 本桨叶位置小于最小位置限值; (11) 本桨叶位置大于最大位置限值; (12) 转速超过最高转速限值;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大扭矩限制到65 Nm
≥3.0 m
≥ 20 年, 6000 小时/年,70% 静态 和 30% 动态位置控制,采用脉动负 荷。
3.7变桨齿轮箱技术参数
数量 额定输出扭矩
每个叶片一个,共3个 7500 Nm
≥ 20 年
MOBILGEAR SHC XMP 320 如果使用其它润滑剂, 必须提供与优选润滑剂 的相容证明
≥5年
8.轮毂变桨装置按螺栓分部件 统计
1.变桨轴承与轮毂连接
规格 M30×290
强度 10.9
数量 48×3=144
其它
HytorcXLT3 SW46mm;
Ma=1750 Nm
2.变桨轴承用螺栓(包括安装撞块)
3 kW 可选择 −3相400 VAC 50Hz ≥IP55 取决于极对数 双向,均布 F, 在环境温度为+55°C时能力为F级 用一个风扇强制风冷
温度检测 工作模式
电机连接 工作时间
动态工作 扭矩限制 电缆长度 使用寿命
一个内置在定子绕组中的 Pt-100
变频器操作,增加 du/dt 值,增加 铁心损耗,增加电压峰值 单传动, 闭合环路
13.轮毂与齿轮箱上用螺柱
规格 M36
强度 10.9
数量 其它
3×16=48
Hydac XLT3,SW55, 叉 形 力 矩 扳 手 , SW 55;Ma=2700 Nm
14.锁紧作用螺栓
最大输出扭矩 (静态) 额定传动速度 传动比
9300 Nm 取决于电机中的极对数 取决于电机中的极对数
额定输出速度
9.09 1/rpm
相对于输出端(低速轴),320 kgm² 电机和齿轮箱的最大惯性 矩
额定驱动功率 优选润滑剂 (脂)
维护周期 (脂) 优选润滑剂 (油)
维护周期(油)
3 kW
MOBILITH SHC 460如果 使用其它润滑剂,必须 提供与优选润滑剂的相 容证明
规格 M30 强度 10.9 数量 54×3=162 其它 HytorcXLT3 46mm套筒
3.齿轮安装压板
规格 M20x50(全螺纹)
强度 10.9S
数量 1×3=3
其它
1.力矩扳手 SW 30 ;Ma=550 Nm 2. 涂 Loctite 243 胶
4.变桨驱动器与轮毂支架
规格 M12(螺母)
•
3.3工作原理
变桨齿轮箱必须为小型并且具有高过载能力。齿 轮箱不能自锁定以便小齿轮驱动。为了调整变桨,叶 片可以旋转到参考位置,顺桨位置,在该位置叶片以 大约双倍的额定扭矩瞬间压下止挡。这在一天运行之 中可以发生多次。通过短时间使变频器和电机过载来 达到要求的扭矩。齿轮箱和电机是直联型。变桨电机 是含有位置反馈和电热调节器的伺服电动机。电动机 由变频器连接到直流母线供给电流。
强度 10H
数量 其它
3×12=36
1.力矩扳手 SW 19 ;Ma=95 Nm 2. 涂 Loctite 243 胶
5.顺桨接近撞块
规格 M8×15(全螺纹)
强度 8.8s
数量 其它
3×2=6
1. 力矩扳手 SW 13; Ma=23Nm 2. 涂 Loctite 243 胶
6.限位开关用螺钉
规格 M4×25 强度 8.8 数量 3×2=6 其它 力 矩 扳 手 ( 2-20Nm )
变桨系统
风速过大,超过额定风速时,如果叶片迎角 不变,机组将受到的过大的风力载荷,发电机等 零部件也将过载。
变桨轴承(偏航)要承受很大的倾覆力矩,承受不定风 力所产生的冲击载荷,具有间歇工作,启停较为 频繁,传递扭矩较大,传动比高的特点
变桨系统
变桨机构就是在额定风速附近(以上),依据风速的 变化随时调节桨距角,控制吸收的机械能,一方面保 证获取最大的能量(与额定功率对应),同时减少风力对 风力机的冲击。在并网过程中,变桨距控制还可实现 快速无冲击并网。变桨距控制系统与变速恒频技术相 配合,最终提高了整个风力发电系统的发电效率和电 能质量。
强度 8.8
数量 其它
3×2=6 力矩扳手 SW 13 Ma=23Nm
10.连接板用螺栓
规格 M12×30(全螺纹) 强度 8.8 数量 3×6=18 其它
1.变桨控制柜支架用螺栓
规格
M16×150(全螺纹)
强度
8.8
数量 其它
3×4=12 Ma=77Nm
12.控制柜用螺栓
规格 M10×90(全螺纹) 强度 A2-70 数量 3×4=12 其它
S的确定:软带的安装位置要由风电机组生产商,在设计风机时,根 据载荷情况计算出变桨、偏航轴承不承受或很少承受倾覆力矩的位置, 将此位置定为软带安装位置。 • 齿轮间隙:在变桨、偏航轴承安装螺栓初步预紧后,应调整齿圈与驱 动齿轮侧隙,保证运转平稳和灵活。 • 齿轮跳动标识:变桨、偏航轴承齿圈在出厂时,在齿轮跳动最大处的 齿和相邻的齿用绿色油漆做了涂色标识。(Dr(侧隙)=(0.03~0.04)m)
变桨电机
1轮毂
3变桨轴承
30变桨驱动器
12垫圈(12)
53螺母(M12)
3.1安装位置
变桨驱动装置通过螺柱与轮毂配合联接。变 桨齿轮箱前的小齿轮与变桨轴承内圈啮合,并要 保证啮合间隙应在0.2~0.5mm之间,间隙由加工 精度保证,无法调整。
• S(软带)位置:变桨、偏航轴承因为采用表面淬火技术和装配的需要 ,在变桨、偏航轴承的沟道上会留有不淬火区间,此区间的沟道硬度明 显低于淬火沟道,不具备承受大载荷的能力,称为变桨、偏航轴承的软 带。
7.变桨限位撞块用螺钉
规格 M10×50
强度 8.8 数量 3×2=6 其它 力 矩 扳 手 ( 2-20Nm )
8.缓冲器用螺钉
规格 M10×35 强度 8.8
数量 其它
3×1=3
1.内六角扳手SW8 ;Ma=32 Nm 2. 涂 Loctite 243 胶
9.极限工作位置撞块用螺栓
规格 M8×25位置1:压板用螺纹孔,用于安装小齿轮压 板。
位置2:驱动器吊环,用于起吊安装变桨驱 动器。
位置3:螺柱。与轮毂联接用。
位置4:电机接线盒。
3.6变桨电机技术参数
电机类型 数量
异步电机 每个叶片一个,总共3个
额定功率 极数 额定电压 频率 防护等级 齿轮输入速度 旋转方向 温度等级 冷却