中考数学必刷题(1)

合集下载

(已整理)中考数学必刷压轴题专题:抛物线之角度关系处理(含解析)

(已整理)中考数学必刷压轴题专题:抛物线之角度关系处理(含解析)

中考数学抛物线压轴题之角度关系处理(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.2.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.3.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C 点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx﹣3a经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)已知点D(m,﹣m﹣1)在第四象限的抛物线上,求点D关于直线BC对称的点D'的坐标.(3)在(2)的条件下,连接BD,问在x轴上是否存在点P,使∠PCB=∠CBD?若存在,请求出P点的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.7.如图,已知抛物线y=ax2+bx+c与x轴交于点A、B,与直线AC:y=﹣x﹣6交y轴于点C,点D是抛物线的顶点,且横坐标为﹣2.(1)求出抛物线的解析式.(2)判断△ACD的形状,并说明理由.(3)直线AD交y轴于点F,在线段AD上是否存在一点P,使∠ADC=∠PCF?若存在,直接写出点P的坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(,0)和点B(1,),与x轴的另一个交点为C.(1)求抛物线的函数表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.①判断四边形OAEB的形状,并说明理由;②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.9.如图,在平面直角坐标系中,抛物线y=ax2+bx与x轴交于点A,顶点B的坐标为(﹣2,﹣2).(1)求a,b的值;(2)在y轴正半轴上取点C(0,4),在点A左侧抛物线上有一点P,连接PB交x轴于点D,连接CB交x 轴于点F,当CB平分∠DCO时,求点P的坐标;(3)在(2)的条件下,连接PC,在PB上有一点E,连接EC,若∠ECB=∠PDC,求点E的坐标.10.如图,在平面直角坐标系中,一次函数y=x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c 经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.11.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.12.如图,二次函数y=ax2﹣3ax+c的图象与x轴交于点A、B,与y轴交于点C直线y=﹣x+4经过点B、C.(1)求抛物线的表达式;(2)过点A的直线交抛物线于点M,交直线BC于点N.①点N位于x轴上方时,是否存在这样的点M,使得AM:NM=5:3?若存在,求出点M的坐标;若不存在,请说明理由.②连接AC,当直线AM与直线BC的夹角∠ANB等于∠ACB的2倍时,请求出点M的横坐标.13.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在直线x=﹣2上是否存在点M,使得∠MAC=2∠MCA,若存在,求出M点坐标.若不存在,说明理由.14.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.16.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c 经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.17.二次函数y=ax2+bx+2的图象交x轴于点(﹣1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标;(4)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.18.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.19.如图1,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=3OA.(1)求该抛物线的函数表达式;(2)动点D在线段BC下方的抛物线上.①连接AC、BC,过点D作x轴的垂线,垂足为E,交BC于点F.过点F作FG⊥AC,垂足为G.设点D的横坐标为t,线段FG的长为d,用含t的代数式表示d;②过点D作DH⊥BC,垂足为H,连接CD.是否存在点D,使得△CDH中的一个角恰好等于∠ABC的2倍?如果存在,求出点D的横坐标;如果不存在,请说明理由.1.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB•DP=×3×(﹣x2+x)=﹣x2+x.又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.2.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.【分析】(1)代入y=c可求出点C、P的坐标,利用一次函数图象上点的坐标特征可求出点A、B的坐标,再由△PCB≌△BOA即可得出b、c的值,进而可得出点P的坐标及抛物线的解析式;(2)利用二次函数图象上点的坐标特征求出点F的坐标,过点M作ME∥y轴,交直线AB于点E,由点M的横坐标可得出点M、E的坐标,进而可得出ME的长度,再利用三角形的面积公式可找出S=﹣(m﹣3)2+5,由m的取值范围结合二次函数的性质即可求出S的最大值及最小值;(3)分两种情况考虑:①当点M在线段OP上方时,由CP∥x轴利用平行线的性质可得出:当点C、M重合时,∠MPO=∠POA,由此可找出点M的坐标;②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA,设点D的坐标为(n,0),则DO=n,DP=,由DO=DP 可求出n的值,进而可得出点D的坐标,由点P、D的坐标利用待定系数法即可求出直线PD的解析式,再联立直线PD及抛物线的解析式成方程组,通过解方程组求出点M的坐标.综上此题得解.【解答】解:(1)当y=c时,有c=﹣x2+bx+c,解得:x1=0,x2=b,∴点C的坐标为(0,c),点P的坐标为(b,c).∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,∴点A的坐标为(1,0),点B的坐标为(0,3),∴OB=3,OA=1,BC=c﹣3,CP=b.∵△PCB≌△BOA,∴BC=OA,CP=OB,∴b=3,c=4,∴点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4.(2)当y=0时,有﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴点F的坐标为(4,0).过点M作ME∥y轴,交直线AB于点E,如图1所示.∵点M的横坐标为m(0≤m≤4),∴点M的坐标为(m,﹣m2+3m+4),点E的坐标为(m,﹣3m+3),∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,∴S=S梯形OEMB﹣S△OEB﹣S△AEM=OA•ME=﹣m2+3m+=﹣(m﹣3)2+5.∵﹣<0,0≤m≤4,∴当m=0时,S取最小值,最小值为;当m=3时,S取最大值,最大值为5.(3)①当点M在线段OP上方时,∵CP∥x轴,∴当点C、M重合时,∠MPO=∠POA,∴点M的坐标为(0,4);②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA.设点D的坐标为(n,0),则DO=n,DP=,∴n2=(n﹣3)2+16,解得:n=,∴点D的坐标为(,0).设直线PD的解析式为y=kx+a(k≠0),将P(3,4)、D(,0)代入y=kx+a,,解得:,∴直线PD的解析式为y=﹣x+.联立直线PD及抛物线的解析式成方程组,得:,解得:,.∴点M的坐标为(,).综上所述:满足∠MPO=∠POA的点M的坐标为(0,4)或(,).【点评】本题考查了待定系数法求一次函数解析式、一次(二次)函数图象上点的坐标特征、全等三角形的性质、二次函数的性质、三角形的面积以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的性质求出b、c的值;(2)利用三角形的面积公式找出S=﹣(m﹣3)2+5;(3)分点M在线段OP上方和点M在线段OP下方两种情况求出点M的坐标.3.如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(1,﹣),且与x轴交于A、B两点,与y轴交于C 点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标m<0时,过P点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.【分析】(1)根据函数值相等的点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;。

中考数学专题《一次函数与几何综合》高分必刷原卷

中考数学专题《一次函数与几何综合》高分必刷原卷

(培优特训)专项19.3 一一次函数与几何综合高分必刷1.(2023春•普兰店区期中)已知△ABC中,∠C=90°,AC=3,CD=4,BD =AD.点F从点A出发,沿AC﹣CD运动,速度为1cm/s,同时点E从点B 出发,沿BD﹣DA运动,运动速度为1cm/s,一个点到达终点,另一点也停止运动.(1)求BD的长;(2)设△AEF的面积为S,点P、Q运动时间为t,求S与的函数关系式,并写出的取值范围.2.(2023春•鼓楼区期中)如图1,已知直线l1:y=ax﹣6a交x轴于点A,交轴y于点B,直线l2:y=bx﹣18a交x轴于点C,交y轴于点D,交直线l1于点E.(1)求点A的坐标;(2)若点B为线段AE的中点,求证:EC=EA;(3)如图2,已知P(0,m),将线段P A绕点P逆时针方向旋转90°至PF,连接OF,求证:点F在某条直线上运动,并求OF的最小值.3.(2023春•苍南县期中)如图,在平面直角坐标系中,▱OABC的顶点A落在x轴上,点B的坐标为(7,4),AB=2,点D是OC的中点,点E是线段AD上一动点,EF⊥BC于点F,连结DF.(1)求点A、C的坐标.(2)求直线AD的函数表达式.(3)若△DEF是等腰三角形,求CF的长.4.(2023•佳木斯一模)如图,将矩形纸片OABC放在平面直角坐标系中,O为坐标原点.点A在y轴上,点C在x轴上,OA,OB的长是x2﹣16x+60=0的两个根,P是边AB上的一点,将△OAP沿OP折叠,使点A落在OB上的点Q处.(1)求点B的坐标;(2)求直线PQ的解析式;(3)点M在直线OP上,点N在直线PQ上,是否存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.5.(2023春•顺德区校级月考)如图,请根据图象所提供的信息解答下列问题:(1)当x时,kx+b≥mx﹣n;(2)不等式kx+b<0的解集是;(3)求两个一次函数表达式;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.6.(2023春•北碚区校级期中)如图,在平面直角坐标系中,直线y=2x﹣2与x 轴、y轴分别交于点A、点B,与直线CD:y=kx+b(k≠0)交于点P,OC =OD=4OA.(1)求直线CD的解析式;(2)连接OP、BC,若直线AB上存在一点Q,使得S△PQC =S四边形OBCP,求点Q的坐标;(3)将直线CD向下平移1个单位长度得到直线,直线l与x轴交于点E,点N为直线l上的一点,在平面直角坐标系中,是否存在点M,使以点O,E,N,M为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,请说明理由.7.(2023春•宜兴市期中)如图,在平面直角坐标系中,已知A(0,4),点B、C都在x轴上,BC=12,AD∥BC,CD所在直线的函数表达式为y=﹣x+9,E是BC的中点,点P是BC边上一个动点.(1)当PB=时,以点P、A、D、E为顶点的四边形为平行四边形;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.8.(2023春•工业园区校级期中)如图,在平面直角坐标系中,点A、点B分别在x轴与y轴上,直线AB的解析式为,以线段AB、BC为边作平行四边形ABCD.(1)如图1,若点C的坐标为(3,7),判断四边形ABCD的形状,并说明理由;(2)如图2,在(1)的条件下,P为CD边上的动点,点C关于直线BP的对称点是Q,连接PQ,BQ.①当∠CBP=°时,点Q位于线段AD的垂直平分线上;②连接AQ,DQ,设CP=x,设PQ的延长线交AD边于点E,当∠AQD=90°时,求证:QE=DE,并求出此时x的值.9.(2023•沈阳一模)如图,在平面直角坐标系中,直线y=kx+b与x轴交于点B(﹣5,0),与y轴交于点A,直线过点A,与x轴交于点C,点P 是x轴上方一个动点.(1)求直线AB的函数表达式;(2)若点P在线段AB上,且S△APC =S△AOB,求点P的坐标;(3)当S△PBC =S△AOB时,动点M从点B出发,先运动到点P,再从点P运动到点C后停止运动.点M的运动速度始终为每秒1个单位长度,运动的总时间为t(秒),请直接写出t的最小值.10.(2023春•鼓楼区期中)如图1,已知函数与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.11.(2023春•顺德区校级期中)一次函数y=kx+b的图象经过点A(﹣2,0)、B(﹣1,1),且和一次函数y=﹣2x+a的图象交于点C,如图所示.(1)填空:不等式kx+b<0的解集是;(2)若不等式kx+b>﹣2x+a的解集是x>1,求点C的坐标;(3)在(2)的条件下,点P是直线y=﹣2x+a上一动点.且在点C上方,当∠P AC=15°时,求点P的坐标.12.(2023春•重庆期中)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)则k=,b=,n=;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形,请求出点P的坐标.13.(2023春•崇川区校级月考)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:△BEC≌△CDA;(2)模型应用:已知直线l1:y=﹣x﹣4与y轴交于A点.将直线l1绕着A 点逆时针旋转45°至l2,如图2,求l2的函数解析式.14.(2023春•崇川区校级月考)如图,在平面直角坐标系中,直线l1:y=﹣x+4分别与x轴,y轴交于点B,C.直线l2:y=x.(1)直接写出点B,C的坐标:B,C.(2)若D是直线l2上的点,且△COD的面积为6,求直线CD的函数表达式;(3)在(2)的条件下,且当点D在第一象限时,设P是射线CD上的点,在平面内存在点Q.使以O,C,P,Q为顶点的四边形是菱形,请直接求点Q的坐标.15.(2023•城固县模拟)如图,A、B两个长方体水箱放置在同一水平桌面上,开始时水箱A中没有水,水箱B盛满水,现以6dm3/min的流量从水箱B中抽水注入水箱A中,直至水箱A注满水为止.设注水时间为t(min),水箱A 的水位高度为y A(dm),水箱B中的水位高度为y B(dm).(抽水水管的体积忽略不计)(1)分别求出y A,y B与t之间的函数表达式;(2)当水箱A与水箱B中的水的体积相等时,求出此时两水箱中水位的高度差.16.(2022秋•常州期末)在平面直角坐标系中,一次函数的图象l1与x轴交于点A,一次函数y=x+6的图象l2与x轴交于点B,与l1交于点P.直线l3过点A且与x轴垂直,C是l3上的一个动点.(1)分别求出点A、P的坐标;(2)设直线PC对应的函数表达式为y=kx+b,且满足函数值y随x的增大而增大.若△PCA的面积为15,分别求出k、b的值;(3)是否存在点C,使得2∠PCA+∠P AB=90°?若存在,直接写出点C的坐标;若不存在,请说明理由.17.(2023春•靖江市期中)如图,平面直角坐标系中,已知点A(0,a)在y 轴正半轴上,点B(0,b)(a>b),点C(c,0)在x轴正半轴上,且a2﹣2ab+b2(1)如图1,求证:AB=OC;(2)如图2,当a=3,b=1时,过点B的直线与AC成45°夹角,试求该直线与AC交点的横坐标;(3)如图3,当b<0时,点D在OC的延长线上,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠AEB的度数是否为定值?如果是,请求出∠AEB的度数;如果不是,请说明理由.18.(2023春•沙坪坝区校级期中)如图,在平面直角坐标系xOy中,直线AB:与直线CD:y=kx﹣2相交于点M(4,a),分别交坐标轴于点A,(1)求直线CD的解析表达式;(2)如图,点P是直线CD上的一个动点,当△PBM的面积为20时,求点P的坐标;(3)直线AB上有一点F,在平面直角坐标系内找一点N,使得以BF为一边,以点B,D,F,N为顶点的四边形是菱形,请直接写出符合条件的点N的坐标.19.(2023春•揭西县校级月考)在平面直角坐标系中,直线y1=kx+b经过点P (2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,请直接写出符合条件的所有点B的坐标.20.(2023春•溧阳市校级月考)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是2和4;(1)求直线BD的表达式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.21.(2023春•江都区月考)如图,在平面直角坐标系中,直线y=﹣x+3与x 轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)求点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.22.(2023春•新城区校级月考)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,求出点P的坐标;(2)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M 在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.23.(2022秋•宿豫区期末)如图,直线l分别与x轴、y轴交于点A(4,0)、B (0,5),把直线l沿y轴向下平移3个单位长度,得到直线m,且直线m分别与x轴、y轴交于点C、D.(1)求直线l对应的函数表达式;(2)求四边形ABDC的面积.24.(2022秋•临淄区期末)如图,在直角坐标系中,四边形ABCD的顶点坐标分别为A(﹣1,0),B(0,2),C(2,3),D(4,0).(1)求直线BC的表达式;(2)线段AB与BC相等吗?请说明理由;(3)求四边形ABCD的面积;(4)已知点M在x轴上,且△MBC是等腰三角形,求点M的坐标.25.(2022秋•金牛区期末)如图1,在平面直角坐标系xOy中,直线AB:y=2x+b 与x轴交于点A(﹣2,0),与y轴交于点B.(1)求直线AB的解析式;(2)若直线CD:y=﹣x+与x轴、y轴、直线AB分别交于点C、D、E,求△BDE面积;(3)如图2,在(2)的条件下,点F为线段AC上一动点,将△EFC沿直线EF翻折得到△EFN,EN交x轴于点M.当△MNF为直角三角形时,求点N 的坐标.26.(2022秋•婺城区期末)如图,直线y=x+4与x轴、y轴分别交于点A、点B,点P是射线BO上的动点,过点B作直线AP的垂线交x轴于点Q,垂足为点C,连结OC.(1)当点P在线段BO上时,①求证:△AOP≌△BOQ;②若点P为BO的中点,求△OCQ的面积.(2)在点P的运动过程中,是否存在某一位置,使得△OCQ成为等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.27.(2022秋•郫都区期末)在直角坐标系xOy中,直线l1:y=﹣x+4与x轴、y 轴分别交于点A,点B.直线l2:y=mx+m(m>0)与x轴,y轴分别交于点C,点D,直线l1与l2交于点E.(1)若点E坐标为(,n).ⅰ)求m的值;ⅱ)点P在直线l2上,若S△AEP=3S△BDE,求点P的坐标;(2)点F是线段CE的中点,点G为y轴上一动点,是否存在点F使△CFG 为以FC为直角边的等腰直角三角形.若存在,求出m的值,若不存在,请说明理由.28.(2022秋•市中区期末)如图,直线y=kx+b经过点,点B(0,25),与直线交于点C,点D为直线AB上一动点,过D点作x轴的垂线交直线OC于点E.(1)求直线AB的表达式和点C的坐标;(2)当时,求△CDE的面积;(3)连接OD,当△OAD沿着OD折叠,使得点A的对应点A'落在直线OC 上,直接写出此时点D的坐标.29.(2022秋•新都区期末)如图1,在平面直角坐标系中,点A的坐标为(4,4),点B的坐标为(﹣4,0).(1)求直线AB的表达式;(2)点M是坐标轴上的一点,若以AB为直角边构造Rt△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以A为直角顶点作∠CAD=90°,射线AC交x轴的正半轴于点C,射线AD交y轴的负半轴于点D,当∠CAD绕点A旋转时,求OC﹣OD 的值.30.(2022秋•皇姑区期末)如图,在平面直角坐标系中,直线AD:y=﹣x+4交y轴于点A,交x轴于点D.直线AB交x轴于点B(﹣3,0),点P为直线AB上的动点.(1)求直线AB的关系式;(2)连接PD,当线段PD⊥AB时,直线AD上有一点动M,x轴上有一动点N,直接写出△PMN周长的最小值;(3)若∠POA=∠BAO,直接写出点P的纵坐标.31.(2022秋•新都区期末)如图所示,直线l1:y=x﹣1与y轴交于点A,直线l2:y=﹣2x﹣4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出|DQ﹣BQ|的最大值.32.(2022秋•鸡西期末)如图,直角三角形ABC在平面直角坐标系中,直角边BC在y轴上,AB,BC的长分别是一元二次方程x2﹣14x+48=0的两个根,AB<BC,且BC=2OB,P为BC上一点,且∠BAP=∠C.(1)求点A的坐标;(2)求直线AP的解析式;(3)M为x轴上一点,在平面内是否存在点N,使以A,C,M,N为顶点的四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.33.(2022秋•锦江区校级期末)如图,直线y=kx+b与x轴、y轴分别交于点A 和点B,点C在线段AO上,将△ABC沿BC所在直线折叠后,点A恰好落在y轴上点D处,若OA=4,OD=2.(1)求直线AB的解析式.(2)求S△ABC :S△OCD的值.(3)直线CD上是否存在点P使得∠PBC=45°,若存在,请直接写出P的坐标.34.(2022秋•福田区校级期末)已知:如图,一次函数的图象分别与x 轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D.点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为:;(2)点Q为线段DE上的一个动点,连接BQ.①若直线BQ将△BDE的面积分为1:2两部分,求点Q的坐标;②点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上?若存在,请直接写出点Q的坐标;若不存在,请说明理由.35.(2022秋•抚州期末)如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),与y轴交于点A(0,a),且a,p满足=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP的面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边,点Q为直角顶点的等腰直角三角形,若存在,请直接写出点Q坐标;若不存在,请说明理由.36.(2022秋•天桥区期末)如图1,在平面直角坐标系xOy中,点O是坐标原点,直线AB:y=kx+与直线AC:y=﹣2x+b交于点A,两直线与x轴分别交于点B(﹣3,0)和C(2,0).(1)求直线AB和AC的表达式.(2)点P是y轴上一点,当P A+PC最小时,求点P的坐标.(3)如图2,点D为线段BC上一动点,将△ABD沿直线AD翻折得到△ADE,线段AE交x轴于点F,若△DEF为直角三角形,求点D坐标.37.(2023•桐乡市校级开学)如图,一次函数y=x+6的图象与x轴交于点A,与y轴交于点B,OC⊥AB于点C,点P在直线AB上运动,点Q在y轴的正半轴上运动.(1)求点A,B的坐标;(2)求OC的长;(3)若以O,P,Q为顶点的三角形与△OCP全等,求点Q的坐标.38.(2022秋•秦都区期末)如图,平面直角坐标系中,直线AB与x轴交于点A (﹣3,0)与y轴交于点B(0,6),点C是直线AB上的一点,它的坐标为(m,4),经过点C作直线CD∥x轴交y轴于点D.(1)求点C的坐标;(2)已知点P是直线CD上的动点,①若△POC的面积为4,求点P的坐标;②若△POC为直角三角形,请求出所有满足条件的点P的坐标.39.(2022秋•南海区期末)如图,在平面直角坐标系中,直线y=x+1分别交x 轴,y轴于点A、B.另一条直线CD与直线AB交于点C(a,6),与x轴交于点D(3,0),点P是直线CD上一点(不与点C重合).(1)求a的值.(2)当△APC的面积为18时,求点P的坐标.(3)若直线MN在平面直角坐标系内运动,且MN始终与AB平行,直线MN 交直线CD于点M,交y轴于点N,当∠BMN=90°时,求△BMN的面积.40.(2023•丰顺县校级开学)问题提出:如图,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;问题探究:如图2,在平面直角坐标系中,一次函数与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,求点C的坐标;问题解决:古城西安已经全面迎来地铁时代!继西安地铁2号线于2011年9月16日通车试运行以来,共有八条线路开通运营,极大促进了西安市的交通运输,目前还有多条线路正在修建中.如图,地铁某线路原计划按OA﹣AB的方向施工,由于在AB方向发现一处地下古建筑,地铁修建须绕开此区域.经实地勘测,若将AB段绕点A顺时针或逆时针方向旋转45°至AC或AD方向,则可以绕开此区域.已知OA长为1千米,以点O为原点,OA所在直线为x轴,1千米为单位长度,建立平面直角坐标系,且射线AB与直线y=﹣2x平行,请帮助施工队计算出AC和AD所在直线的解析式.41.(2022秋•碑林区校级期末)(1)模型建立:如图1,在等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,请直接写出图中相等的线段(除CA=CB);模型应用:(2)如图2,在平面直角坐标系xOy中,直线与x,y轴分别交于A、B两点,C为第一象限内的点,若△ABC是以AB为直角边的等腰直角三角形,请求出点C的坐标和直线BC的表达式;探究提升:(3)如图3,在平面直角坐标系xOy中,A(3,0),点B在y轴上运动,将AB绕点A顺时针旋转90°至AC,连接OC,求CA+OC的最小值,及此时点B坐标.42.(2023•南岸区校级开学)如图,已知直线l1:y=﹣x+b与直线l2:y=kx+3相交于y轴的B点,且分别交x轴于点A、C,已知OC=OA.(1)如图,求点C的坐标及k的值;(2)如图,若E为直线l1上一点,且E点的横坐标为,点P为y轴上一个动点,求当|PC﹣PE|最大时,点P的坐标;(3)若M为x轴上一点,当△ABM是等腰三角形时,直接写出点M的坐标.43.(2022秋•驿城区校级期末)(1)操作思考:如图1,在平面直角坐标系中,等腰直角△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则:①OA的长为;②点B的坐标为.(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰直角△ACB如图放置,直角顶点C(﹣1,0),点A(0,4),试求直线AB的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点B(4,3),过点B作BA⊥y 轴,垂足为点A,作BC⊥x轴,垂足为点C,P是线段BC上的一个动点,点Q是直线y=2x﹣8上一动点,存在以点P为直角顶点的等腰直角△APQ,请直接写出点P的坐标.。

中考数学试卷必刷题

中考数学试卷必刷题

一、选择题1. 已知函数f(x) = 2x + 1,若f(3) = 7,则f(-1)的值为()A. -3B. -5C. -1D. 12. 下列函数中,与函数y = x²的图象相同的函数是()A. y = x² + 2B. y = x² - 2C. y = 2x²D. y = (x + 1)²3. 在直角坐标系中,点A(1,2)关于直线y = x的对称点为()A.(2,1)B.(-2,1)C.(1,-2)D.(-1,-2)4. 已知函数y = kx + b的图象经过点(1,3)和(-1,1),则该函数的解析式为()A. y = 2x + 1B. y = 2x - 1C. y = -2x + 1D. y = -2x - 15. 在平面直角坐标系中,若点P(a,b)在直线y = -2x + 3上,则点P的横坐标a的取值范围是()A. a < 3/2B. a > 3/2C. a ≤ 3/2D. a ≥ 3/2二、填空题6. 已知函数f(x) = -3x + 4,若f(x) = 0,则x的值为______。

7. 在直角坐标系中,点M(2,-3)关于y轴的对称点坐标为______。

8. 若函数y = kx + b的图象经过点(1,2)和(-1,-2),则该函数的解析式为______。

9. 在平面直角坐标系中,若点P(a,b)在直线y = 2x + 1上,则点P的纵坐标b的取值范围是______。

10. 若函数y = -3x² + 4x - 1的图象的顶点坐标为(1,2),则该函数的解析式为______。

三、解答题11. (1)已知函数f(x) = 3x - 2,求f(-1)的值。

(2)若函数g(x) = -2x + 5的图象经过点(3,1),求g(2)的值。

12. 在平面直角坐标系中,点A(2,3)和点B(-1,4)分别表示直角三角形的两个顶点,求该直角三角形的斜边长。

必刷卷01-2020年中考数学必刷试卷(黄冈专用)

必刷卷01-2020年中考数学必刷试卷(黄冈专用)

2020年中考必刷卷(湖北黄冈卷)01数学(考试时间:120分钟试卷满分:120分)第Ⅰ卷一、选择题(本大题共8小题,每小题3分,共24分)1.﹣的倒数的平方是A.2 B.C.﹣2 D.﹣2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是A.3.1536×106B.3.1536×107C.31.536×106D.0.31536×1083.抛物线y=﹣x2+4x﹣4与坐标轴的交点个数为A.0 B.1 C.2 D.34.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a,b.那么方程x2+ax+b=0有解的概率是A.B.C.D.5.不等式组的解集为A.﹣<x<0 B.﹣<x≤0 C.﹣≤x<0 D.﹣≤x≤06.把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有A.3种B.4种C.5种D.9种7.反比例函数y=﹣,下列说法不正确的是A.图象经过点(1,﹣3)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大8.如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接B D.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有A.4个B.3个C.2个D.1个第Ⅱ卷二、填空题(本大题共8小题,每小题3分,共24分)9.分解因式:x4﹣4x2=__________.10.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是__________cm.11.计算+|sin30°﹣π0|+=1﹣.12.矩形的周长等于40,则此矩形面积的最大值是__________.13.已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为__________.14.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为__________.15.如图,在平面直角坐标系中,函数y=(k>0,x>0)的图象与等边三角形OAB的边OA,AB分别交于点M,N,且OM=2MA,若AB=3,那么点N的横坐标为__________.16.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是__________.三、解答题(本题共9题,满分72分)17.(本题满分6分)先化简,再求值:()2•﹣÷,其中a=,b=.18.(本题满分6分)已知实数x,y满足方程组求x2﹣2y2的值.19.(本题满分6分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.20.(本题满分7分)某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.21.(本题满分8分)为了解学生的艺术特长发展情况,某校音乐组决定围绕在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了__________名学生.其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为__________,扇形统计图中喜欢“戏曲”部分扇形的圆心角为__________度.(2)请你补全条形统计图.(3)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项的概率.22.(本题满分7分)如图,在办公楼AB和实验楼CD之间有一旗杆EF,从办公楼AB顶部A点处经过旗杆顶部E点恰好看到实验楼CD的底部D点,且俯角为45°,从实验楼CD顶部C点处经过旗杆顶部E点恰好看到办公楼AB的G点,BG=1米,且俯角为30°,已知旗杆EF=9米,求办公楼AB的高度.(结果精确到1米,参考数据:≈1.41,≈1.73)23.(本题满分8分)如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=D B.(1)判断BD与⊙O的位置关系,并说明理由;(2)若CD=15,BE=10,tan A=,求⊙O的直径.24.(本题满分10分)为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根据场调查,在草莓上市销售的30天中,其销售价格m(元/公斤)与第x天之间满足m=(x为正整数),销售量n(公斤)与第x天之间的函数关系如图所示:如果李大爷的草莓在上市销售期间每天的维护费用为80元.(1)求销售量n与第x天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y与第x天之间的函数关系式;(日销售利润=日销售额﹣日维护费)(3)求日销售利润y的最大值及相应的x.25.(本题满分14分)已知抛物线y=ax2+bx+c顶点(2,﹣1),经过点(0,3),且与直线y=x﹣1交于A,B两点.(1)求抛物线的解析式;(2)若在抛物线上恰好存在三点Q,M,N,满足S△QAB=S△MAB=S△NAB=S,求S的值;(3)在A,B之间的抛物线弧上是否存在点P满足∠APB=90°?若存在,求点P的横坐标;若不存在,请说明理由.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)。

中考必刷题练习册2024数学

中考必刷题练习册2024数学

中考必刷题练习册2024数学【练习一】代数基础1. 计算下列表达式的值:(a) \( 3x^2 - 2x + 1 \) 当 \( x = -1 \) 时(b) \( \frac{2}{3}a^3b - \frac{1}{4}a^2b^2 +\frac{1}{6}ab^3 \) 当 \( a = 2 \) 且 \( b = 3 \) 时2. 解下列一元一次方程:(a) \( 5x - 3 = 14 \)(b) \( 2x + 7 = 3x - 2 \)3. 简化下列代数式:(a) \( 4x^2 + 5x - 6 \) 与 \( 3x^2 - 2x + 1 \) 的差(b) \( \frac{2a^2 - 3a + 1}{a + 1} \) 乘以 \( \frac{a - 1}{a^2 - 1} \)【练习二】几何问题1. 已知一个直角三角形的两条直角边长分别为 6 厘米和 8 厘米,求斜边的长度。

2. 一个圆的半径为 10 厘米,求圆的周长和面积。

3. 一个长方形的长是宽的两倍,如果长方形的周长是 36 厘米,求长和宽。

【练习三】统计与概率1. 一个班级有 30 名学生,其中 18 名喜欢足球,12 名喜欢篮球。

如果随机选择一名学生,求以下概率:(a) 选中喜欢足球的学生(b) 选中喜欢篮球的学生2. 一个袋子里有 5 个红球和 3 个蓝球,如果随机抽取两个球,求以下概率:(a) 抽到两个红球(b) 抽到一个红球和一个蓝球3. 一个骰子掷出两次,求以下概率:(a) 两次都掷出 6(b) 至少一次掷出 6【练习四】函数与图像1. 画出函数 \( y = x^2 \) 在 \( -3 \leq x \leq 3 \) 范围内的图像。

2. 已知函数 \( y = 2x + 3 \),求当 \( y = 0 \) 时的 \( x \) 值。

3. 函数 \( y = |x - 2| \) 的图像是什么样的?描述其特征。

(已整理)中考数学必刷压轴题专题:抛物线之基础面积问题(含解析)

(已整理)中考数学必刷压轴题专题:抛物线之基础面积问题(含解析)

中考数学抛物线压轴题之面积问题(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.2.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接PA,PC,试问△PAC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.3.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中抛物线y=ax2+bx+c经过原点,且与直线y=﹣kx+6交于则A(6,3)、B(﹣4,8)两点.(1)求直线和抛物线的解析式;(2)点P在抛物线上,解决下列问题:①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G顺时针旋转90°,使点K恰好落在抛物线上?若存在,请直接写出点K的坐标;若不存在,请说明理由.6.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求c的值及a、b满足的关系式;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围;(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点 P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.8.如图,抛物线y=ax2+bx+c与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且OA=3OB.(1)求抛物线的函数关系式;(2)若P是抛物线上且位于直线AC上方的一动点,求△ACP的面积的最大值及此时点P的坐标;(3)在线段OC上是否存在一点M,使BM+CM的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.9.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.10.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B 三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①求△BOD面积的最大值,并写出此时点D的坐标;②当△OPC为等腰三角形时,请直接写出点P的坐标.11.如图抛物线y=ax2+bx+6的开口向下与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P 是抛物线上一个动点(不与点C重合)(1)求抛物线的解析式;(2)当点P是抛物线上一个动点,若△PCA的面积为12,求点P的坐标;(3)如图2,抛物线的顶点为D,在抛物线上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E 的坐标;若不存在请说明理由.12.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.13.综合与探究如图1,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的表达式;(2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;(3)如图2,当P为OB的中点时,过点P作PD⊥x轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0<m≤2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求S与m的函数关系式.14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.15.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.16.如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB =8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.(1)填空:直线OC的解析式为;抛物线的解析式为;(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE的面积为S,求S的取值范围.17.已知抛物线y=﹣x2+bx和直线l:y=x﹣b.(1)求证:抛物线与直线l至少有一个公共点;(2)若抛物线与直线l交于A,B两点,当线段AB上恰有2个纵坐标是整数的点时,求b的取值范围;(3)当b>0时,将直线l向上平移b+1个单位长度得直线l',若抛物线y=﹣x2+bx的顶点P在直线l'上,且与直线l'的另一个交点为Q,当点C在直线l'上方的抛物线上时,求四边形OPCQ面积的最大值.18.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A(﹣2,0)、B(4,0),交y轴于点C(0,﹣3).(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求点D坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,直接写出点Q坐标,不存在,请说明理由.19.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标:(3)在抛物线上存在点P,使得△APB的面积与△ACB的面积相等,求点P的坐标.20.如图,对称轴x=﹣1的抛物线y=ax2+bx+c与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣2),(1)求抛物线的函数表达式;(2)若点P是直线BC下方的抛物线上的动点,求△BPC的面积的最大值;(3)若点P在抛物线对称轴的左侧运动,过点P作PD⊥x轴于点D,交直线BC于点E,且PE=OD,求点P的坐标;(4)在对称轴上是否存在一点M,使△AMC的周长最小.若存在,请求出M点的坐标和△AMC周长的最小值;若不存在,请说明理由.21.如图,已知抛物线y=﹣x2+4x+5与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使S△BDE:S△BEF=2:3,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.22.如图,抛物线y=x2+bx+c经过A(1,0)、C(0,3)两点,点B是抛物线与x轴的另一个交点.作直线BC.点P是抛物线上的一个动点.过点P作PQ⊥x轴,交直线BC于点Q.设点P的横坐标为m(m>0).PQ 的长为d.(1)求此抛物线的解析式及顶点坐标;(2)求d与m之间的函数关系式;(3)当点P在直线BC下方,且线段PQ被x轴分成的两部分之比为1:2时,求m的值;(4)连接AC,作直线AP,直线AP交直线BC于点M,当△PCM、△ACM的面积相等时,直接写出m的值.23.已知:如图,抛物线y=ax2+bx﹣3与x轴交于A点,与y轴交于C点,且A(1,0)、B(3,0),点D 是抛物线的顶点.(1)求抛物线的解析式(2)在y轴上是否存在M点,使得△MAC是以AC为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.(3)点P为抛物线上的动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标.24.如图,开口向下的抛物线y=ax2﹣5ax+4a(a为常数)与x轴交于A、B两点(A在B点左侧),与y轴交于点C,点D是抛物线上的一个动点,横坐标设为t,连接DC、DB.(1)求A、B的坐标.(2)当点D为抛物线的顶点时,△BCD的面积为15,求抛物线的解析式.(3)若a=﹣1,过点D作x轴的垂线,垂足为H,当1≤t≤4时,DH+mHO的最大值为.求正实数m的值.25.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式,x满足什么值时y<0?(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.26.如图,已知抛物线y=x2+bx+c与x轴交于点A(﹣4,0)和点B(1,0),与y轴交于点C,过点A 的直线y=mx+n交抛物线的另一个点为点E,点E的横坐标为2.(1)求b和c的值;(2)点P在直线AE下方的抛物线上任一点,点P的横坐标为t,过点P作PF∥y轴,交AE于点F,设PF =d,求出d与t的函数关系式,并直接写出t的取值范围;(3)在(2)问的条件下,过点P作PK⊥AE,垂足为点K,连接PE,若PF把△PKE分成面积比为11:12的两个三角形,求出此时t的值.27.若抛物线上y1=ax2+bx+c,它与y轴交于C(0,4),与x轴交于A(﹣1,0)、B(k,0),P是抛物线上B、C之间的一点.(1)当k=4时,求抛物线的方程,并求出当△BPC面积最大时的P的横坐标;(2)当a=1时,求抛物线的方程及B的坐标,并求当△BPC面积最大时P的横坐标;(3)根据(1)、(2)推断P的横坐标与B的横坐标有何关系?28.在平面直角坐标系中,抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若=,求a的值.29.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.30.如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=.(1)求过A、C、D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.31.如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2.(1)求抛物线的解析式.(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.32.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求c的值及a、b满足的关系式;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围;(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.33.如图①,在平面直角坐标中,点A的坐标为(1,﹣2),点B的坐标为(3,﹣1),二次函数y=﹣x2的图象为l1.(1)平移抛物线l1,使平移后的抛物线经过点A,但不过点B.①满足此条件的函数解析式有个.②写出向下平移且经点A的解析式.(2)平移抛物线l1,使平移后的抛物线经过A,B两点,所得的抛物线l2,如图②,求抛物线l2的函数解析式及顶点C的坐标,并求△ABC的面积.(3)在y轴上是否存在点P,使S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由.34.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.35.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O 开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)直接写出抛物线的解析式:;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.36.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数y=x2+bx+c的图象抛物线经过A,C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.37.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.38.如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.39.如图,在平面直角坐标系中,抛物线y=ax2+bx+2与直线y=x﹣2交于点A(m,0)和点B(﹣2,n),与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)若向下平移抛物线,使顶点D落在x轴上,原来的抛物线上的点P平移后的对应点为P′,若OP′=OP,求点P的坐标;(3)在抛物线上是否存在点Q,使△QAB的面积是△ABC面积的一半?若存在,直接写出点Q的坐标;若不存在,请说明理由.1.【解答】解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).2.【解答】解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点M(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点M(,);故点M的坐标为:(,)或(,)或(,)或(,).3.【解答】解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).(2)∵y=﹣x2+x+3=﹣(x﹣1)2+,∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)=﹣m2+m+15=﹣(m ﹣)2+,∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).4.【解答】解:(1)把A(6,3)代入y=﹣kx+6,得3=﹣6x+6.解得k=﹣.故直线的解析式是:y=﹣x+6.把O(0,0)、A(6,3)、B(﹣4,8)分别代入y=ax2+bx+c,得.解得.故该抛物线解析式是:y=x2﹣x;(2)①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2﹣x),则Q(x,﹣x+6),则PQ=(﹣x+6)﹣(x2﹣x)=﹣(x﹣1)2+,∴S△PAB=(6+4)×PQ=﹣(x﹣1)2+=20,解得x1=﹣2,x2=4,∴点P的坐标为(4,0)或(﹣2,3);②设P(x,x2﹣x),如图2,由题意得:AO=3,BO=4,AB=5,∵AB2=AO2+BO2,∴∠AOB=90°,∵∠AOB=∠PCO,∴当=时,△CPO∽△OAB,即=.整理,得4|x2﹣x|=3|x|.解方程4(x2﹣x)=3x,得x1=0(舍去),x2=7,此时P点坐标为(7,);解方程4(x2﹣x)=﹣3x,得x1=0(舍去),x2=1,此时P点坐标为(1,﹣);当=时,△CPO∽△OBA,即=,整理,得3|x2﹣x|=4|x|,解方程3(x2﹣x)=4x,得x1=0(舍去),x2=,此时P点坐标为(,).解方程3(x2﹣x)=﹣4x,得x1=0(舍去),x2=﹣,此时P点坐标为(﹣,).综上所述,点P的坐标为:(7,)或(1,﹣)或(﹣,)或(,).5.【解答】解:(1)对称轴x=1,则点B(﹣2,0),则抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣8a=2,解得:a=,故抛物线的表达式为:y=;(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,△CPQ的面积=×CE×(n﹣m)=,即n﹣m=2,联立抛物线与直线PQ的表达式并整理得:…①,m+n=2﹣4k,mn=﹣4,n﹣m=2==,解得:k=0(舍去)或1;将k=1代入①式并解得:x=,故点P、Q的坐标分别为:(,﹣)、(,).(3)设点K(1,m),联立PQ和AC的表达式并解得:x=,故点G(,)过点G作x轴的平行线交函数对称轴于点M,交过点R与y轴的平行线于点N,则△KMG≌△GNR(AAS),GM=1﹣==NR,MK=,故点R的纵坐标为:,则点R(m﹣1,)将该坐标代入抛物线表达式解得:x=,故m=,故点K(1,).6.【解答】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=﹣3,故点A、B的坐标分别为(﹣3,0)、(0,3),则c=3,则函数表达式为:y=ax2+bx+3,将点A坐标代入上式并整理得:b=3a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=3a+1,即:﹣≥0,解得:a≥﹣,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,b=3a+1=﹣2二次函数表达式为:y=﹣x2﹣2x+3,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△PAB=×AB×PH=×3×PQ×=,则PQ=|y P﹣y Q|=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣2x+3),则点Q(x,x+3),即:﹣x2﹣2x+3﹣x﹣3=±1,解得:x=或,故点P(,)或(,)或(,)或(,).7.【解答】解:(1)对称轴x=,则点B(﹣1,0),则抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,故抛物线的表达式为:y=x2+x+2;(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,△CPQ的面积=×CE×(n﹣m)=,即n﹣m=,联立抛物线于直线PQ的表达式并整理得:x2+(﹣k)x+1=0…①,m+n=3﹣2k,mn=﹣2,n﹣m===解得:k=0(舍去)或3;故y=3x+1,则x2+x+2=3x+1,解得:x=,故点P、Q的坐标分别为:(,)、(,);(3)设点K(,m),联立PQ和AC的表达式并解得:x=,故点G(,),过点G作y轴的平行线交过点K′与x轴的平行线于点M,交过点K与x轴的平行线于点N,则△GNK≌△K′MG(AAS),NK=﹣==MG,NG=﹣m,则点K′(﹣m,)将该坐标代入抛物线表达式并解得:m=,故点K(,)或(,).8.【解答】解:(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点P作y轴的平行线交CA于点H,由点A、C的坐标得,直线AC的表达式为:y=﹣x+3△ACP的面积=PH×OA=3×(x2﹣2x+3+x﹣3)=(﹣x2+3x),当x=时,△ACP的面积的最大,最大值为:,此时点P(,);(3)过点M作MN⊥AC,则MN=CM,故当B、M、N三点共线时,BM+CM=BN最小,直线CA的倾斜角为45°,BN⊥AC,则∠NBA=45°,即BN=AB=2=AN,则点N(1,2),由点B、N的坐标得,直线BN的表达式为:y=x+1,故点M(0,1).9.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)如图:①设P(m,m2﹣4m+3),将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+3=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴ME=EC=2,∴M(2,1﹣2)或(2,1+2)当EM=EF=2时,M(2,3)答:点M的坐标为M1(2,3),M2(2,1﹣2),M3(2,1+2).10.【解答】解:(1)x2﹣2x﹣3=0,则x=3或﹣1,故点A、B的坐标分别为(﹣1,﹣1)、(3,﹣3),设抛物线的表达式为:y=ax2+bx,将点A、B的坐标代入上式得:,解得:,故抛物线的表达式为:y=﹣x2+x;(2)将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=﹣x﹣,故点C(0,﹣),同理可得:直线OP的表达式为:y=﹣x;①过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+x),则点H(x,﹣x),△BOD面积=×DH×x B=×3(﹣x2+x+x)=﹣x2+x,∵,故△BOD面积有最大值为:,此时x=,故点D(,﹣);②当OP=PC时,则点P在OC的中垂线上,故y P=﹣,则点P(,﹣);②当OP=OC时,t2+t2=()2,解得:t=(舍去负值),故点P(,﹣);③当PC=OC时,同理可得:点P(,﹣);综上,点P(,﹣)或(,﹣)或(,﹣).11.【解答】解:(1)函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),﹣12a=6,解得:a=﹣,函数的表达式为:y=﹣x2﹣2x+6…①,顶点D坐标为(﹣2,8);(2)如图1所示,过点P作直线m∥AC交抛物线于点P′,在直线AC下方等距离处作直线n交抛物线与点P″、P′″,过点P作PH∥y轴交AC于点H,作PG⊥AC于点G,∵OA=OC,∴∠PHG=∠CAB=45°,则HP=PG,S△PCA=PG×AC=PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,则直线m的表达式为:y=x+10…②,联立①②并解得:x=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);直线n的表达式为:y=x+2…③同理可得点P(P″、P′″)的坐标为(﹣3﹣,﹣﹣1)或(﹣3,﹣1),综上,点P的坐标为(﹣2,8)或(﹣4,6)或(﹣3﹣,﹣﹣1)或(﹣3,﹣1).(3)点A、B、C、D的坐标为(﹣6,0)、(2,0)、(0,6)、(﹣2,8),则AC=,CD=,AD=,则∠ACD=90°,sin∠DAC==,延长DC至D′使CD=CD′,连接AD′,过点D作DH⊥AD′,则DD′=2,AD=AD′=,S△ADD′=DD′×AC=DH×AD′,即:2×=DH×,解得:DH=,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,①当点E在AB上方时,则直线AE的表达式为:y=x+b,将点A坐标代入上式并解得:直线AE的表达式为:y=x+…④,联立①④并解得:x=(不合题意值已舍去),即点E(,);②当点E在AB下方时,同理可得:点E(,﹣),综上,点E(,)或(,﹣).12.【解答】解:(1)将点B坐标代入y=x+c并解得:c=﹣3,故抛物线的表达式为:y=x2+bx﹣3,将点B坐标代入上式并解得:b=﹣,故抛物线的表达式为:y=x2﹣x﹣3;(2)过点P作PH∥y轴交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3),S四边形ACPB=S△AOC+S△PCB,∵S△AOC是常数,故四边形面积最大,只需要S△PCB最大即可,S△PCB=×OB×PH=×2(x﹣3﹣x2+x+3)=﹣x2+3x,∵﹣<0,∴S△PCB有最大值,此时,点P(2,﹣);(3)过点B作∠ABC的角平分线交y轴于点G,交抛物线于M′,设∠MBC=∠ABC=2α,过点B在BC之下作角度数为α的角,交抛物线于点M,过点G作GK⊥BC交BC于点K,延长GK交BM于点H,则GH=GN,BC是GH的中垂线,OB=4,OC=3,则BC=5,设:OG=GK=m,则CK=CB﹣HB=5﹣4=1,由勾股定理得:(3﹣m)2=m2+1,解得:m=,则OG=ON=,GH=GN=2OG=,点G(0,﹣),在Rt△GCK中,GK=OG=,GC=OC﹣OG=3﹣=,则cos∠CGK==,sin∠CGK=,则点K(,﹣),点K是点GH的中点,则点H(,﹣),则直线BH的表达式为:y=x﹣…②,同理直线BG的表达式为:y=x﹣…③联立①②并整理得:27x2﹣135x+100=0,解得:x=或4(舍去4),则点M(,﹣);联立①③并解得:x=﹣,故点M′(﹣,﹣);故点M(,﹣)或(﹣,﹣).13.【解答】解:(1)如图1,把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得,解得,所以该抛物线的解析式为:y=x2﹣x﹣3;(2)将x=0代入y=x2﹣x﹣3,得y=﹣3,∴点C的坐标为(0,﹣3),∴OC=3.设N(x,y),∵S△NAB=S△CAB,∴|y|=OC=3,∴y=±3.当y=3时,x2﹣x﹣3=3,解得x=+1.当y=﹣3时,x2﹣x﹣3=﹣3,解得x1=2,x2=0(舍去).综上所述,点N的坐标是(+1,3)或(﹣+1,3)或(2,﹣3);(3)如图2,由已知得,BB′=m,PB′=2,设直线BC的表达式为y=kx+b(k≠0).∵直线y=kx+b经过点B(4,0),C(0,﹣3),∴,解得,∴直线BC的表达式为y=x﹣3.当0<m≤2时,由已知得P′B=2+m.∵OP′=2﹣m,∴E(2﹣m,﹣m﹣).由OB=4得OP=2,把x=2代入y=x2﹣x﹣3中,得y=﹣3,∴D(2,﹣3),∴直线CD∥x轴.∵EP′=m+,D′P=3,∴ED′=DP′﹣EP′=3﹣m﹣=﹣m+.过点F作FH⊥PD′于点H,则∠D′HF=∠D′P′B′=90°.∵∠HD′F=∠P′D′B′,∴△D′HF∽△D′P′B′,∴=.∵∠FCD′=∠FBB′,∠FD′C=∠FB′B,∴△CD′F∽△BB′F,∴=.又∵CD′=2﹣m,∴=.设D′F=k(2﹣m),B′F=km,∴D′B′=2k,∴=.∴=.∵P′B′=2,∴HF=2﹣m.∴S△ED′F=ED′•HF=×(﹣m+)×(2﹣m).∵S△PB′D′=PB′•PD′=×3×2=3,∴S=S△PB′D′﹣S△ED′F=3﹣×(﹣m+)×(2﹣m)=﹣m2+m+.14.【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3;又设直线为y=kx+n过点A(﹣1,0)及C(2,3),得,解得,故直线AC为y=x+1;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),当x=1时,y=x+1=2,∴B(1,2),∵点E在直线AC上,设E(x,x+1).①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去),∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),∵F在抛物线上,∴x﹣1=﹣x2+2x+3,解得x=或x=,。

中考数学必刷题:二次函数综合题精选

中考数学必刷题:二次函数综合题精选

中考数学必刷题:二次函数综合题精选1.(2022.铁岭)抛物线y=ax2−2x+c经过点A(3,0),点C(0,-3),直线y=-x+b经过点A,交抛物线于点E。

抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图①,点P为直线AC下方抛物线上的点,连接PA,PC,△BAF的面积记为S1,△PAC的面积记为S2,当S1=38S2时,求点P的横坐标;(3)如图②,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q 的坐标。

2.(2022.抚顺、辽阳)如图,抛物线y=ax2−3x+c与x轴交于A(-4,0),B两点,与y轴交于C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且DEEO =34时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标。

3.(2022.沈阳)如图,平面直角坐标系中,O是坐标原点,抛物线y=ax2+bx−3经过点B(6,0)和点D(4,-3)与x轴另一个交点A. 抛物线与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②并直接写出直线AD的函数表达式.(2)点E是直线AD下方抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方部分沿x轴向上翻折,与抛物线剩下部分组成新的曲线为C1,点C的对应点C`,将曲线C1,沿y轴向下平移n个单位长度(0<n<6)。

曲线C1与直线BC的公共点中,选两个公共点作点P和点Q,若四边形C`G`QP是平行四边形,直接写出P的坐标。

贵州中考考前必刷2020中考数学简单中档题题组特训【必考考点】1(无答案)

贵州中考考前必刷2020中考数学简单中档题题组特训【必考考点】1(无答案)

中考简单中档题题组特训(一)(时间:40分钟,分值:60分)20. (本小题共10分,每小题各5分)(1)已知:x =2sin 60°,先化简x 2-2x +1x 2-1+1x +1,再求它的值.(2)已知m 和n 是方程3x 2-8x +4=0的两根,求1m +1n .21. (本小题共6分)如图是一座人行天桥的示意图,天桥的高是10米,CB ⊥DB ,坡面AC 的倾斜角为45°,为了方便行人推车过天桥市政府部门决定降低坡度,使新坡面DC 的坡度为i =3∶3,若新坡角下需留3米宽的人行道,问离原坡角(A 点处)10米的建筑物是否需要拆除?(参考数据:2≈1.414,3≈1.732)22. (本小题共10分)如图,已知△ABC ,直线PQ 垂直平分AC ,与边AB 交于E ,连接CE ,过点C 作CF 平行于BA 交PQ 于点F ,连接AF .(1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形;(3)若AD =3,AE =5,则菱形AECF 的面积是多少?23.(本小题共10分)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如下直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分;(3)若九年级有400名学生,估计该年级去打扫街道的人数;(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”“去敬老院服务”和“法制宣传”的概率.(用A 表示“打扫街道”;用B 表示“去敬老院服务”;用C 表示“社区文艺演出”;用D 表示“法制宣传”)24. (本小题共12分)如图,在Rt △ABC 中,∠A =90°,O 是BC 边上一点,以点O 为圆心的半圆与AB 边相切于点D ,与AC ,BC 边分别交于点E ,F ,G ,连接OD ,已知BD =2,AE =3,tan ∠BOD =23.(1)求⊙O 的半径OD 的长;(2)求证:AE 是⊙O 的切线;(3)求图中两部分阴影面积的和.25. (本小题共12分)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流速度为20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使彩虹桥上的车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x ≤220时,求彩虹桥上车流量y 的最大值.学习时间t (分钟)人数占女生人数百分比0≤t <30420%30≤t <60m 15%60≤t <90525%90≤t <1206n 120≤t <150210%中考简单中档题题组特训(二)(时间:40分钟,分值:60分)17.(6分)计算:2tan30°-|1-3|+(2014-2)0+13.18.(6分)先化简,再求值:x 2-9x 2+8x +16÷x -3x +4-xx +4,其中x =7-4.19.(6分)解不等式组⎪⎪⎩⎪⎪⎨⎧-<-->+814311532x x x x ,并写出它的非负整数解.20.(12分)黔东南州某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查,将获得的数据按性别绘制成如下的女生频数分布表和男生频数分布直方图:女生频数分布表根据上面的图表解答下列问题:(1) 在女生频数分布表中,m =_____,n =______; (2)此次调查共抽取了多少名学生?(3)此次抽样中,学习时间的中位数在哪个时间段?(4)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?21.(10分)已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于点D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.22.(8分)黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测量旗杆顶端E点的仰角为30°.已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:2≈1.41,3≈1.73)23.(12分)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元;2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.中考简单中档题题组特训(三)(时间:40分钟,分值:60分)17. (本题共6分)计算(-13)-1+(2015-3)0-4sin 60°+|-12|.18. (本题共6分)解不等式组⎩⎪⎨⎪⎧2(x +2)>3x 3x -12≥-2,并将它的解集在数轴上表示出来.19. (本题共6分)先化简,再求值:m -33m 2-6m ÷(m +2-5m -2),其中m 是方程x 2+2x -3=0的根.20. (本题共10分)某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?21. (本题共10分)如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点.(1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.22. (本题共10分)如图,已知反比例函数y =k x 与一次函数y =x +b 的图象在第一象限相交于点A (1,-k +4).(1)试确定这两个函数的表达式;(1)求出这两个函数图象的另一个交点B 的坐标,并求△AOB 的面积.第22题图23. (本题共12分)今年夏天,我州某地区遭受到罕见的水灾,“水灾无情人有情”.凯里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种型号的货车共8辆,一次性...将这批饮用水和蔬菜全部运...往受灾地区某中学,已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件.则凯里某单位安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元.凯里某单位应选择哪种方案可使用运费最少?最少运费是多少元?中考简单中档题题组特训(四)(时间:40分钟,分值:60分)20.(本小题满分10分,(1)小题6分、(2)小题4分)(1)解不等式组⎪⎩⎪⎨⎧-><-2332601x x x ,并把它的解集在数轴上表示出来.(2)先阅读以下材料,然后解答问题.分解因式mx +nx +my +ny =(mx +nx )+(my +ny )=x (m +n )+y (m +n )=(m +n )(x +y );也可以mx +nx +my +ny =(mx +my )+(nx +ny )=m (x +y )+n (x +y )=(m +n )(x +y ).以上分解因式的方法称为分组分解法.请用分组分解法分解因式:a 3-b 3+a 2b -ab 2.21.(本小题满分10分)如下是九年级某班学生适应性考试文综成绩(依次按A 、B 、C 、D 等级划分,且A 等为成绩最好)的条形统计图和扇形统计图.请根据图中的信息回答下列问题:(1)补全条形统计图;(2)求C 等所对应的扇形统计图的圆心角的度数;(3)求该班学生共有多少人?(4)如果文综成绩是B 等及B 等以上的学生才能报考示范性高中,请你用该班学生的情况估计该校九年级400名学生中,有多少名学生有资格报考示范性高中?22.(本小题满分8分)如图所示的方格地面上,标有编号A 、B 、C 的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A 和B 的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?23.(本小题满分10分)两个长为2 cm ,宽为1 cm 的长方形,摆放在直线l 上(如图①),CE =2 cm ,将长方形ABCD 绕着点C 顺时针旋转a 角,将长方形EFGH 绕着点E 逆时针旋转相同的角度.(1)当旋转到顶点D 、H 重合时,连接AE 、CG ,求证△AED ≌△GCD (如图②);(2)当a =45°时(如图③)求证:四边形MHND 为正方形.24.(本小题满分12分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足CF FD =13,连接AF 并延长交⊙O 于点E ,连接AD 、DE ,若CF =2,AF =3.(1)求证:△ADF ∽△AED ;(2)求FG 的长;(3)求证:tan ∠E =54.25.(本小题满分10分)已知某厂现有A 种金属70吨,B 种金属52吨,现计划用这两种金属生产M 、N 两种型号的合金产品共80000套.已知做一套M 型号的合金产品需要A 种金属0.6 kg ,B 种金属0.9 kg ,可获利润45元;做一套N 型号的合金产品需要A 种金属1.1 kg ,B 种金属0.4 kg ,可获利润50元.若设生产N 种型号的合金产品套数为x ,用这批金属生产这两种型号的合金产品所获总利润为y 元.(1)求y 与x 的函数关系式,并求出自变量x 的取值范围;(2)在生产这批合金产品时,N 型号的合金产品应生产多少套,该厂所获利润最大?最大利润是多少?中考简单中档题题组特训(五)(时间:40分钟,分值:60分)21. (本题共12分)(1)计算:(13)-2+(π-2014)0+sin 60°+|3-2|.(2)解方程:1x -2=4x 2-4.四、(本题共12分)22. 如图,点B 、C 、D 都在⊙O 上,过C 点作CA ∥BD 交OD 的延长线于点A ,连接BC ,∠B =∠A =30°,BD =2 3.(1)求证:AC 是⊙O 的切线;(2)求由线段AC 、AD 与弧CD 所围成的阴影部分的面积(结果保留π).第22题图五、(本题共12分)23. 我州实施新课程改革后,学生的自主学习、合作交流能力有很大提高,某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调查,并将调查结果分类,A :特别好;B :好;C :一般;D :较差.现将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,一共调查了______名同学,其中C 类女生有______名;(2)将下面的条形统计图补充完整;(3)为了共同进步,学校想从被调查的A 类和D 类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.六、(本题共12分)24. 为增强居民节约用电意识某市对居民用电实行阶梯收费具体收费标准见下表一户居民一个月用电量的范围 电费价格(单位:元/千瓦时)不超过160千瓦时的部分x 超过160千瓦时的部分x +0.15 某居民五月份用电190(1)求x 和超出部分电费单价;(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.七、阅读材料题(本题共12分)25. 已知点P (x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b |1+k 2计算. 例如:求点P (-2,1)到直线y =x +1的距离.解:因为直线y =x +1可变形为x -y +1=0,其中k =1,b =1.所以点P (-2,1)到直线y =x +1的距离为d =|kx 0-y 0+b |1+k 2=|1×(-2)-1+1|1+12=22= 2. 根据以上材料,求:(1)点P (1,1)到直线y =3x -2的距离,并说明点P 与直线的位置关系;(2)点P (2,-1)到直线y =2x -1的距离;(3)已知直线y =-x +1与y =-x +3平行,求这两条直线的距离.中考简单中档题题组特训(六)(时间:40分钟,分值:60分)21. (1)(6分)计算:(3-2014)0+045tan -(12)-1+8;(2)(6分)解方程:2x x -1+11-x =3.22.(本题共12分) 如图所示,点O 在∠APB 的平分线上,⊙O 与P A 相切于点C.(1)求证:直线PB 与⊙O 相切;(6分)(2)PO 的延长线与⊙O 交于点E ,若⊙O 的半径为3,PC =4.求弦CE 的长.(6分)五、(本题共12分)23. 为了提高中学生身体素质,学校开设了A.篮球,B.足球,C.跳绳,D.羽毛球四种体育活动.为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了_____名学生;(3分)(2)请补全两幅统计图;(4分)(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.(7分)六、(本题共12分)24. 某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月用水量超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(5分)(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(5分)(3)小黄家3月份用水26吨,他家应交水费多少元?(4分)七、阅读材料题(本题共12分)25. 求不等式(2x -1)(x +3)>0的解集.解:根据“同号两数相乘,积为正”可得:①⎩⎪⎨⎪⎧2x -1>0x +3>0或 ②⎩⎪⎨⎪⎧2x -1<0x +3<0. 解①得x >12;解②得x <-3.∴不等式的解集为x >12或x <-3.请你仿照上述方法解决下列问题:(1)求不等式(2x -3)(x +1)<0的解集;(6分)(2)求不等式13x -1x +2 ≥0的解集.(6分)中考简单中档题题组特训(七)(时间:40分钟,分值:60分)20. (本题满分10分,(1)、(2)小题各5分)(1)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上);①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;(2分)②把△A1B1C1绕点A1按逆时针方向旋转90°后得△A1B2C2,如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.(3分)(2)解方程:xx-2-8x2-4=1x+2.(5分)21. (本题满分10分)“2016年国际大数据产业博览会”于5月25日至5月29日在贵阳举行.参展内容为:A——经济和社会发展;B——产业与应用;C——技术与趋势;D——安全和隐私保护;E——电子商务,共五大板块.为了解观众对五大板块的“关注情况”,某机构进行了随机问卷调查,并将调查结果绘制成如下两幅统计图(均不完整),请根据统计图中提供的信息,解答下列问题:(1)本次随机调查了名观众?(2分)(2)请补全统计图,并求出扇形统计图中“D——安全和隐私保护”所对应的扇形圆心角的度数.(5分)(3)据相关报道,本次博览会共吸引了90000名观众前来参观,请估计关注“E——电子商务”的人数是多少?(3分) 22. (本题满分6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A. 唐诗;B. 宋词;C. 论语;D. 三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2分)(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.(4分)23. (本题满分10分)已知二次函数y=x2+bx+c的图象与y轴交于点C(0,-6),与x轴的一个交点坐标是A(-2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(6分)运行区间票价起点站终点站一等座二等座都匀桂林95(元)60(元)(2)将二次函数的图象沿x 轴向左平移52个单位长度,当y <0时,求x 的取值范围.(4分)24. (本题满分12分)如图,AB 是⊙O 的直径,点D 是AE ︵上一点,且∠BDE =∠CBE ,BD 与AE 交于点F .(1)求证:BC 是⊙O 的切线;(4分)(2)若BD 平分∠ABE ,求证:DE 2=DF ·DB ;(4分)(3)在(2)的条件下,延长ED 、BA 交于点P ,若P A =AO ,DE =2,求PD 的长.(4分)25. (本题满分12分)都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁.高铁单程票价格如下表所示,二等座学生票可打7.5折.已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2∶1. (1)参加社会实践活动的老师、家长代表与学生各有多少人?(4分) (2)由于各种原因,二等座单程火车票只能买x 张(x .<参加社会实践的总人.........数.),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y 与x 之间的函数关系式.(5分)(3)在(2)的方案下,请求出当x =30时,购买单程火车票的总费用.(3分)中考简单中档题题组特训(八)(时间:40分钟,分值:60分)17. (6分)计算:(12)-2+(π-3.14)0-|3-2|-2cos 30°.18. (6分)先化简:x 2-1x 2-2x +1÷x +1x ·(x -1x ),然后x 在-1,0,1,2四个数中选一个你认为合适的数代入求值.19. (6分)解方程:x +1x -1+41-x 2=1.20. (12分)黔东南州某中学为了解本校学生平均每天的课外学习时间情况,随机抽取部分学生进行问卷调查,并将调查结果分为A 、B 、C 、D 四个等级,设学习时间为t (小时).A :t <1,B :1≤t <1.5,C :1.5≤t <2,D: t ≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整;(2)本次抽样调查中,学习时间的中位数落在哪个等级内?(3)表示B 等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时.若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.21. (10分)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD )恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30°,在C 处测得电线杆顶端A 的仰角为45°,斜坡与地面成60°角,CD =4 m ,请你根据这些数据求电线杆的高(AB).(结果精确到1 m,参考数据:2≈1.4,3≈1.7)22. (10分)如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE·PO.(1)求证:PC是⊙O的切线.(2)若OE∶EA=1∶2,P A=6,求⊙O的半径.23. (10分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18-10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低售价购买?(2)写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因:当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?中考简单中档题题组特训(九)(时间:40分钟,分值:60分)21. (本题共12分)(1)计算:|-2|-2cos 45°-(12)-1+(tan 80°-π2016)0+8.(2)化简:(x 2+2x -2x +1-2)÷x -2x +1-2x ,再代入一个合适的x 求值.22.(本题共12分)如图,点A 是⊙O 直径BD 延长线上的一点,C 在⊙O 上,AC =BC ,AD =C D.(1)求证:AC 是⊙O 的切线;(2)若⊙O 的半径为2,求△ABC 的面积.五、(本题共12分)23. 2016年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题. 频数分布表如下(1)频数分布表中a =______,b =_______,c =_______. (2)补全频数分布直方图. (3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.六、(本题共12分)24. 我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元.相关资料表明:甲、乙两种鱼苗的成活率分别为80%,90%.分组(分) 频数 频率50<x ≤60 2 0.04 60<x ≤70 12 a 70<x ≤80 b 0.36 80<x ≤90 14 0.28 90<x ≤100 c 0.08 合计 50 1(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?七、阅读材料题(本题共12分)25. 求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:91-56=3556-35=2135-21=1421-14=714-7=7所以,91与56的最大公约数是7.请用以上方法解决下列问题:(1)求108与45的最大公约数.(2)求三个数78、104、143的最大公约数.中考简单中档题题组特训(十)(时间:40分钟,分值:60分)20. 计算题(9分):(1)(4分)计算:|3-1|+(-1)2017+4sin60°+ 4.(2)(5分)先化简再求值:(1x-y-1x+y)÷2yx-y,其中x、y满足|x-1|+(y+2)2=0.21. (满分9分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点).(1)(4分)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)(4分)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)(2分)求线段B1C1变换到B1C2的过程中扫过区域的面积.22. (满分10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题是“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项): A. 非常愿意 B. 愿意 C. 不愿意 D. 无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)(2分)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)(4分)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)(4分)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.23. (满分10分)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α-β)的值可以用下面的公式求得:tan(α±β)=tan α±tan β1∓tan α·tan β例如:tan 15°=tan (45°-30°)=tan 45°-tan 30°1+tan 45°·tan 30°=1-331+1×33=(3-3)(3+3) =(3-3)(3-3)(3+3)(3-3)=12-636=2- 3 根据以上材料,解决下列问题:(1)(5分)求tan 75°的值;(2)(5分)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔.文峰塔的木塔年久倾毁,仅存塔基.1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图①).小华想用所学知识来测量该塔的高度,如图②,已知小华站在离塔底中心A 处5.7米的C 处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC 为1.72米,请帮助小华求出文峰塔AB 的高度.(精确到1米,参考数据3≈1.732,2≈1.414)24. (满分10分)2016年12月,黔南州第十届旅游产业发展大会在“中国长寿之乡”——罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮.某“火龙果”经营户有A 、B 两种“火龙果”促销,若买2件A 种“火龙果”和1件B 种“火龙果”,共需120元;若买3件A 种“火龙果”和2件B 种“火龙果”,共需205元.(1)(4分)设A ,B 两种“火龙果”每件售价分别为a 元、b 元,求a 、b 的值;(2)(6分)B 种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B 种“火龙果”100件;若销售单价每上涨1元,B 种“火龙果”每天的销售量就减少5件.①求每天B 种“火龙果”的销售利润y (元)与销售单价x (元)之间的函数关系?②求销售单价为多少元时,B 种“火龙果”每天的销售利润最大,最大利润是多少?25. (满分12分)如图所示,以△ABC 的边AB 为直径作⊙O ,点C 在⊙O 上,BD 是⊙O 的弦,∠A =∠CBD ,过点C 作CF ⊥AB 于点F ,交BD 于点G ,过C 作CE ∥BD 交AB 的延长线于点E .(1)(4分)求证:CE 是⊙O 的切线;(2)(4分)求证:CG =BG ;(3)(4分)若∠DBA =30°,CG =4,求BE 的长.中考简单中档题题组特训(十一)。

《2020年中考数学保A必刷压轴题(湖南长沙专版)》(一):几何综合结论专题(解析版)

《2020年中考数学保A必刷压轴题(湖南长沙专版)》(一):几何综合结论专题(解析版)

《2020年中考数学保A 必刷压轴题(湖南长沙专版)》(一)几何综合结论专题1.(2019•随州)如图,已知正方形ABCD 的边长为a ,E 为CD 边上一点(不与端点重合),将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF . 给出下列判断: ①∠EAG =45°;②若DE =a ,则AG ∥CF ;③若E 为CD 的中点,则△GFC 的面积为a 2;④若CF =FG ,则DE =(﹣1)a ;⑤BG •DE +AF •GE =a 2.其中正确的是 ①②④⑤ .(写出所有正确判断的序号)解:①Q 四边形ABCD 是正方形, AB BC AD a ∴===,Q 将ADE ∆沿AE 对折至AFE ∆,90AFE ADE ABG ∴∠=∠=∠=︒,AF AD AB ==,EF DE =,DAE FAE ∠=∠, 在Rt ABG ∆和Rt AFG ∆中AB AFAG AG =⎧⎨=⎩,Rt ABG Rt AFG(HL)∴∆≅∆, BAG FAG ∴∠=∠,190452GAE GAF EAF ∴∠=∠+∠=⨯︒=︒,故①正确;②BG GF ∴=,BGA FGA ∠=∠, 设BG GF x ==,13DE a =Q ,13EF a ∴=,CG a x ∴=-,在Rt EGC ∆中,13EG x a =+,23CE a =,由勾股定理可得22212()()()33x a a x a +=-+,解得12x a =,此时12BG GF a ==,12CG a =,GC GF ∴=, GFC GCF ∴∠=∠, BGF GFC GCF ∠=∠+∠Q ,22AGB GFC GCF GCF ∴∠=∠+∠=∠, AGB GCF ∴∠=∠, //AG CF ∴,∴②正确;③若E 为CD 的中点,则12DE CE EF a ===,设BG GF y ==,则CG a y =-, 222CG CE EG +=,即22211()()()22a y a a y -+=+,解得,13y a =,13BG GF a ∴==,1233CG a a a =-=,∴12311532aGF EG a a ==+, ∴22211215522315CFG CEG S S a a a ∆∆==⨯⨯⨯=, 故③错误;④当CF FG =,则FGC FCG ∠=∠, 90FGC FEC FCG FCE ∠+∠=∠+∠=︒Q , FEC FCE ∴∠=∠,EF CF GF ∴==, BG GF EF DE ∴===,2EG DE ∴=,CG CE a DE ==-,∴EG =)2a DE DE -=,1)DE a ∴=,故④正确;⑤设BG GF b ==,DE EF c ==,则CG a b =-,CE a c =-, 由勾股定理得,222()()()b c a b a c +=-+-,整理得2bc a ab ac =--,∴2111()()()()222CEG S a b a c a ab ac bc bc bc bc ∆=--=--+=+=,即CEG S BG DE ∆=g ,ABG AFG S S ∆∆=Q ,AEF ADE S S ∆∆=,∴1222AGE ABGED S S AF EG AF EG ∆==⨯⋅=⋅五边形, CEG ABCD ABGED S S S ∆+=Q 正方形五边形, 2BG DE AF EG a ∴+=g g ,故⑤正确.故答案为:①②④⑤.2.(2019•咸宁)如图,先有一张矩形纸片ABCD ,AB =4,BC =8,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论: ①CQ =CD ;②四边形CMPN 是菱形; ③P ,A 重合时,MN =2;④△PQM 的面积S 的取值范围是3≤S ≤5.其中正确的是 ②③ (把正确结论的序号都填上).解:如图1,∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC=,∴,∴,∴MN=2QN=2.故③正确;当MN过点D时,如图3,此时,CN最短,四边形CMPN的面积最小,则S最小为S=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=,∴4≤S≤5,故④错误.故答案为:②③.3.(2019•滨州)如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的结论有①③④(填写所有正确结论的序号)解:∵四边形ABCD是平行四边形,∴CD∥AB,OD=OB,OA=OC,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC平分∠DCB,∴∠ECB=∠DCB=60°,∴∠EBC=∠BCE=∠CEB=60°,∴△ECB是等边三角形,∴EB=BC,∵AB=2BC,∴EA=EB=EC,∴∠ACB=90°,∵OA=OC,EA=EB,∴OE∥BC,∴∠AOE=∠ACB=90°,∴EO⊥AC,故①正确,∵OE∥BC,∴△OEF∽△BCF,∴==,∴OF=OB,∴S△AOD=S△BOC=3S△OCF,故②错误,设BC=BE=EC=a,则AB=2a,AC=a,OD=OB==a,∴BD=a,∴AC:BD=a:a=:7,故③正确,∵OF=OB=a,∴BF=a,∴BF2=a2,OF•DF=a•(a+a)=a2,∴BF2=OF•DF,故④正确,故答案为①③④.4.(2019•滨州)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO 平分∠BMC.其中正确的个数为()A.4B.3C.2D.1解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;正确的个数有3个;故选:B.5.(2019•眉山)如图,在菱形ABCD中,已知AB=4,∠ABC=60°,∠EAF=60°,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∽△EFC;④若∠BAE=15°,则点F到BC的距离为2﹣2.则其中正确结论的个数是()A.1个B.2个C.3个D.4个解:∵四边形ABCD是菱形,∴AB=BC,∠ACB=∠ACD,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠ACD=∠ACB=60°,∴∠ABE=∠ACF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴AE=AF,BE=CF.故①正确;∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,∵∠AEB+∠CEF=∠AEB+∠EAB=60°,∴∠EAB=∠CEF,故②正确;∵∠ACD=∠ACB=60°,∴∠ECF=60°,∵∠AEB<60°,∴△ABE和△EFC不会相似,故③不正确;过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在Rt△AGB中,∵∠ABC=60°,AB=4,∴BG=2,AG=2,在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴∠ABE=∠ACF=120°,EB=CF=2﹣2,∴∠FCE=60°,在Rt△CHF中,∵∠CFH=30°,CF=2﹣2,∴CH=﹣1.∴FH=(﹣1)=3﹣.∴点F到BC的距离为3﹣,故④不正确.综上,正确结论的个数是2个,故选:B.6.(2019•达州)矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0).其中正确结论的个数是()A.1个B.2个C.3个D.4个解:①∵四边形OABC是矩形,B(2,2),∴OA=BC=2;故①正确;②∵点D为OA的中点,∴OD=OA=,∴PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,∴PE⊥BC,四边形OFEC是矩形,∴EF=OC=2,设PE=a,则PF=EF﹣PE=2﹣a,在Rt△BEP中,tan∠CBO===,∴BE=PE=a,∴CE=BC﹣BE=2﹣a=(2﹣a),∵PD⊥PC,∴∠CPE+∠FPD=90°,∵∠CPE+∠PCE=90°,∴∠FPD=∠ECP,∵∠CEP=∠PFD=90°,∴△CEP∽△PFD,∴=,∴=,∴FD=,∴tan∠PDC===,∴∠PDC=60°,故③正确;④∵B(2,2),四边形OABC是矩形,∴OA=2,AB=2,∵tan∠AOB==,∴∠AOB=30°,当△ODP为等腰三角形时,Ⅰ、OD=PD,∴∠DOP=∠DPO=30°,∴∠ODP=60°,∴∠ODC=60°,∴OD=OC=,Ⅱ、OP=OD,∴∠ODP=∠OPD=75°,∵∠COD=∠CPD=90°,∴∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,∴∠POD=∠PDO=30°,∴∠OCP=150°>90°故不合题意舍去,∴当△ODP为等腰三角形时,点D的坐标为(,0).故④正确,故选:D.7.(2019•南充)如图,矩形硬纸片ABCD的顶点A在y轴的正半轴及原点上滑动,顶点B在x轴的正半轴及原点上滑动,点E为AB的中点,AB=24,BC=5.给出下列结论:①点A从点O出发,到点B运动至点O为止,点E经过的路径长为12π;②△OAB的面积最大值为144;③当OD最大时,点D的坐标为(,).其中正确的结论是②③.(填写序号)解:∵点E为AB的中点,AB=24,∴OE=,∴AB的中点E的运动轨迹是以点O为圆心,12为半径的一段圆弧,∵∠AOB=90°,∴点E经过的路径长为,故①错误;当△OAB的面积最大时,因为AB=24,所以△OAB为等腰直角三角形,即OA=OB,∵E为AB的中点,∴OE⊥AB,OE=,∴=144,故②正确;如图,当O、E、D三点共线时,OD最大,过点D作DF⊥y轴于点F,∵AD=BC=5,AE=,∴=13,∴OD=DE+OE=13+12=25,设DF=x,∴,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DF A=∠AOB,∴∠DAF=∠ABO,∴△DF A∽△AOB∴,∴,∴,∵E为AB的中点,∠AOB=90°,∴AE=OE,∴∠AOE=∠OAE,∴△DFO∽△BOA,∴,∴,解得x=,x=﹣舍去,∴,∴.故③正确.故答案为:②③.8.(2019•岳阳)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是①②④.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.解:连接OM,PEQ为Oe的切线,OM PC∴⊥,AC PC⊥Q,//OM AC∴,CAM AMO∴∠=∠,OA OM=Q,OAM AMO∠=∠,CAM OAM∴∠=∠,即AM平分CAB∠,故①正确;ABQ为Oe的直径,90AMB∴∠=︒,CAM MAB∠=∠Q,ACM AMB∠=∠,ACM AMB∴∆∆∽,∴AC AM AM AB=,2AM AC AB∴=g,故②正确;30APE∠=︒Q,903060MOP OMP APE ∴∠=∠-∠=︒-︒=︒,4AB =Q ,2OB ∴=,∴·BM 的长为60221803ππ⨯=g ,故③错误; BD PC ⊥Q ,AC PC ⊥,//BD AC ∴, ∴13PB BD PA AC ==, 13PB PA ∴=, ∴12PB AB =,12BD OM =, PB OB OA ∴==,∴在Rt OMP ∆中,22OM BD ==,4OP ∴=,30OPM ∴∠=︒,PM ∴=,CM DM DP ∴===④正确.故答案为:①②④.9.(2019•天门)如图,AB 为⊙O 的直径,BC 为⊙O 的切线,弦AD ∥OC ,直线CD 交BA 的延长线于点E ,连接BD .下列结论:①CD 是⊙O 的切线;②CO ⊥DB ;③△EDA ∽△EBD ;④ED •BC =BO •BE .其中正确结论的个数有( )A.4个B.3个C.2个D.1个解:连结DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故①正确,∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故②正确;∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故③正确;∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故④正确;故选:A.10.(2019•连云港)如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC =MP;④BP=AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个解:∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME=180°=90°,∴△CMP是直角三角形;故①正确;∵沿着CM折叠,点D的对应点为E,∴∠D=∠MEC=90°,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠MEG=∠A=90°,∴∠GEC=180°,∴点C、E、G在同一条直线上,故②错误;∵AD=2AB,∴设AB=x,则AD=2x,∵将矩形ABCD对折,得到折痕MN;∴DM=AD=x,∴CM==x,∵∠PMC=90°,MN⊥PC,∴CM2=CN•CP,∴CP==x,∴PN=CP﹣CN=x,∴PM==x,∴==,∴PC=MP,故③错误;∵PC=x,∴PB=2x﹣x=x,∴=,∴PB=AB,故④,∵CD=CE,EG=AB,AB=CD,∴CE=EG,∵∠CEM=∠G=90°,∴FE∥PG,∴CF=PF,∵∠PMC=90°,∴CF=PF=MF,∴点F是△CMP外接圆的圆心,故⑤正确;故选:B.。

中考数学必刷题基础练习册

中考数学必刷题基础练习册

中考数学必刷题基础练习册【练习一:有理数的加减法】1. 计算下列各题的和:- 5 + (-3)- (-8) + 7- 12 + (-9) + 62. 填空题:- 如果 a = -3,b = 5,那么 a + b = ____- 如果 x = 2,y = -4,那么 x - y = ____- 如果 m = -7,n = 3,那么 m + n = ____【练习二:有理数的乘除法】1. 计算下列各题的积:- (-2) × 3- 4 × (-5)- (-6) × (-7)2. 计算下列各题的商:- 12 ÷ (-3)- (-18) ÷ 6- 24 ÷ (-4)【练习三:绝对值和相反数】1. 求下列各数的绝对值:- |-5|- |4|- |-9|2. 求下列各数的相反数:- -3 的相反数是 ____- 0 的相反数是 ____- 7 的相反数是 ____【练习四:解一元一次方程】1. 解下列方程:- 3x + 5 = 14- 2x - 7 = 1- 4x = 202. 应用题:- 一个数的3倍加上5等于14,求这个数。

- 一个数的2倍减去7等于1,求这个数。

- 如果一个数的4倍是20,求这个数。

【练习五:代数式求值】1. 已知 a = 2,b = -3,求下列代数式的值: - 3a + 2b- a - b2. 已知 x = 4,y = -1,求下列代数式的值: - 2x + 3y- x^2 - y^2【练习六:几何图形的周长与面积】1. 计算下列图形的周长:- 一个正方形,边长为5厘米。

- 一个长方形,长为8厘米,宽为4厘米。

2. 计算下列图形的面积:- 一个圆,半径为3厘米。

- 一个三角形,底为6厘米,高为4厘米。

【结束语】通过本练习册的练习,同学们应该能够掌握中考数学中的基础知识点,包括有理数的加减乘除、绝对值和相反数、一元一次方程的解法、代数式的求值以及几何图形的周长与面积的计算。

【2021中考数学冲刺】圆的综合必刷题(一)含答案

【2021中考数学冲刺】圆的综合必刷题(一)含答案

2021年中考二轮复习专题数学圆的综合(一)1.如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF=,求的值.2.如图,AC为⊙O的直径,AP为⊙O的切线,M是AP上一点,过点M的直线与⊙O交于点B,D两点,与AC交于点E,连接AB,AD,AB=BE.(1)求证:AB=BM;(2)若AB=3,AD=,求⊙O的半径.3.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,与BC交于点M,与AB的另一个交点为E,过M作MN⊥AB,垂足为N.(1)求证:MN是⊙O的切线;(2)若⊙O的直径为5,sin B=,求ED的长.4.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).5.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.6.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=,求⊙O的半径.7.如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP =CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.8.如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D 作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.9.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.(1)求证:AE=ED;(2)若AB=6,∠ABC=30°,求图中阴影部分的面积.10.如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若AC=10,CD=6,求DE的长.11.如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P从点B出发,沿AB边向终点A以每秒1cm的速度运动,同时点Q从点C出发沿C→B→A向终点A以每秒3cm的速度运动,P、Q其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.解答下列问题:(1)当Q在BC边时,①当t为秒时,PQ的长为2cm?②连接AQ,当t为几秒时,△APQ的面积等于16cm2?(2)如图2,以P为圆心,PQ长为半径作⊙P,在整个运动过程中,是否存在这样的t 值,使⊙P正好与△ABD的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.12.如图,AB是半圆O的直径,C是的中点,点D在上,AC、BD相交于点E,F是BD 上一点,且BF=AD.(1)求证:CF⊥CD;(2)连接AF,若∠CAF=2∠ABF;①求证:AC=AF;②当△ACF的面积为12时,求AC的长.13.如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED 的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求CF的长.14.已知AB是⊙O的直径,C是圆外一点,直线CA交⊙O于点D,B、D不重合,AE平分∠CAB交⊙O于点E,过E作EF⊥CA,垂足为F.(1)判断EF与⊙O的位置关系,并说明理由;(2)若EF=2AF,⊙O的直径为10,求AD.15.如图,在Rt△ABC中,∠C=90°,点O在斜边AB上,以O为圆心,OB为半径作⊙O,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若∠B=30°,AO=,求的长;(3)若AC=2,BD=3,求AE的长.参考答案1.解:(1)∵AC为直径,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵∠DAE=∠ACE,∴∠DAC+∠DAE=90°,即∠CAE=90°,∴AP是⊙O的切线;(2)连接DB,如图1,∵PA和PB都是切线,∴PA=PB,∠OPA=∠OPB,PO⊥AB,∵PD=PD,∴△DPA≌△DPB(SAS),∴AD=BD,∴∠ABD=∠BAD,∵∠ACD=∠ABD,又∠DAE=∠ACE,∴∠DAF=∠DAE,∵AC是直径,∴∠ADE=∠ADC=90°,∴∠ADE=∠AFD=90°,∴△FAD∽△DAE;(3)∵∠AFO=∠OAP=90°,∠AOF=∠POA,∴△AOF∽△POA,∴,∴,∴PA=2AO=AC,∵∠AFD=∠CAE=90°,∠DAF=∠ABD=∠ACE,∴△AFD∽△CAE,∴,∴,∵,不妨设OF=x,则AF=2x,∴,∴,∴,∴.2.解:(1)∵AP为⊙O的切线,AC为⊙O的直径,∴AP⊥AC,∴∠CAB+∠PAB=90°,∴∠AMD+∠AEB=90°,∵AB=BE,∴∠AEB=∠CAB,∴∠AMD=∠PAB,∴AB=BM.(2)连接BC,∵AC为直径,∴∠ABC=90°,∴∠C+∠CAB=90°,∵∠CAB+∠PAB=90°∴∠C=∠PAB,∵∠AMD=∠MAB,∠C=∠D,∴∠AMD=∠D=∠C,∴AM=AD=,∵AB=3,AB=BM=BE,∴EM=6,∴由勾股定理可知:AE==,∵∠AMD=∠C,∠EAM=∠ABC=90°,∴△MAE∽△CBA,∴=,∴,∴CA=5,∴⊙O的半径为2.5.3.(1)证明:连接OM,如图1,∵OC=OM,∴∠OCM=∠OMC,在Rt△ABC中,CD是斜边AB上的中线,∴CD=AB=BD,∴∠DCB=∠DBC,∴∠OMC=∠DBC,∴OM∥BD,∵MN⊥BD,∴OM⊥MN,∵OM过O,∴MN是⊙O的切线;(2)解:连接DM,CE,∵CD是⊙O的直径,∴∠CED=90°,∠DMC=90°,即DM⊥BC,CE⊥AB,由(1)知:BD=CD=5,∴M为BC的中点,∵sin B=,∴cos B=,在Rt△BMD中,BM=BD•cos B=4,∴BC=2BM=8,在Rt△CEB中,BE=BC•cos B=,∴ED=BE﹣BD=﹣5=.4.解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴的长度==,∴阴影部分的周长=PA+PD+=r+r+r=(+1+)r.5.(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∵CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.6.解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴AD∥OC,∵AD⊥DC,∴OC⊥DC,又OC是⊙O的半径,∴DC为⊙O的切线;(2)过点O作OE⊥AC于点E,在Rt△ADC中,AD=3,DC=,∴tan∠DAC==,∴∠DAC=30°,∴AC=2DC=2,∵OE⊥AC,根据垂径定理,得AE=EC=AC=,∵∠EAO=∠DAC=30°,∴OA==2,∴⊙O的半径为2.7.解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,∵∠CPB=∠APO,∴∠CBP=∠APO,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBC是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB==,∴图中阴影部分的面积=S△OBC ﹣S扇形OBD=1×﹣=﹣.8.证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠AEF=∠EAF,∴AF=EF.9.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,又∵OC为半径,∴AE=ED,(2)解:连接CD,OD,∵OC=OB,∴∠OCB=∠ABC=30°,∴∠AOC=∠OCB+∠ABC=60°,∵OC⊥AD,∴=,∴∠COD=∠AOC=60°,∴∠AOD=120°,∵AB=6,∴BD=3,AD=3,∵OA=OB,AE=ED,∴OE==,∴S阴影=S扇形AOD﹣S△AOD=﹣×=3π﹣.10.(1)证明:连接OD,如图所示:∵AB=AC,∵OC=OD,∴∠ODC=∠OCD,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴EF⊥OD,又∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:连接AD,∵AC为⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴BD=CD=6.在Rt△ACD中,AC=10,CD=6,∴AD===8,又∵DE⊥AB,AB=AC=10,=AB•DE=AD•BD,∴S△ABD即×10×DE=×8×6,∴DE=4.8.11.解:(1)①由题意得:BP=t,CQ=3t,则AP=6﹣t,BQ=BC﹣CQ=8﹣3t,∵四边形ABCD是矩形,∴∠ABC=90°,在Rt△BCP中,由勾股定理得:BP2+BQ2=PQ2,即t2+(8﹣3t)2=(2)2,解得:t=2,或t=(不合题意舍去),∴t=2,即当t为2秒时,PQ的长为2cm,故答案为:2;②如图1所示:由题意得:点Q在BC边上,∵△APQ的面积=AP×BQ=16,∴×(6﹣t)(8﹣3t)=16,解得:t=,或t=8(不合题意舍去),∴当t为秒时,△APQ的面积等于16cm2;(2)存在这样的t值,使⊙P正好与△ABD的边AD或BD相切,此时Q在AB上,且t>s,理由如下:①若与BD相切,过P作PK⊥BD于K,如图3所示:则∠PKB=90°,PK=PQ=PB﹣BQ=t﹣(3t﹣8)=8﹣2t,∵四边形ABCD是矩形,∴∠BAD=90°=∠PKB,AD=BC=8,∴BD===10,∵∠PBK=∠DBA,∴△PBK∽△DBA,∴=,即=,解得:t=;②若与AD相切,Q在BC上,PQ=PA,Q在BC上,如图2﹣1所示:则PQ=PA=6﹣t,在Rt△PBQ中,由勾股定理得:t2+(8﹣3t)2=(6﹣t)2,解得:t=,或t=(不合题意舍去),∴t=;③若与AD相切,当P、Q两点中Q先到A点时,如图4所示:此时t=,∴⊙P的半径为6﹣=;④若与AD相切,当点Q未到达点A时,如图5所示:则PA=PQ,∴6﹣t=t﹣(3t﹣8),解得:t=2,当t=2时,PB=2,则AP=6﹣2=4≠PQ,故舍去;综上所述,t的值为秒或秒或秒.12.(1)证明:∵AB是直径,∴∠ACB=90°,∵C是的中点,∴=,∴∠AC=CB,∵∠CBF=∠CAD,BF=AD,∴△CBF≌△CAD(SAS),∴∠BCF=∠ACD,∴∠FCD=∠ACB=90°,∴CF⊥CD.(2)①证明:过点A作AG⊥CF于点G,则∠FGA=∠FCD=90°,∴AG∥CD,∴∠CAG=∠ACD=∠ABF,∵∠CAF=2∠ABF,∴∠CAF=2∠CAG,即∠CAG=∠FAG,∵∠CAG+∠ACG=90°,∠FAG+∠AFG=90°,∴∠ACG=∠AFG,∴AC=AF.②过点A作AG⊥CF于点G,过点B作BH⊥CF交CF的延长线于点H.则∠BHC=∠CGA=90°.∴∠CAG+∠GCA=90°,∵∠BCH+∠GCA=90°,∴∠BCH=∠CAG,∵CB=CA,∴△BCH≌△CAG(AAS),∴CH=AG,BH=CG,∵∠FCD=90°,CF=CD,∴∠CFD=∠CDF=45°,∵∠BHF=90°,∴∠BFH=45°=∠FBH,∴BH=HF,∴HF=CG,∵AC=AF,AG⊥CF,∴CF=2CG,∴AG=CH=3CG,设CG=x,则CF=2x,AG=3x,=•CF•AG=×2x×3x=12,则有,S△ACF∴x=2或﹣2(舍弃),∴CG=2,AG=6,∵∠AGC=90°,∴AC===2.13.(1)证明:如图,连接OD,AD,∵AC是直径,∴AD⊥BC,又∵在△ABC中,AB=AC,∴BD=CD,∵AO=OC,∴OD∥AB,又∵DE⊥AB,∴DE⊥OD,∵OD为⊙O半径,∴DE是⊙O的切线;(2)解:∵⊙O的半径为2,AB=AC,∴AC=AB=2+2=4,∵BE=1,∴AE=4﹣1=3,过O作OH⊥AB于H,则四边形ODEH是矩形,∴EH=OD=2,∴AH=1,∴AH=AO,∴∠AOH=30°,∴∠BAC=60°,∴AF=2AE=6,∴CF=AF﹣AC=2.∵DE⊥AB,AD⊥BC,∴∠AED=∠BED=∠ADB=90°,∴∠DAE+∠ADE=90°,∠ADE+∠BDE=90°,∴∠DAE=∠BDE,∴△AED∽△DEB,∴=,∴=,解得:DE=,∵OD∥AB,∴△FOD∽△FAE,∴=,∴=,解得:FD=2,在Rt△FOD中,FO===4,∴CF=FO﹣OC=4﹣2=2.14.解:(1)EF 与⊙O 相切,理由如下:连接OE ,∵OA =OE ,∴∠OAE =∠OEA ,∵AE 平分∠CAB ,∴∠CAE =∠OAE ,∴∠CAE =∠OEA ,∴OE ∥CD ,∵EF ⊥CA ,∴OE ⊥EF ,∴EF 与⊙O 相切;(2)过O 作OH ⊥AD 于H ,∵EF ⊥CA ,OE ⊥EF ,∴四边形OEFH 是矩形,设AF =x ,则EF =OH =2x ,AH =5﹣x , 在Rt △OAH 中,AH 2+OH 2=OA 2,∴(5﹣x )2+(2x )2=52,解得x 1=2,x 2=0(舍去),∴AH =5﹣2=3,∴AD =2AH =6.15.解:(1)如图1,连接OD,∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵OB=OD,∴∠B=∠ODB,∵∠CAD=∠B,∴∠CAD=∠ODB,∴∠ODB+∠ADC=90°,∴∠ADO=90°,又∵OD是半径,∴AD是⊙O的切线;(2)∵∠B=30°,∠ACB=90°,∴∠CAD=30°,∠CAB=60°,∴∠DAB=30°,∴OD=AO,∴OD=,∵OD=OB,∠B=30°,∴∠B=∠ODB=30°,∴∠DOB=120°,∴劣弧BD的长==π;(3)如图2,连接DE,∵BE是直径,∴∠BDE=90°,∴∠ACB=∠EDB=90°,∴AC∥DE,∵∠B=∠CAD,∠ACD=∠EDB,∴△ACD∽△BDE,∴,∴设CD=2x,DE=3x,∵AC∥DE,∴,∴,∴x=,∴CD=1,BC=BD+CD=4,∴AB===2,∵DE∥AC,∴,∴AE=×2=.。

2024年九年级数学中考必刷题:二次函数中的相似三角形问题专项特训(含答案)

2024年九年级数学中考必刷题:二次函数中的相似三角形问题专项特训(含答案)

2024年九年级数学中考必刷题:二次函数中的相似三角形问题专项特训(1)求抛物线的表达式;(2)如图1,直线交轴于点,点为线段下方抛物线上的一点,过点作轴交直线于点,在直线上取点,连接,使得的最大值及此时点的坐标;(3)连接,把原抛物线沿射线方向平移个单位长度,是平移后新抛物线上的一点,过点作垂直轴于点,连接,直接写出所有使得的点的横坐标.(1)求抛物线的表达式;(2)如图1,连接,在y 轴的负半轴是否存在点Q ,使得?若存在,求Q 点的坐标;若不存在,请说明理由.CD x ()2,0D P AC PH y ∥CD H CD Q PQ HQ PQ =524PQ PH -P BC 214y x bx c =++BC 25M MN x N AM AMN ABC ∽ M AC 12OQC OAC ∠∠=(1)如图1,当,时,求的值;(2)如图2,当时,过点作直线的垂线交轴于点,求坐标;(3)如图3,当时,平移直线,使之与抛物线交于两点,点关于轴的对称点为,求证:.4.在平面直角坐标系中,已知抛物线与x 轴分别交于(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接交于点E ,求(3)如图2,连接,过点O 作直线,点P ,Q 分别为直线点,试探究:在第一象限是否存在这样的点P ,Q ,使.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,点,,抛物线1a =1k =b 12a =A l y T T 1k =l C M N ,P y Q MQP NQP ∠=∠xOy 23y ax ax c =-+(1,0)A -AD BC ,AC BC ,l BC ∥PQB CAB ∽()1,2A ()5,0B 22y ax =-(1)求点C 的坐标和直线的表达式;(2)设抛物线分别交边①若与相似,求抛物线表达式;②若是等腰三角形,则a 的值为6.如图,抛物线经过(1)求抛物线的解析式:(2)点为第四象限抛物线上一动点,点横坐标为.①如图1,若时,求的值:②如图2,直线与抛物线交于点,连接(1)求抛物线的解析式;AB 22(0)y ax ax a =->CDB △BOA △OAE △2y x mx n =++C C BC 90ACB ∠=︒t BD E(1)若,.①如图1,求点A 、B 、C 和点P 的坐标;②如图2,当时,求点M 的坐标;(2)若点A 的坐标为,且,当标.(1)求点、、的坐标;(2)连接,抛物线的对称轴、为顶点的三角形与理由.2b =3c =3105MN =,03c ⎛⎫- ⎪⎝⎭PM BC ∥93102AN MN +=A B C BC C D(1)求抛物线的解析式及点C 的坐标;(2)求证:是直角三角形;(3)若点N 为x 轴上的一个动点,过点N 作轴与抛物线交于点M ,则是否存在以为顶点的三角形与相似?若存在,请求出点N的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线的顶点P 在抛物线上.(1)求a 的值;(2)直线与抛物线,分别交于点A ,B ,若的最大值为3,请求出m 的值;(3)Q 是x 轴的正半轴上一点,且的中点M 恰好在抛物线上.试探究:此时无论m 为何负值,在y 轴的负半轴上是否存在定点G ,使总为直角?若存在,请求出点G 的坐标;若不存在,请说明理由.12.如图,二次函数经过点、,点P 是x 轴正半轴上一个动点,过点P 作垂直于x 轴的直线分别交抛物线和直线于点E 和点F .设点P 的横坐标为m .ABC MN x ⊥O M N ,,ABC xOy ()()221:20C y x m m m =--+<22:C y ax =()x t t m =>1C 2C AB PQ 2C PQG ∠2y x bx c =-++()40A ,()02B ,AB(1)求二次函数的表达式;(2)若E 、F 、P 三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求m 的值.(3)点P 在线段上时,若以B 、E 、F 为顶点的三角形与相似,求m 的值.13.如图,已知二次函数的图象经过,两点.(1)求此二次函数的解析式;(2)设二次函数的图象与轴的另一个交点为,它的顶点为,连接,,,.请你判断与是否相似,并说明理由;(3)当时,求此二次函数的最大值和最小值.14.如图,已知抛物线与轴交于两点,与轴交于点,.OA FPA V 2y x bx c =-++()1,0A -()0,3B 2y x bx c =-++x C D AB BC BD CD BCD △OBA △03x ≤≤y 21:3C y ax bx =++x ,A B y C 3OB OC OA ==(1)求抛物线的解析式;(2)如图2,已知点为第一象限内抛物线上的一点,点的坐标为,,求点的坐标;(3)如图3,将抛物线平移到以坐标原点为顶点,记为,点在抛物线上,过点作分别交抛物线于两点,求证:直线过定点,并求出该定点的坐标.15.在平面直角坐标系中,点B 从原点出发以每秒1个单位长度的速度沿x 轴正方向运动.是等腰直角三角形,其中,,点C 在第一象限,过C 作轴,垂足为D ,连接交于E ,设运动时间为秒.(1)证明:≌;(2)当与相似时,求t 的值;(3)在(2)条件下,抛物线m 经过A ,B ,D 三点,请问在抛物线m 上否存在点P ,使得面积与的面积相等?若存在,请求出.1C P 1C Q ()1,045POC OCQ ∠+∠=︒P 1C 2C ()1,1T -2C T TM TN ⊥2C ,M N MN ABC 90ABC ∠=︒()0,2A CD x ⊥AD BC (0)t t >AOB BDC AEC △BED ADP △ABD △参考答案:。

九年级数学中考必刷题答案人教版

九年级数学中考必刷题答案人教版

1.如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AG BE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,,则BC= .【解析】(1)①∵四边形ABCD 是正方形,∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°,∴EG=EC ,∴四边形CEGF 是正方形;②由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CG CE,GE ∥AB ,∴AG CG BE CE==;(2)连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =2、CB CA =2,∴CG CE =CA CB= ∴△ACG ∽△BCE ,∴AG CA BE CB ==∴线段AG 与BE 之间的数量关系为BE ;(3)∵∠CEF=45°,点B 、E 、F 三点共线,∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG ,∴△AHG ∽△CHA , ∴AG GH AH AC AH CH==,设BC=CD=AD=a ,则a ,则由AG GHAC AH =AH =,∴AH=23a , 则DH=AD ﹣AH=13a ,, ∴由AG AH AC CH =2a = 解得:故答案为.2.在矩形ABCD 中,AB=12,P 是边AB 上一点,把△PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE ⊥CG ,垂足为E 且在AD 上,BE 交PC 于点F (1)如图1,若点E 是AD 的中点,求证:△AEB ≌△DEC ;(2)如图2,①求证:BP=BF ;②当AD=25,且AE <DE 时,求cos ∠PCB 的值;③当BP=9时,求BE•EF 的值.【答案】(1)证明见解析;(2)①证明见解析;;③108. 【解析】 (1)在矩形ABCD 中,∠A=∠D=90°,AB=DC ,∵E 是AD 中点,∴AE=DE ,在△ABE 和△DCE 中,90AB DC A D AE DE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△DCE (SAS );(2)①在矩形ABCD ,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴AB DE AE CD=,设AE=x,∴DE=25﹣x,∴122512xx-=,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴EF CE PG CG=,设BP=BF=PG=y,∴152025yy-=,∴y=253,∴BP=253,在Rt△PBC中,,cos∠PCB=BCPC;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG=BP,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴EF AB GF BE=,∴BE•EF=AB•GF=12×9=108.3.如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若23DFFO=,求证:CD=DH.【解析】(1)证明:连接OA ,由圆周角定理得,∠ACB =∠ADB ,∵∠ADE =∠ACB ,∴∠ADE =∠ADB ,∵BD 是直径,∴∠DAB =∠DAE =90°,在△DAB 和△DAE 中,BAD EAD DA DABDA EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAB ≌△DAE ,∴AB =AE ,又∵OB =OD ,∴OA ∥DE ,又∵AH ⊥DE ,∴OA ⊥AH ,∴AH 是⊙O 的切线;(2)解:由(1)知,∠E =∠DBE ,∠DBE =∠ACD ,∴∠E =∠ACD ,∴AE =AC =AB =6.在Rt △ABD 中,AB =6,BD =8,∠ADE =∠ACB ,∴sin ∠ADB =68=34,即sin ∠ACB =34; (3)证明:由(2)知,OA 是△BDE 的中位线,∴OA ∥DE ,OA =12DE .∴△CDF∽△AOF,∴CD DFAO OF==23,∴CD=23OA=13DE,即CD=14CE,∵AC=AE,AH⊥CE,∴CH=HE=12 CE,∴CD=12 CH,∴CD=DH.4.在Rt△ABC中,BC=9, CA=12,∠ABC的平分线BD交AC与点D, DE⊥DB交AB于点E.(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;(2)设⊙O交BC于点F,连结EF,求EFAC的值.【答案】(1)见详解;(2)34 EFAC=.【解析】(1)证明:由已知DE⊥DB,⊙O是Rt△BDE的外接圆,∴BE是⊙O的直径,点O是BE的中点,连结OD,∵90C ∠=,∴90DBC BDC ∠+∠=.又∵BD 为∠ABC 的平分线,∴ABD DBC ∠=∠. ∵OB OD =,∴ABD ODB ∠=∠.∴90ODB BDC ∠+∠=,即∴90ODC ∠= 又∵OD 是⊙O 的半径,∴AC 是⊙O 的切线.(2) 解:设⊙O 的半径为r , 在Rt △ABC 中,22222912225AB BC CA =+=+=, ∴15AB =∵A A ∠=∠,90ADO C ∠=∠=,∴△ADO ∽△ACB . ∴AO OD AB BC =.∴15159r r -=. ∴458r =.∴454BE = 又∵BE 是⊙O 的直径.∴90BFE ∠=.∴△BEF ∽△BAC ∴4534154EF BE AC BA ===.。

必刷卷01-2021年中考数学考前信息必刷卷(湖南长沙专用)(原卷版)

必刷卷01-2021年中考数学考前信息必刷卷(湖南长沙专用)(原卷版)

绝密★启用前2021年中考数学考前信息必刷卷(湖南长沙专用)第一模拟注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列各数中,比2-小的数是( )A .1-B .2C .0D .3-2.下列运算正确的是( )A .()2326ab a b =B .2532a a a -=C .235a b ab +=D .()2224a a =++ 3.2020年11月24日22时06分,嫦娥五号探测器3000N 发动机工作约2秒钟,顺利完成第一次轨道修正,继续飞向月球.截至第一次轨道修正前,嫦娥五号探测器各系统状态良好,已在轨飞行约17个小时,距离地球约16万千米,16万千米用科学记数法表示为( )A .41.610km ⨯B .51.610km ⨯C .41610km ⨯D .50.1610km ⨯4.如图的几何体由5个相同的小正方体搭成,从上面看,这个几何体的形状是( )A.B.C.D.5.如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.众数是9 B.中位数是8.5 C.平均数是9 D.方差是76.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于12BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A.2 B.3 C.4 D.67.关于x的方程240x x m-+=有一个根为1-,则另一个根为()A.5 B.2 C.5-D.2-8.抛物线y=(x-2)2+3的顶点坐标为()A.(2,-3) B.(2,3) C.(-2,3) D.(-2,-3)9.如图,在A处测得点P在北偏东60︒方向上,在B处测得点P在北偏东30方向上,若63AP=则点AB两点的距离为()千米.A .4B .43 C .2 D .6 10.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ADC ∠的值为( )A .21313B .313C .23D .3211.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为( )A .3551y x y x +=⎧⎨-=⎩B .3551y x y x -=⎧⎨=-⎩C .15355x y y x ⎧+=⎪⎨⎪=-⎩D .()5351x y x y -=⎧⎨=-⎩12.如图,点A ,B 的坐标分别为(2,0)A 、(0,2)B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,当OM 最大时,M 点的坐标为( )A .21222B .22(22C .3232(44D .22(1,144++ 二、填空题:本题共4小题,每小题3分,共12分。

2023年浙江省台州市中考数学考前必刷真题试卷附解析

2023年浙江省台州市中考数学考前必刷真题试卷附解析

2023年浙江省台州市中考数学考前必刷真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列四组条件中,能判定△ABC与△DEF相似的是()A.∠A=45°,∠B=55°,∠D=45°,∠F=75°B.AB=5,BC=4,∠A=45°,DE=5,EF=4,∠D=45°C.AB=6,BC=5,∠B=40°,DE=12,EF=10,∠E=40°D.AB=BC,∠A=50°,DE=EF,∠E=50°2.如图,在□ABCD中,对角线AC、BD交于点O,则图中全等三角形的对数有()A.2 B.4 C.6 D.83.一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为()A.15,15 B.10,15 C.15,20 D.10,204.若分式x yx y+-中的x、y的值都变为原来的3倍,则此分式的值()A.不变B.是原来的3倍C.是原来的13D.是原来的165. ...依次观察左边三个图形,并判断照此规律从左向右第四个图形是()A.B.C. D.6.当 a=2,b=-1 时,代数式22a b-的值是()A.52B.2 C.32D.127.若两个有理数的和与积都是负数,则这两个有理数()A.都是负数B.都是正数C.一正一负,且正数的绝对值较小D.无法确定二、填空题8.已知一个三角形的周长为12cm ,内切圆的半径为1 cm ,则该三角形的面积是 cm 2. 9.已知正三角形的周长是 6,则它的面积为 . 10.若θ为三角形的一个锐角,且2sin 3θ=,则θ= .11.Rt △ABC 的斜边AB =6厘米,直角边AC =3厘米,以C 为圆心,2厘米为半径的圆和AB 的位置关系是 ;4厘米为半径的圆和AB 的位置关系是 ;若和AB 相切,那么半径长为 .12.在横线上填上图中各图从甲到乙的变换关系:13.写出一个以23x y =⎧⎨=⎩为解的二元一次方程组 . 14.填上适当的式子,使以下等式成立: (1))(222⋅=-+xy xy y x xy ;(2))(22⋅=+++n n n n a a a a . 15.某足协举办了一次足球比赛,记分规则为:胜一场积3 分,平一场积 1 分,负一场 积0分,若甲队比赛了 5 场后共积 7 分,则甲队平 场.16.如图,在2×2的方格中,连结AB 、AC 、AD ,则∠2= ;∠1+∠2+∠3= .17. 某班有40名学生,其中男、女生所占比例如图所示,则该班男生有 人.三、解答题18.随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD ,如图所示,根据图中数据计算坝底 CD 的宽度. (结果保留根号)19.在如图的网格中有一个格点三角形ABC ,请在图中画一个与△ABC•相似且相似比不等于1的格点三角形.20.如图所示,在矩形ABCD 中,对角线AC ,BD 交于点O ,过顶点C 作CE ∥BD ,交•AB 延长线于点E ,求证:AC=CE .21.如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E ,F 分别是垂足,求证:AP=EF . B A C22.已知:如图,在△ABC中,AB∥DE∥FG,BE=CG.求证:DE+FG=AB.23.如图,△ACB、△ECD都是等腰直角三角形,且点C在AD上,AE的延长线与BD交于点F.请你在图中找出一对全等三角形,并写出证明它们全等的过程.24.从2001年2月21日0时起,中国电信执行新的电话收费标准,其中本地网营业区内通话费是:前3 min为0.2元(不足3 min的按3 min计算),以后每min加收0.1元 (不足l min的按l min计算).3月1日,一位学生调查了A,B,C,D,F五位同学某天打本地网营业区内电话的通话时间情况,原始数据如表一:表一A B C D E第一次通话时间3min3min45s3 min55s3min20s6min第二次通话时间04min3min40s4min50sO第三次通话时间O O5min2min O表二时间段(min)频数累计频数O<t≤33<t≤44<t≤55<t≤6(1)问D同学这天的通话费是多少?(2)设通话时间为t(min),试根据表一填写频数(落在某一时间段上的通话次数)分布表(表二);(3)调整前执行的原电话收费标准是:每3min为0.2元(不足3 min的按3 min计算).问:这五位同学这天的实际平均通话费,与用原电话收费标准算出的平均通话费相比,是增多了,还是减少了?若增多,多多少?若减少,少多少?25.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:每人加工件数540450300240210120人数1l2632(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?26.如图所示,图①和图②都是轴对称图形,依照①和②,把③,④也画成轴对称图形.27.如图①所示,长方形通过剪切可以拼成直角三角形,方法如下:仿照上图,用图示的方法,解答下列问题:(1)如图②所示,已知直角三角形,设计一种方案,将它分成若干块,再拼成一个与之等面积的长方形;(2)如图③所示,对任意一个三角形,设计一种方案,把它分成若干块,再拼成一个与它等面积的长方形.28.如图所示,在△ABC中,∠B=35°,∠C=75°,AD是△ABC的角平分线.(1)∠BAC等于多少度?(2)∠ADC等于多少度?29.2004年7月至lO月间哈尔滨市和南京市的月平均气温如下表:(1)?哪个月最低?(2)两市中哪个市的气温下降更快?30.计算:(1)31+(-28)+28+69;(2)21( 1.125)(3)()(0.6)58++-+-+-(3)11(6)( 3.2)(3)5(6)( 3.2)44++-+-++-++(4) ( -25)+34+(-65) +156.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.A4.A5.D6.A7.C二、填空题8.6.9.10.60°11.相离;相交;212.轴对称,旋转,平移13.答案不唯一,如521x y x y +=⎧⎨-=⎩等 14.(1)12-+x y ;(2)n a a ++2115.1 或 416.45°,l35°17.22三、解答题18.在 Rt △ADF 中,∠D=60°,tan AF D DF=,∴9tan 3AF DF D ==⨯=在 Rt △BEC 中,∵∠C=45°,∴△BEC 为等腰直角三角形∴EC= BE=9,在矩形 AFEB 中,FE=AB=10,∴DC DF FE EC ⋅=++10919=+=+19.略20.思路:证四边形BDCE 是平行四边形,得CE=•BD=AC .21.连结PC ,证△APD ≌△CPD22.提示:过点E 作EH ∥AC 交AB 于H ,证明△BHE ≌△GFC .23.△ACE ≌△BCD (SAS ).24.(1)0.9元;(2)略;(3)减少0.08元25.(1)平均数:260(件) 中位数:240(件) 众数:240(件);(2)不合理因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理26.略27.(1)(2)28.(1)70°;(2)70°29.(1)平均气温南京高.哈尔滨7月份最高,10月份最低;南京8月份最高,10月份最低.(2)两市中哈尔滨市的气温下降更快30.(1)100 (2)-3 (3)2 (4)100。

中考数学试卷必刷题及答案

中考数学试卷必刷题及答案

一、选择题1. 下列各数中,绝对值最小的是()A. -3B. 2C. 0D. -1/2答案:C解析:绝对值表示一个数到原点的距离,因此0的绝对值最小。

2. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x^2C. y = 1/xD. y = x^3答案:C解析:反比例函数的定义是y = k/x(k ≠ 0),因此C选项符合反比例函数的定义。

3. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 120°C. 45°D. 90°答案:B解析:三角形内角和为180°,∠A + ∠B + ∠C = 180°,代入已知角度得60° + 45° + ∠C = 180°,解得∠C = 75°。

4. 下列方程中,解为x = 3的是()A. 2x + 4 = 10B. 3x - 6 = 12C. 4x + 2 = 14D. 5x - 5 = 15答案:A解析:将x = 3代入各个方程,只有A选项成立,2 3 + 4 = 10。

5. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. -1/3答案:D解析:有理数是可以表示为两个整数之比的数,只有D选项可以表示为-1除以3。

二、填空题6. 若a > b,则a - b的符号是()答案:+解析:a > b,a减去b后仍然是正数。

7. 二元一次方程组\[\begin{cases}2x + 3y = 8 \\x - y = 1\end{cases}\]的解是()答案:x = 3,y = 2解析:通过消元法或代入法求解,得到x = 3,y = 2。

8. 下列各数中,最接近π的是()A. 3.14B. 3.141C. 3.1416D. 3.14159答案:D解析:π的近似值是3.14159,因此最接近π的是D选项。

2020安徽中考数学考前必刷题(课件) 第1章 第2节 代数式与整式

2020安徽中考数学考前必刷题(课件) 第1章 第2节 代数式与整式

年第 12 题,常以填空题、选择题的形式出现.
20.(2019·包河区期末)因式分解 a2(a-1)+(1-a)的正确结果是
A.(a-1)2(a+1)
B.(a-1)2
(A )
C.(a-1)(a2+1)
D.(1-a)(a2+1)
【解析】原式=(a-1)(a2-1)=(a+1)(a-1)2.
21.(2019·庐阳区校级一模)下列各式中,不能用公式法分解因式的是
10.(2019·宝应期中)已知 a+b=25,ab=156,求下列代数式的值: (1)a2+b2; (2)a3b-2a2b2+ab3. 解:(1)当 a+b=25,ab=156 时,原式=(a+b)2-2ab=252-2×156 =625-312=313. (2)当 a+b=25,ab=156 时,原式=ab(a2-2ab+b2) =ab[(a+b)2-4ab]=156×(252-4×156)=156.
的值为( D )
A.18
B.12
C.9
D.7
【解析】由题意得 3x2-4x+6=9,即 x2-43x=1,则原式=1+6=7.
6.(2019·重庆)按如图所示的运算程序,能使输出 y 值为 1 的是( D )
A.m=1,n=1
B.m=1,n=0
C.m=1,n=2
D.m=2,n=1
【解析】当 m=1,n=1 时,y=2m+1=2+1=3;当 m=1,n=0 时,
A.x2-6x+9
B.-x2+y2
(C )
C.x2+2x
D.-x2+2xy-y2
【解析】x2+2x=x(x+2),不能用公式法分解因式.
22.(2019·平川区期末)已知 54-1 能被 20~30 之间的两个整数整除, 则这两个整数是__2_4_,__2_6__.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学必刷题(1)1.函数中,自变量x的取值范围是()A.x>3B.x≤3C.x≠3D.x<32.如图,正方形ABCD的边长为2,边AB在x轴的正半轴上,边CD在第一象限,点E为BC的中点.若点D和点E在反比例函数(x>0)的图像上,则k的值为()A.1B.2C.3D.43.已知关于的分式方程的解为正数,则的取值范围为()A.B.且C.D.且4.如图,反比例函数y1=与二次函数y1=ax2+bx+c图象相交于A、B、C三个点,则函数y=ax2+bx﹣+c 的图象与x轴交点的个数是()A.0B.1C.2D.35.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°6.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD 交AB于点E,则∠CEB的度数为()A.60°B.65°C.70°D.75°7.如图1,四边形中,,,.动点从点出发沿折线方向以1单位/秒的速度匀速运动,在整个运动过程中,的面积与运动时间(秒)的函数图象如图2所示,则等于A.5B.C.8D.8.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ 的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.9.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.10.如图,在四边形中,,,,过点作,交于点.若,则的长为().A.B.C.D.11.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是()的图象与x轴只有一个公共点,则常数13.关于的一元二次方程有实数根,则的取值范围是__________.14.先化简,再求值:,其中.针旋转至△B′OC′,点C′在OA上,则边16.如图,在平行四边形ABCD中,按以下步骤作图:①以为圆心,以大于MNQ,若DQ=2QC,BC=3,则平行四边形ABCD养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设鲤鱼种苗的投放量为x吨.(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?18.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数).(1)直接写出每天游客居住的房间数量y与x的函数关系式;(2)设宾馆每天的利润为W元,当每个房间定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?19.已知锐角△ABC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,交AD于F.(1)求证:△BDF≌△ADC;(2)若BD=4,DC=3,求线段BE的长度.20.如图,钝角△ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB 于点D,交边BC于点E,过E作⊙O的切线交边AC于点F(1)求证:EF⊥AC(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.21.如图,矩形中,,,点为上一个动点,把沿折叠,当点的对应点落在的平分线上时,求的长.22.为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?23.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.24.若用半径为9,圆心角为的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是().A.1.5B.2C.3D.625.从-4、-3、1、3、4这五个数中,随机抽取一个数,记为m,若m使得关于x、y的二元一次方程组有解,且使关于x的分式方程-1=有正数解,那么这五个数中所有能满足条件的m的值之和是()A.1B.2C.-1D.-226.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°27.如图,平面直角坐标系中,的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与有交点时,b的取值范围是()A.B.C.D.28.在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.29.将2001×1999变形正确的是()A.20002﹣1B.20002+1C.20002+2×2000+1D.20002﹣2×2000+130.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④31.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG 交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°32.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是A.B.C.D.33.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变34.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是().A.B.C.D.35.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0)B.(﹣2,1)C.(﹣2,﹣1)D.(0,﹣1)36.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A (﹣2,0),则k的取值范围是()A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<237.如图,在平面直角坐标系中,已知点A(-3,6)、B(-9,-3),以原点O为位似中心,相似比为,把△ABO 缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)38.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D,(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.39.如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(3)点P是x轴上的一动点,试确定点(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?41.一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)42.如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C(1)求此反比例函数的表达式;=S43.垃圾的分类处理与回收利用,可以减少污染,节省资源,生活垃圾一般按如图所示况,并将调查统计结果绘制成如下两幅不完整的统计图表:根据图表解答下列问题:吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?44.先化简,再求值:(a+1-)÷(),其中a=2+.45.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为__________°.46.如图,小华和小康想用标杆来测量河对岸的树AB的高,两人在确保无安全隐患的情况下,小康在F处竖立了一根标杆EF,小华走到C处时,站立在C处看到标杆顶端E和树的顶端B在一条直线上,此时测得小华的眼睛到地面的距离DC=16米;然后,小华在C处蹲下,小康平移标杆到H处时,小华恰好看到标杆顶端G和树的顶端B 在一条直线上,此时测得小华的眼睛到地面的距离MC=0.8米.已知EF=GH=2.4米,CF=2米,FH=1.6米,点C、F、H、A在一条直线上,点M在CD上,CD⊥AC,EF⊥AC,CH⊥AC,AB⊥AC,根据以上测量过程及测量数据,请你求出树AB的高度.47.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为______.48.一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.49.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y =(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.。

相关文档
最新文档