2016希望杯五年级答案
级希望杯题答案

第十六届(2018年)小学“希望杯”全国数学邀请赛五年级培训题1、 计算:201891.1 1.91 1.991 1.99991++++个.【答案】原式2018020.920.0920.00920.00009=-+-+-++-个 201920180201920.99994037.00001=⨯-=个9个2、 计算:123201620172016321++++++++++. 【答案】原式()123201622017=++++⨯+ ()()12016201620172017201620171201720161201720174068289=+⨯+=⨯+⨯=⨯+=⨯=3、 计算:2015.20152016.20162017.20172018.20181934.1934++++.【答案】原式2015 1.00012016 1.00012017 1.00012018 1.00011934 1.0001=⨯+⨯+⨯+⨯+⨯ ()1.0001201520162017201819341.00011000010001=⨯++++=⨯=4、 已知201300.0000125a =个,201700.00008b =个.求a b a b ⨯+÷.【答案】因为2013020170403000.00001250.000080.00001a b ⨯=⨯=个个个, 20130201700.00001250.000081250081562.5a b ÷=÷=÷=个个,所以40300402900.000011562.51562.500001a b a b ⨯+÷=+=个个. 5、 定义:()a b a b a b ⊕=⨯-+,求()345⊕⊕.【答案】根据题设定义,得()3434345⊕=⨯-+=,()55555515⊕=⨯-+=,所以 ()34515⊕⊕=.6、 定义:a b a b ⊕=⨯,c d d d d d =⨯⨯⨯⨯◎(c 个d 相乘),求()()5837⊕⊕◎.【答案】根据题设定义,得585840⊕=⨯=,37777343=⨯⨯=◎,所以()()5837403434034313720⊕⊕=⊕=⨯=◎.7、定义:1000b a b a b =⨯+个0△,10a b a b=⨯+□(其中,a ,b 都是自然数),求()20181234□△. 【答案】根据题设定义,得原式()2018123100004=⨯+□2018123000420181012300042018012300041250184==⨯+=+=□.8、观察下列数表的规律,求2018是第几行的第几个数?123456789101112131415,,,,,,,,,, 【答案】由数表可知行数即是该行所有数的个数,因为()123631636322016++++=+⨯÷=,即前63行有2016个数,且第63行的最后一个数是2016,所以2018是第64行的第2个数.9、观察下列数的规律,求第2018个数.1201820171201620151,,,,,,【答案】将题设中的数重新分组,每3个数一组.因为201836722÷=,所以第2018个数是第673组的第2个数,于是,第2018个数是201867221675-⨯+=.10、根据下列算式的规律,求第2018个算式的和.23+,37+,411+,515+,619+,【答案】观察发现,第n 个算式是()()141n n ++⨯-,所以,第2018个算式是()()2018142018110090++⨯-=.11、计算机上编程序打印出前10000个大于0的自然数:1,2,3,,10000时,不幸打印机有故障,每次打印数字7或9时,它都打印出x ,其中被打印错误的共有多少个数?【答案】将1~10000想象成四位密码0001、0002~9999、0000,那么恰好每个数位上都有10种变化,共计1010101010000⨯⨯⨯=种变化.现10个数字中去掉了7和9,那么还有8种变化,能够组成正常打印的数有88884096⨯⨯⨯=(个),因此打印错误的有1000040965904-=(个).12、桌上有一些纸片,每张纸片上都有编号(不是按顺序编的),马小虎同学错把6和69拿倒了,导致这些编号的平均数多出1,问这些纸片共有多少张?【答案】把6拿倒了,变成9;把69拿倒了,还是69,所以马小虎同学把总数多算了3.由于编号的平均数增加1,所以这些纸片共有3张.13、有一串数,最前面的4个数是2,0,1,8,从第5个数起,每一个数都是它前面相邻4个数之和的个位数字,问在这一串数中,会依次出现2,0,1,7这4个数吗?【答案】根据规律,这串数是2,0,1,8,1,0,0,9,0,9,8,6,3,6,3,8,0,7,8,3,呈现的规律是偶偶奇偶奇,而2,0,1,7是偶偶奇奇,按照上述 规律两个奇数不可能相邻,所以不会依次出现2,0,1,7这4个数.14、某工人每小时内需先生产2个A 产品,再生产3个B 产品,最后生产1个C 产品,则第725个产品是哪种产品?【答案】容易得这个工人每小时需生产产品2316++=(个),因为72512065=⨯+,所以,第725个产品是生产第121个小时生产的第5个产品,故它是B 产品.15、著名的哥德巴赫猜想可以陈述为:任意大于2的偶数,都可表示成两个质数之和.将偶数88表示成两个质数的和,有几种表示方法?(a b +和b a +视为同一种表示方法)【答案】88583177129594147=+=+=+=+,共有4种表示方法.16、小华将连续奇数1,3,5,7,9逐个相加,结果是2018.验算时发现漏加了一个数,那么,这个漏加的数是多少?【答案】设题中有n 个数相加,则因为1,3,5,7,9,21n -依次相加,得()1212n n n n +-⨯÷=⨯.而444419362018⨯=<,454520252018⨯=>,所以至少有45个数.当有45个数时,最大的是89,202520187-=,所以漏加的数是7.当有46个数时,最大的数是91,464620189891⨯-=>.所以漏加的数是7.17、A 、B 、C 、D 、E 五个数,每次去掉一个数,将其余下的4个数求平均数,这样计算了5次,得到下面5个数:23,26,30,33,38.求A 、B 、C 、D 、E 的平均数.【答案】5次计算中,A 、B 、C 、D 、E 分别使用了4次,所以A 、B 、C 、D 、E 五个数的和是()2342643043343844150⨯+⨯+⨯+⨯+⨯÷=,所以,A 、B 、C 、D 、E 的平均数是150530÷=.18、A 、B 、C 、D 是四个不同的自然数,它们的平均数是8.对它们两两求和,得到5个不同的和:12,15,17,20,x .求x .【答案】对A 、B 、C 、D 两两求和,可得到六个和A B +,A C +,A D +,B C +,B D +,C D +.将这四个数两两相加得出六个和数的过程中,A 、B 、C 、D 各用了3次,所以六个和数之和是()84396⨯⨯=,由题设知A 、B 、C 、D 两两求和,得到5个和,这说明①所表示的六个和中有两个和是相等的.用y 表示这个相等的和,则y 只能是12,15,17,20,x 中的一个,且1215172096x y +++++=,从而32x y +=,当y 取12,15,17,20中的一个时,x 也在这四个数中,不符合题意,所以只能是x y =得16x =.19、已知甲和乙的最大公约数是6,最小公倍数是264,求甲、乙两数和的最小值.【答案】因为甲和乙的最大公约数是6,所以甲和乙可分别表示为6a 和6b ,且a 和b 互质,因为甲和乙的最小公倍数是264,且26462211=⨯⨯⨯,所以2211a b ⨯=⨯⨯,若1a =,44b =,则甲、乙两数的和是61644270⨯+⨯=;若4a =,11b =,则甲、乙两数的和是6461190⨯+⨯=.比较可知,甲、乙两数和的最小值是90.20、求201620172018⨯⨯的所有不同质因数的和.【答案】因为522016237=⨯⨯,2017是个质数,201821009=⨯,所以201520162017⨯⨯的不同质因数有:2,3,7,1009,2017,共5个.它们的和是237100920173038++++=.21、将一个自然数的各位数字反次序排列所得的自然数称为原数的反序数.如5位数13245的反序数为54231,11722的反序数是22711等.如果一个5位数n 的反序数是4的倍数,则这样的n 最小的一个是多少,最大的一个是多少. 【答案】五位数abcde 被4整除的充要条件是de 能被4整除.故n 最小的一个是21001,最大的一个是88999.22、求能写成四个连续自然数的和的最小三位数.【答案】设第一个自然数为a ,则这4个自然数为a ,1a +,2a +,3a +,其和为 ()()()123442a a a a a ++++++=++,即这四个连续自然数的和减去2所得的差是4的倍数,因为100425÷=,所以,能写成四个连续自然数的和的最小三位数是102.23、已知三位数1ab 和1ab 的差是639,求ab . 【答案】根据题设,得1ab 比1ab 大,所以()()1110010110010ab ab a b a b -=++-++ 90999a b =+-,于是90999639a b +-=,整理得1082a b +=,即82ab =.24、3333312320172018+++++的个位数字是多少?(注:3a a a a =⨯⨯)【答案】当一个数的尾数依次是1,2,3,4,5,6,7,8,9,0时,3个这样的数相乘所得的商的个位数字依次为1,8,7,4,5,6,3,2,9,0,将这10个数作为一组,这组数的和的个位数字是5.因为2018102018÷=,且 ()2015187456321041⨯++++++++=,所以3333312320172018+++++的个位数字是1. 25、20182018201820182018⨯⨯⨯个的个位数字是多少?【答案】2018的个位数字是8;2个2018相乘,乘积的个位数字是4;3个2018相乘,乘积的个位数字是2;4个2018相乘,乘积的个位数字是6;5个2018相乘,乘积的个位数字是8;所以,n 个2018相乘,n 取1,2,3,4,5,时,所得积的个位数字分别是8,4,2,6,8,即所得积的个位数字每4个为一周期,重复出现,因为20184=5042÷,所以,“2018个2018相乘所得积的个位数字”与“2个2018相乘所得积的个位数字”相同,即为4.26、31008A B =⨯,其中A 、B 均为自然数,B 的最小值是多少?(注:3A A A A =⨯⨯)【答案】因为421008237=⨯⨯,所以,B 的最小值是22237588⨯⨯=.27、求有16个约数的最小的自然数.【答案】要使这个数尽量小,所取的质因数应该尽量小.若这个数只有一个质因数,则最小的数是152,若这个数有2个质因数,且162844=⨯=⨯,则这个数可能是723⨯,或3323⨯,若这个数有3个质因数,且16224=⨯⨯,则这个数可能是3235⨯⨯,若这个数有4个质因数,且162222=⨯⨯⨯,则这个数可能是2357⨯⨯⨯,比较可知3235120⨯⨯=是最小的.28、若4037位数201852018955559999a 个个能被7整除,求a .【答案】因为111111158737=⨯,所以5555555111111=⨯,9999999111111=⨯都能被7整除,又201863362÷=,所以201655555个和201699999个能被7整除,因为201852018920165202102016020169555599995555100005599100009999a a =⨯+⨯+个个个个个个,所以5599a 能被7整除,因为995544a a -=,所以44a 能被7整除,因为644792=⨯,所以6a =.29、若五位数1624□能被11整除,求□所表示的数字.【答案】若一个数的奇数位上的数字和与偶数位上的数字和的差是11的倍数,则这个数是11的倍数.因为五位数1624□偶数位上数字和是628+=,奇数位上数字和是145++=+□□,它们的差是3-□,或3-□,所以,3-□,或3-□是11的倍数,只能是3=□.故□所表示的自然数是3.30、求2018位数201855555个除以13所得的余数.【答案】因为5555551342735÷=,且201863362÷=,所以201855555个除以13所得的余数与55除以13所得的余数相同,因为551343÷=,所以201855555个除以13所得的余数是3. 31、求12342019+++++除以9所得的余数.【答案】因为()1234201920191201922039190+++++=+⨯÷=,且 203919092265766÷=.另解任意连续9个自然数的和都能被9整除,201992243÷=,余数必然是1236++=.32、求2017位数201777777个除以30所得的余数.【答案】因为30235=⨯⨯,故先考虑201777777个除以2,3,5所得的余数.易得201777777个除以2所得的余数是1,因为201777777个的各位数字之和为72017⨯,所以201777777个除以3所得的余数是1,又201777777个除以5所得的余数等于7除以5所得的余数,所以201777777个除以5所得的余数是2,又因为在小于30的数中,同时满足除以2所得的余数是1,除以3所得的余数是1,除以5所得的余数是2的数只有7,所以201777777个除以30所得的余数是7.33、某一个自然数分别去除25,38,43,所得的三个余数之和为18,求这个自然数.【答案】由题设,得这个自然数显然小于26,否则25除以这个自然数所得的余数是25,大于18,又由1836÷=,可知这个自然数大于6.因为2543381888++-=,所以,88是所求自然数的整数倍,而88大于6,小于26的约数有8,11或22.经验算,只有11满足条件,故这个自然数是11.34、六位数2018ab ,被5除余1,被11除余8,求ab .【答案】因为2018ab 被5除余1,所以20181ab -是5的倍数,所以b 只能取1或6;又2018ab 被11除余8,所以20183ab +是11的倍数,所以()()2018311201803111011ab a b +÷=÷+⨯+÷()1834510811a b =+⨯++÷,所以 108a b ⨯++是11的倍数,当1b =时,109a ⨯+是11的倍数,此时,a 只能取9,当6b =时,1014a ⨯+是11的倍数,此时,a 只能取3,故91ab =,或36ab =.35、已知四位数abcd 除以2,3,4,5,6,7所得的余数互不相同(都不是0),求abcd 的最小值.【答案】因为在除法运算中,余数一定比除数小, 所以四位数abcd 除以2,所得的非零余数只能是1,除以3,所得的非零余数可能是1或2,因为四位数abcd 除以2,3所得的余数互不相同, 所以四位数abcd 除以3,所得的余数只能是2. 同理可得,四位数abcd 除以4,5,6,7,所得的余数依次为3,4,5,6, 于是有1abcd +可以同时被2,3,4,5,6,7整除,即1abcd +是2,3,4,5,6,7的倍数,[2,3,4,5,6,7]420=,4202840⨯=,42031260⨯=,所以abcd 的最小值是126011259-=.36、若两位数xy xy AABB ⨯=,求xy .【答案】因为110AABB A B =⨯,所以AABB 是11的倍数,因为11是质数,所以xy 也是11的倍数,又xy xy AABB ⨯=,所以0A B 也是11的倍数. 设011A B ab =⨯,则ab 是完全平方数,且10a b +=,满足条件的ab 只有64,所以 0704A B =,88xy =.验算88887744⨯=,满足条件.37、字母W 、M 、T 、C 分别代表4个不同的数字,并且2017WW MM WT C ⨯++=,求W M T C +++的值. 【答案】由2017WW MM WT C ⨯++=,得()11112017W M WT C ⨯⨯⨯++=,又()201711111681÷⨯=,所以7W =,11T C +=,16W M ⨯=,或8W =,1T C +=,16W M ⨯=,可推出2882W M ⨯=⨯=⨯,故8W =,2M =,1T C +=,因此82111W M T C +++=++=.38、字母a ,b ,c 表示3个不同的非零数字,若724abc bc c ++=,求a b c ++.【答案】因为724abc bc c ++=,即1001010724a b c b c c ⨯+⨯++⨯++=,也即100203724a b c ⨯+⨯+⨯=,因为3只有与8的积的个位数字是4,所以c 必是8, 于是1002024724a b ⨯+⨯+=,因此10020700a b ⨯+⨯=,即10270a b ⨯+⨯=,又2与0,5的积的个位数字都是0,所以5b =(舍去0b =),对应地6a =,从而65819a b c ++=++=,故所求和是19.39、已知()()()12143S n n n k =⨯-⨯-⨯⨯++,若k 是1至200之间的自然数,n 是大于2的自然数,则有多少个不同的k ,使得S 是两个相同自然数的乘积.【答案】当3n =时,49S k =+,设S x x =⨯,则()()()94334k x x x x =⨯-÷=+-÷,由k 是自然数,得x 是大于3的奇数,因为()()2732734180200+-÷=<,()()2932934208200+-÷=>,所以,x 可取的值有()273212-÷=(个),对应地,当3n =时,满足条件的k 的值有12个; 当3n >时,因为432124⨯⨯⨯=,所以()()121n n n ⨯-⨯-⨯⨯是4的倍数, 记()()1214n n n p ⨯-⨯-⨯⨯=(p 是大于等于6的自然数),则()43S k p =++, 因为任何自然数的4倍加上3都不能写成两个相同自然数的乘积,所以,当3n >时,不存在满足条件的k .综上,有12个不同的k ,使得S 是两个相同自然数的乘积.40、用一块橡皮泥捏一个表面积是64的长方体,使它的长、宽、高都是整数,则可以捏出多少种不同的长方体?【答案】设长方体的长、宽、高分别为a ,b ,c ,则由题设得64222a b a c b c =⨯⨯+⨯⨯+⨯⨯,即32a b a c b c =⨯+⨯+⨯,因为长方体的长、宽、高都是整数,所以,若1a =,则32b c b c =++⨯,经试验,只有当2b =,10c =,或10b =,2c =时,满足条件,①注意到长、宽、高互换时,是同一长方体,故记为一种长方体;若2a =,则3222b c b c =⨯+⨯+⨯,经试验,只有当1b =,10c =,或10b =,1c =时,满足条件,与①是同一种长方体;若3a =,则3233b c b c =⨯+⨯+⨯,经试验,不存在整数宽和高满足条件;若4a =,则3244b c b c =⨯+⨯+⨯,经试验,只有当2b =,4c =或4b =,2c =时,满足条件;②若5a =,则3255b c b c =⨯+⨯+⨯,经试验,不存在整数宽和高满足条件;若6a =,则3266b c b c =⨯+⨯+⨯,经试验,不存在整数宽和高满足条件;若7a =,则3277b c b c =⨯+⨯+⨯,经试验,只有当2b =,2c =时,满足条件;③ 若8a =,则3288b c b c =⨯+⨯+⨯,经试验,不存在整数宽和高满足条件;若9a =,则3299b c b c =⨯+⨯+⨯,经试验,不存在整数宽和高满足条件;若10a =,则321010b c b c =⨯+⨯+⨯,经试验,只有当1b =,2c =或2b =,1c =时,满足条件,与①是同一长方体;当a 取其它值时,不存在整数宽和高满足条件.综上,满足条件的长方体有3种.41、已知两位数ab 与ba 的差是45,求满足条件的ab 的个数.【答案】因为()()()1010945ab ba a b b a a b -=+-+=-=,所以5a b -=, 因此,满足条件的ab 有16,61,27,72,38,83,49,94,共8个.42、五位数273ab 既能被3整除,又能被7整除,求满足条件的五位数的个数.【答案】因为27300211300÷=,所以两位数ab 也能被21整除,所以,满足条件的五位数有27300,27321,27342,27363,27384,共5个.43、若1009abc cba +=,则这样的abc 有多少个?【答案】因为()()()1001010010101201009abc cba a b c c b a a c b+=+++++=++=,所以()101a c +的个位数是9,只能是9a c +=,所以20100b =,于是5b =,这样的abc 有8个:158,257,356,455,554,653,752,851.44、6个互不相同的非零自然数的平均数是12,若将其中一个两位数ab 换为ba (a ,b 是非零数字),那么这6个数的平均数变为18,求满足条件的ab 的个数.【答案】由题设得()()()101018126b a a b +-+=-⨯,即()936b a -=,所以4b a -=,于是当1a =时,5b =,15ab =,51ba =,当2a =时,6b =,26ab =,62ba =,当3a =时,7b =,37ab =,73ba =,当4a =时,8b =,48ab =,84ba =,当5a =时,9b =,59ab =,95ba =,又因为6个自然数互不相同,所以ab 最大为()1261234557⨯-++++=, 同理,得ba 最大为()1861234593⨯-++++=, 所以,满足题设的ab 有15,26,37,48,共4个.45、在1~300(包括1和300)的自然数中,既不能写成两个相同自然数的乘积,也不能写成三个相同自然数的乘积的数有多少个?【答案】因为111⨯=,224⨯=,4416⨯=,1717289⨯=,1818324⨯=,且1111⨯⨯=,2228⨯⨯=,33327⨯⨯=,666216⨯⨯=,777343⨯⨯=,即在1~300的自然数中,能写成两个相同自然数的乘积的数有17个,能写成三个相同自然数的乘积的数有6个,其中,即能写成两个相同自然数的乘积,也能写成三个相同自然数的乘积的数有2个,即1和64,所以,满足条件的数共有3001762279--+=(个).46、已知四位数abcd ,b c a d <<<,10a b c d +++=,a ,d 和abcd 都是质数,求这个四位数.【答案】因为a 是一位数字,并且是质数,所以a 是2,3,5,7之一.如果2a =,则由b c a <<,知0b =,1c =,由10a b c d +++=,得7d =,于是2017abcd =. 如果3a =,则由b c a <<,得1b =,2c =,或0b =,2c =或0b =,1c =,又10a b c d +++=,所以4d =,或5d =,或6d =,因为d 也是质数,于是3a =,0b =,2c =,5d =,因此3025abcd =,3025是合数.如果5a =,则由a d <,得d 最小是6,此时1110a d +=>,与10a b c d +++=矛盾,所以5a =不合题意.同理,7a =也不合题意.综上可知,2017abcd =.47、已知□、○、△分别代表不等于0的不同数字,若等式77⨯+⨯□□○△□2018=恒成立,求□+○+△的值.【答案】先估算一个接近2018的数,以减少试算的次数.因为703021002018⨯=>,所以□代表的数字应该小于3,即□代表的数字只能是1或2. 当□=1时,7117112072018⨯+⨯=+=○△○△,则811=○△,○△表示两位数,而811是三位数,矛盾;当2=□时,72272194422018⨯+⨯=+⨯=○△○△,则37=○△,因此2=□,3=○,7=△,故23712=++=□+○+△.48、数一数,图1中共有多少个三角形?【答案】由1个三角形构成的三角形有16个,由1个三角形和1个四边形构成的三角形有16个,由2个三角形和1个四边形构成的三角形有16个,由5个三角形、2个四边形和1个八边形构成的三角形有8个,所以,图中共有三角形161616856+++=(个).49、图2中共有多少个三角形?【答案】易得图中共有12个彼此没有重合部分的小三角形,由2个小三角形构成的三角形有8个,由3个小三角形构成的三角形有12个,由4个小三角形构成的三角形有4个,由6个小三角形构成的三角形有4个,所以,图中共有三角形128124440++++=(个).50、图3中有6个11⨯的小正方形,它们共有12个顶点.从中取出3个,作为三角形的顶点,问:这些三角形中,面积是1的有多少个?【答案】首先,由面积公式12112S=⨯⨯=,可知(1)以图17中的粗线段为底边时,顶点可以选4个黑点中的任意一个,此时,有4个这样的三角形,将底边向右移动一个单位,又有4个这样的三角形,,此图中共有42⨯个这样的三角形.同理,底边在大长方体的最上边的橫边上,又有42⨯个这样的三角形.而图中这样的大长方形有2个,所以共有三角形422232⨯⨯⨯=(个).(2)如图18,类似(1),长方形如果竖起来,共有三角形32318⨯⨯=(个).(3)以图19中的粗线段为底边时,去掉与(2)重复的,顶点可以选2个黑点中的任意一个,此时,有2个这样的三角形,将底边向右移动一个单位,又有2个这样的三角形,,此图中共有23⨯个这样的三角形.同理,底边在大长方形的最上边的橫边上,又有23⨯个这样的三角形,所有共有三角形23212⨯⨯=(个).(4)以图20中的粗线段为底,去掉与(1)重复的,顶点只有1种选法,有1个这样的三角形,将底边往下移一个单位,又有1个这样的三角形,此图中共有2个这样的三角形.同理,如果将大正方形的最右边的边作为底,有2个三角形.而图中这样的大正方形有2个,所以共有三角形2228⨯⨯=(个).故32⨯的正方形中,面积为1的三角形共有321812870+++=(个).51、如图4,在正方形网格中有一个三角形,问图中含有三角形的正方形有几个?【答案】由1个小正方形构成的有三角形的正方形有1个;由4个小正方形构成的有三角形的正方形有4个;由9个小正方形构成的有三角形的正方形有4个;由16个小正方形构成的有三角形的正方形有4个;由25个小正方形构成的有三角形的正方形有1个.故含有三角形的正方形共有14个.52、把一副三角尺ABC与BDE按如图5所示拼在一起,其中A、D、B三点在同一直线上.BM为ABC∠的平分线,BN为CBE∠的平分线,求MBN∠的度数.【答案】因为60ABC∠=︒,且BM为ABC∠的平分线,所以260230CBM MBA ABC ∠=∠=∠÷=︒÷=︒,因为6090150CBE ABC DBE ∠=∠+∠=︒+︒=︒,所以150275CBN NBE ∠=∠=︒÷=︒,故753045MBN CBN CBM ∠=∠-∠=︒-︒=︒.53、如图6,从左到右六个三角形的面积分别是1,2,3,4,5,6,相邻的两个三角形有部分重合,求灰色区与黑色区的面积的差.【答案】灰色区的面积加上5块白色三角形的面积,即为面积为1,3,5的3个三角形的面积和,黑色区的面积加上5块白色三角形的面积,即为面积为2,4,6的3个三角形的面积和.所以,灰色区与黑色区的面积的差是()()2461353++-++=.54、如图7,将一个正方形分割成两个相同的,若分成的两个可以组成一个周长是26的长方形,求这个正方形的面积.【答案】如图21所示,正方形分割后可以拼成一个长方形ABCD ,根据题意可知AE GH FC ==,EG HF =,BE BC HF =+,所以23AE FH =.因为长方形的周长是26,所以()226AE BE BC ++=,所以1326FH =,所以正方形的边长为36FH =,故所求正方形的面积是6636⨯=.55、如图8,小正方形的面积是1,求图中阴影部分面积.【答案】阴影部分的面积等于正方形的面积减去3个三角形的面积,即44142332342 3.5⨯-⨯÷-⨯÷-⨯÷=.56、如图9,AD DC =,3EB CE =,若3CDPE S =四边形,4PBE DAP S S -=△△,求折线APBCA 所围成的图形的面积.【答案】如图22,连接CP .因为AD DC =,3EB CE =,所以CDP DAP S S =△△,3PBE PEC S S =△△,设DAP S a =△,PEC S b =△,则3CDPE S a b =+=四边形,34PBE DAP S S b a -=-=△△,两式相加,得47b =,即 1.75b =,所以33 1.75 1.25a b =-=-=,故阴影部分的面积为33 1.253 1.7539.5DAP PBE CDPE S S S a b ++=++=++⨯=△△四边形.57、如图10,正方形ABCD 中,正方形AEFG 的面积是4,长方形EBHF 的面积是8,长方形IHCJ 的面积是6,求FID △的面积.【答案】正方形AEFG 的面积是4,可知正方形AEFG 的边长是2,所以,正方形ABCD 的边长是2826+÷=,从而,长方形IHCJ 的长是624-=,宽是64 1.5÷=,因此62 1.5 2.5FI =--=,FID △在FI 上的高等于长方形IHCJ 的长,即为4,故FID △的面积 2.5425=⨯÷=.58、如图11,在ABC △中,D 、E 分别是AB 、AC 的中点,且图中两个阴影部分(甲和乙)的面积差是504.25,求ABC S △.【答案】如图23,记BE 与CD 相交于O 点,因为504.25S S -=甲乙,所以()()504.25COE COE S S S S +-+=甲△乙△,即504.25BCE DCE S S -=△△.又D 、E 是中点,即12BCE ABC S S =△△,1124DCE ADC ABC S S S ==△△△,所以 11504.2524ABC ABC S S -=△△,故4504.252017ABC S =⨯=△.59、如图12所示,一个多边形的每条边长是1cm ,一共有12条边;空白部分是正三角形,一共有12个.求阴影部分的面积.【答案】如图24,阴影部分可以分为12个完全相同的平行四边形:每个平行四边形的面积为10.50.5⨯=(平方厘米),因此阴影部分的总面积为0.5126⨯=(平方厘米).60、一张圆形纸沿直径对折后,在它上面画三条直线,按照所画直线切三刀.由于所画直线不同,可以把圆纸切成的块数也不同.那么这张纸片最少被切成了多少块,最多被切成了多少块?【答案】至少4块,至多13块,切法如图25.61、一组积木组成的图形,从正面看是,从侧面看是,若这组积木是用n 块相同的正方体木块摆出来的,则n有几种取值?【答案】如图26,根据题设条件,n最小是3,最大是9,则n的取值可以是3,4,5,6,7,8,9,共7种.62、如图13的几何体是由8个棱长是1的正方体小立方体搭成的,求几何体的表面积(包括底面).【答案】从前面、后面、左面、右面、上面和下面看,这个几何体的表面积都是5,且从前面、后面、左面、右面看,都隐藏了1个面,所以,这个几何体的表面积是⨯+⨯=.56143463、如图14是一个正方体的平面展开图,若该正方体相对两个面上的数值的和都等于34,求a b c-⨯.【答案】由题意,得32177410321934c=,b=,1a b a b c++=-+=+-+=,解得5a=,4所以5411a b c -⨯=-⨯=.64、如图15,矩形ABCD 中,F 为BC 的中点,2CE DE =,矩形ABCD 的面积为3,求阴影部分的面积.【答案】设DE a =,CF b =,则2CE a =,所以11222CEF S CE CF a b ab ==⨯⨯=△, 12322BCD CEF S S S b a ab ab =-=⨯⨯-=△△阴影.而326S a b ab =⨯=矩形,故矩形面积是阴影面积的3倍,阴影面积为1.65、在边长是1米的正六边形内任意丢放7颗小石子,则总有两颗小石子的距离不大于1米,请说出理由.【答案】如图28,连接正六边形的对角线,将这个正六边形分为6个边长都是1米的小等边三角形.把7颗小石子丢进这6个小等边三角形,则必有一个小等边三角形中至少有两颗小石子.这两颗小石子之间的距离不会超过小等边三角形的边长.故总有两颗小石子的距离不大于1米.66、某次考试共有10道判断题.小张划了5个钩和5个叉,结果对了8道;小李划了2个钩和8个叉,结果对了6道;小王一道不会,索性全部打叉,那么他至少可以蒙对多少道题?【答案】小张只错了2道题,那么他的5个叉里,至少有3个是对的,小李错了4道题,那么他的8个叉里,至少有4个是对的,因此小王全部打叉,至少可以蒙对4道题.67、两个瓶中小球的数量相等,且都只有黑、白两种颜色.已知第一个瓶子中白球的个数是黑球的4倍,第二个瓶子中黑球的个数是白球的7倍,若两个瓶中一共有111个白球,则第二个瓶中有黑球多少个?【答案】已知第一个瓶子中白球的个数是黑球的4倍,第二个瓶子中黑球的个数是白球的7倍,所以可设每个瓶中小球为()()141740+⨯+=(份),则第一个瓶中有白球()4014432÷+⨯=(份),第二个瓶中有白球()401715÷+⨯=(份), 两个瓶中一共有白球32537+=(份),为111个,所以,1份有小球111373÷=(个),故第二个瓶中有黑球()401773105÷+⨯⨯=(个).这五位同学了解的情况,每人只有1项是正确的,请判定这位新同学的情况.【答案】若这位新同学姓季,由班干A 、C 两人了解的后三种情况一样,则这位新同学姓陈,互相矛盾,所以这位新同学不姓季,也不姓陈.若这位新同学姓张,则他不是女生,上学期语数英总成绩不是220分,也不是240分,不擅长跳舞,也不擅长唱歌,那么这位新同学是男生,上学期语数英总成绩260分,擅长画画,这样班干A 和C 了解的情况两项都是正确,产生矛盾.因此,这位新同学姓黄,由班干D 了解的情况,这位新同学是男生,对照班干A 、D 了解的情况可知,上学期语数英总成绩不是220分和260分,不擅长画画,也不擅长唱歌. 综上,这位新同学姓黄,男生,上学期语数英总成绩240分,擅长跳舞.69、若2017abcd abc ab a +++=,求四位数abcd .【答案】根据题设列竖式:2017a b c da b ca b a+由和的千位数字是2,可知1a =(百位进位)或2a =(百位不进位),但和的百位数字是0,故百位一定会产生进位,于是1a =;当1a =时,由和的百位数字是0,可知8b =(舍去9b =,这和十位需向百位进位矛盾);进一步可得1c =,7d =.所以1817abcd =.70、如图16的加法竖式中共有9个空格,在每个空格中填入6,7,8,9四个数字中的一个,使得竖式成立.共有多少种不同的填法?201716□□□□□□+□□□图【答案】加法竖式中共有3个加数,这3个加数个位上都取6时,个位上的数字和最小,为18,个位上都取9时,个位上的数字和最大,为27,所以,这3个加数个位上的数字和是18~27的自然数,同理,这3个加数十位和百位上的数字和也是18~27的自然数,由于3个加数的总和是2017,所以个位数字和为27,十位数字和为19,百位数字和为18. 根据整数分拆27999=++,19667=++,18666=++,所以,个位的填法只有()999,,1种;十位的填法有()667,,,()676,,,()766,,,共3种;百位的填法只有()6661,,种;所以,这三个数不同的的的填法有1313⨯⨯=(种).71、今年,爸爸的年龄是小林年龄的11倍;7年后,爸爸的年龄是小林年龄的4倍.求今年爸爸和小林的年龄.【答案】因为()()⨯=,所以今年爸爸33岁,小林3岁.⨯-÷-=,11333741114372、用数字1,2,3和小数点可以组成多少个小数?要求三个数字都用上.若三个数字允许不全取呢?【答案】若三个数字都用上,且先不考虑小数点,则可组成6个数:123,132,213,231,312,321.加上小数点后,123可以变为1.23或12.3,其它各数亦如此.故此情况下,可组成2612⨯=个小数;若三个数字允许不全用,有以下几种情况:(1)三个数字都取,则由上分析可得12个数;(2)若取两个数字可组成6个数:12,21,13,31,23,32,加上小数点,可组成6个小数;(3)取一个数字无法加小数点,共可组成12618+=个小数.综合以上可知,前一个答案为12,后一个答案为18.73、7只猴子分一箱栗子,每只猴子所得彼此不同,分得最多的猴子得了50颗,那么这箱栗子最多有多少颗?【答案】因为这箱栗子有7只猴子分,每只猴子所得彼此不同,最多分得50颗,所以最少应分得507144-+=颗.于是这箱栗子最多有()++=+⨯÷=(颗).50494450447232974、某架天平秤,只有整千克数的砝码,称三个青苹果或五个黄苹果或7个红苹果,其质量恰好都是整千克数,要是1个青苹果、1个黄苹果、1个红苹果这三个苹果的质量就不是整千克数了,如果按四舍五入法取近似值约是1.16千克,那么3个青苹果、5个黄苹果和7个红苹果的质量分别是多少千克.【答案】设3个青苹果重a千克,5个黄苹果重b千克,7个红苹果重c千克.则根据题意1.155357 1.165≤÷+÷+÷<,a b c即()()a b c≤⨯+⨯+⨯÷⨯⨯<,1.155352115357 1.165即121.275352115122.325≤⨯+⨯+⨯<.a b c又根据题意a,b,c均为整千克数,所以352115122a b c⨯+⨯+⨯=,经试验1c=,a=,2b=,3即3个青苹果1千克,5个黄苹果2千克,7个红苹果重3千克.75、2017年首届“希望杯”总决赛,这次的参赛人数不足千人.如果按3人,5人,7人一组分组,均多出1人;如果按23人一组分组正好分完,求参赛人数.【答案】人数分别除以3,5,7均余1,则这个数可以表示为1051x+,因为这个数小于1000,所以10511000x+<,于是x只能取1,2,3,,9,经验证,只有当7x=,即这个数是736时,这个数是23的倍数,故参赛人数为736人.76、王老师买来了132支铅笔、75本作业本和37个削笔器,将它们分成完全相同的若干份奖品,最后铅笔、作业本和削笔器剩余的数量相同.那么,王老师最多分了多少份奖品? 【答案】由题设条件,得132,75,37三个数的差都是奖品份数的倍数,即57,95,38都是奖品份数的倍数,因为57,95,38的最大公约数是19,所以王老师最多分了19份奖品,且每份奖品有6支铅笔、3本作业本和1个削笔器.77、王处长从东北捎来一袋苹果,如果分给甲、乙两个科室的人员,每人可分得6个;如果只分给甲科室的人员,每人可分得10个.问:如果只分给乙科室的人员,每人能分得多少个?。
第十一届小学“希望杯”全国数学邀请赛五年级第1试题目及答案

第十一届小学“希望杯”全国数学邀请赛五年级 第1试1.计算:5.62×49-5.62×39+43.8= 。
2.规定a △b=a ÷(a+b),那么251△1.8= 。
3.若干个数的平均数是2013,增加一个数后,平均数仍是2013,则增加的这个数是 。
4.如果三位数3□2是4的倍数,那么□里能填的最小的数是 ,最大的数是 。
5.观察下图,?代表的数是 。
1 3 5 7 9 8 6 4 22 4 6 8 7 5 33 5 7 6 44 6 5?6.小明在计算一个整除的除法算式时,不小心将除数18看成15,得到的商是24,则正确的商是 。
7.将100块糖分成5份,使每一份的数量依次多2,那么最少的一份有 糖 块,最多的一份有糖 块。
8.一件商品,对原价打九折和打七折后的售价相差5.4,那么此商品的原价是 元。
9.有26个连续的自然数,如果前13个数的和是247,那么,后13个数的和是 。
10.在三位数253,257,523,527中,质数是 。
11.14个棱长为1的正方体在地面上堆成如图1所示的几何体,将它的表面(包括与地面接触部分)染成红色,那么红色部分的面积是 。
12.如图2,若梯形ABCD 的上底AD 长16厘米,高BD 长21厘米,并且BD=3DE ,则三角形ADE 的面积是 平方厘米,梯形的下底BC 长 厘米。
13.小丽将一些巧克力装入大,小两种礼盒中的一种礼盒内,如果每个小礼盒装5块巧克力,那么剩下10块;如果每个大礼盒装8块巧克力,那么少2块。
已知小礼盒比大礼盒多3个,则这些巧克力共有 块。
14.从甲地到乙地,小张走完全程用2个小时,小李走完全程用1个小时。
如果小张和小李同时从甲地出发去乙地,后来,在某一时刻,小张未走的路程恰好是小李未走的路程的2倍,那么此时他们走了 分钟。
15.有16盒饼干,其中15盒的重量(含盒子)相同,另有1盒少了几块,如果用天平称,那么至少称 次就一定能找出这盒饼干。
“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]
![“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]](https://img.taocdn.com/s3/m/a61aa64a01f69e314332945d.png)
“希望杯”全国数学大赛决赛模拟试卷附答案(小五) (时间:90分钟 满分:120分)一、填空题。
(每题6分,共72分。
) 1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。
2.8+88+888+…+88…8的和的个位上的数字是____________。
3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。
4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了____________名小朋友。
5.有这样一种算式:三个不同的自然数相乘,积是100。
这样的算式有____________种。
(交换因数位置的算同一种。
)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。
7.一天,小慧和刘老师一起谈心。
小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。
”刘老师今年的年龄是____________岁。
8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。
9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。
已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。
那么前3名同学的总分比后3名同学的总分多____________分。
10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。
希望杯五年级奥数试卷【含答案】

希望杯五年级奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 27答案:B2. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 32答案:D3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形答案:A4. 一个正方形的边长是4厘米,那么它的面积是多少平方厘米?A. 8B. 16C. 32D. 64答案:B5. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
(正确)2. 所有的等差数列都是递增的。
(错误)3. 两个奇数相加的和是偶数。
(正确)4. 任何数乘以0都等于0。
(正确)5. 所有的质数都是奇数。
(错误)三、填空题(每题1分,共5分)1. 1+2+3++100的和是______。
(5050)2. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。
(5)3. 两个质数相乘得到的数是______数。
(合)4. 一个数的因数个数是______。
(有限的)5. 0的阶乘是______。
(1)四、简答题(每题2分,共10分)1. 请列举出前5个质数。
答案:2,3,5,7,112. 请写出等差数列的通项公式。
答案:an = a1 + (n 1)d3. 请解释什么是偶数。
答案:偶数是能被2整除的整数。
4. 请解释什么是因数。
答案:因数是能整除一个数的数。
5. 请解释什么是等边三角形。
答案:等边三角形是三边长度相等的三角形。
五、应用题(每题2分,共10分)1. 一个数列的前三项分别是2,4,6,那么第10项是多少?答案:第10项是20。
2. 一个正方形的边长是6厘米,那么它的面积是多少平方厘米?答案:36平方厘米。
3. 请列举出10以内的所有质数。
答案:2,3,5,7。
希望杯五年级历届试题与答案

2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
第十六届小学“希望杯”全国数学邀请赛五年级模拟解析

第十六届小学“希望杯”全国数学邀请赛五年级模拟解析1、6666×66667+99999×2222=___________。
【答案】666600000【解析】6666×66667+99999×2222=6666×66667+33333×6666=6666×(66667+33333)=6666×100000=6666000002、数一数,下图中共有个___________三角形。
【答案】13【解析】若将图中的斜边去掉(如右图所示),容易算得剩下图形中有6个三角形。
此时再添上这条斜线,会多出7个三角形,因此图中共有6+7=13个三角形。
3、电影院里有10个空座位,萱萱和山竹去看电影,每个人坐一个座位,共有______种不同的坐法。
【答案】90【解析】萱萱先选,有10种选择,然后到山竹选,有9种选择,所以一共有10×9=90种坐法。
4、甲、乙、丙、丁四人要驾驶A、B、C、D这三辆不同型号的汽车,会驾驶A的只有甲和丁,汽车C必须由甲、丙中的某一人驾驶,则一共有__________种不同的安排方案。
【答案】6【解析】枚举法。
5、几个人合伙购买一套丛书。
如果每人拿出6块钱,则还差70元;如果每人拿出20块钱,则刚刚好能买这套书,书的售价是____________元。
【答案】100由题意,每人多拿20-6=14(元),可以补足原来差的70元。
所以购书人数为70÷14=5(人),书的售价为:20×5=100(元)6、在一次考试中有选择题、填空题和解答题三类题共18道。
选择题和填空题每题5分,解答题每题10分。
这次考试总分是100分,其中选择题和解答题的分值比填空题多10分,这次考试有___________填空题。
【答案】9【解析】选择题和填空题的分值一样,可以归为一类。
如果这次考试的20道题全是解答题,则总分应是:18×10=180 (分),但实际总分是100分,所以选择题和填空题共有:(180-100)÷(10-5)=16(道),解答题有:18-16=2 (道)。
“希望杯”全国数学邀请赛真题(五年级)最完善版

第一届小学“希望杯”五年级第1试一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比2/3大,比3/4小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
17.从1,2,3,4,5,6,7,8,9。
(答案解析)2016年第十四届希望杯初赛五年级真题解析

10.两个数的最大公约数和最小公倍数分别是 3 和 135,则这两个数的差最小是 【答案:12】 【解析】
。
135=3×5×3×3,差最小,两个数最接近,所以一个数是 3×5=15,另一个数是 3×3× 3=27,差是 27-15=12
11. 14 袋糖果每袋的平均重量经四舍五入到小数点后一位等于 90.2 克,若每袋糖果的重量 都是整数,则这 14 袋糖果的总重量是 【答案:1263】 【解析】依题有:90.15<平均量<90.24,所以 90.15×14<总重量<90.24×14,即 1262.1<总重量<1263.36,所以总重量=1263. 克.
平方米.
15. 有一个三位数 A,在它的某位数字的前面填上小数点后得到数 B,若 A-B=478.8,则 A= . 【答案:532】 【解析】差倍问题:478.8÷(10-1)=53.2,53.2×10=532.
16. 商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的 3 倍. 如果每天卖出 30 个西 瓜和 20 个柚子,3 天后,西瓜个数比柚子个数的 4 倍少 26,则商店里原有 【答案:176】 【解析】解:设柚子是 x 个,则西瓜是 3x 个,有 3x-90+26=4(x-60),得 x=176. 个柚子.
17. 已知 a,b,c 是 Байду номын сангаас 个彼此不同的质数,若 a b c 37 ,则 a b c 最大是
. 4
【答案:32】 【解析】根据奇偶分析,a,b,c 中一定有一数为 2,若 a 为 2,则 b=7,c=5,差最大为 6;若 c=2,则 a=31,b=3,最大为 31+3-2=32.
18. 李双骑车以 320 米/分钟的速度从 A 地驶向 B 地,途中因自行车故障推车继续向前步行 5 分钟到距 B 地 1800 米的某地修车,15 分钟后以原来骑车速度的 1.5 倍继续向前驶向 B 地,到达 B 地时,比预计时间多用 17 分钟,则李双推车步行的速度是 【答案:72】 米/分钟.
“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]
![“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]](https://img.taocdn.com/s3/m/c285467c168884868762d6a7.png)
“希望杯”全国数学大赛决赛模拟试卷附答案(小五)(时间:90分钟 满分:120分)一、填空题。
(每题6分,共72分。
)1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。
2.8+88+888+…+88…8的和的个位上的数字是____________。
3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。
4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了____________名小朋友。
5.有这样一种算式:三个不同的自然数相乘,积是100。
这样的算式有____________种。
(交换因数位置的算同一种。
)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。
7.一天,小慧和刘老师一起谈心。
小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。
”刘老师今年的年龄是____________岁。
8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。
9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。
已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。
那么前3名同学的总分比后3名同学的总分多____________分。
10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。
希望杯5年级考前100题题目和答案

第十五届(2017年)小学“希望杯”全国数学邀请赛五年级培训题1. 计算:2016×20172017-2017×20162016.2. 计算:32.2÷2.7+386÷54-4.88÷0.27.3. 计算:6051×0.125-0.375×1949+3.75×1.2.5. 用[a]表示不超过a的最大整数,{a}表示a 的小数部分,即{a}=a-[a],定义一种运算“⊕”:a⊕b=(a-b)÷(b+1),求[3.9]⊕{5.6}+[4.7]的值.6. 找规律,填数:0,2,12,36,80,150,252,______,_______,…7. 如图1 所示的七个圆填入七个连续自然数,使每相邻圆的数之和等于连线上的数,求这七个自然数的和.8. 有一串数,最前面的4 个数是2,0,1,6,从第5 个数起,每一个数是它前面相邻4 个数之和的个位数字,问在这一串数中,会依次出现2,0,1,7 这4个数吗?9. 小华在电脑上玩一种游戏:输入一个大于零的自然数,则输出的数比输入的数扩大一倍还多1,若先输入的数既不是质数,也不是合数,再将输出的数输入,…则输出的数中,首先超过100的数是多少?10. 从1123个1×1的正方形纸片中,依次取出1个,3个,5个,7 个,…,(2n-1)个,求最大的n.11. 已知x是两位数,y是一位数,若1123=x×x+11y×y,求x+y.12. 20152015+20162016+20172017的个位数字是多少?(定义:x n表示n个x相乘)13. 1×2×3×4×…×2016×2017 的积的末尾有多少个连续的0?14. 111a是四位数,若111a-3是7的倍数,求自然数a.15. 有三个连续的自然数,它们的和是三位数,并且是31 的倍数,求这三个数的和的最小值.16. 若是四位数,并且-3是7的倍数,那么a + b有多少个不同的值?17. 100 名同学面向老师站成一行.大家先从左至右按1,2,3,…依次报数;再让报数是4 的倍数的同学向后转,接着又让报数是5 的倍数的同学向后转. 问:背向老师的有多少人?18. 一个自然数,它除了1以外的两个不同约数的和最大是60,求这个自然数.19. 三位数中,被6 除,余数是5的有多少个?20. 有一类四位数,除以5余3,除以7余6,除以9余6,求这类四位数中最小的数.21. 求被7除余5,被8除余2的最小的三位数.22. 是三位数,若-a可被13整除,求自然数a的最小值.23 .是三位数,若+1 是7的倍数,-1是13的倍数,求自然数a.24. ,求a÷7 得到的余数.25. 五年级(2)班同学分为5 组,按组活动.第一组到第五组的人数分别是12 人,6人,10人,13人,7 人. 其中有一个小组需要留在教室,其余四组去操场跑步和跳绳,若跑步的人数比跳绳的人数的2 倍多5人,则留在教室的是第几组?26. 小华将连续偶数2,4,6,8,10,…逐个相加,结果是2016. 验算时发现漏加了一个数,那么,这个漏加的数是多少?27. 三个质数的平方和是390,这三个质数分别是多少?28. 3个不同的质数a,b,c满足a+b=c,且b×c=143,求a×(b+c)的值.29. 下面是著名的百羊问题.原文如下:《算法统宗》(明)程大位甲赶羊群逐草茂,乙拽一羊随其后,戏问甲及一百否? 甲云所说无差谬,所得这般一群凑,再添半群小半群,得你一只来方凑,玄机奥妙谁猜透?原文的意思是说,一个牧羊人赶着一群羊,有人牵着一只羊从后面跟来,问牧羊人:“你这群羊有100 只吗?”牧羊人说:“如果我再有这样一群羊,加上这群羊的一半,再加上一半的一半,连同你这一只羊,就刚好满100 只.”请问牧羊人赶着多少只羊?30. 用两个3,三个2,两个1可以组成多少个互不相同的七位数?31. 从1 到2017的所有奇数的平方数中,个位数是5的有几个?32. 从1 到101这101 个自然数中,(1) 至少选出_____个才能保证其中一定有两个数的和是7的倍数;(2) 如果要保证其中一定有两个数的和是6的倍数至少要选出______个.33. A,B,C,D四人久别重逢.(1) 四人站成一排照相,问有多少种站法?(2) 四人围成一圈照相有多少种站法?34. 电视台打算3天播完6集电视剧,其中可以有若干天不播,共有多少种播出的方法?35.属相各异的12 位同学按鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、犬、猪的顺序围成一圈传递一袋不足200 颗糖的幸运礼包.每人接到礼包后取出一颗糖,然后将礼包往下传.属牛的最牛,先取糖,将礼包传给属虎的同学,…,若最后取到糖的同学属龙,则(1) 礼包里至少有多少颗糖?(2) 礼包里至多有多少颗糖?36. 纸箱中有赤,橙,黄,绿,青,蓝,紫七色袜子,每种袜子都是单色,且数量足够多,那么从中至少取多少只袜子可以保证有一双同色的袜子?37. 五年(1)班有46 名学生参加3 项活动.其中有24 人参加了数学小组,20 人参加了语文小组,参加美术小组的人数是既参加数学小组又参加美术小组人数的4倍,又是3项都参加的人数的8倍,既参加美术小组也参加语文小组的人数是3项都参加的人数的3 倍,既参加数学小组又参加语文小组的有10 人,问参加美术小组的人数是多少?38. 有1 克、2克、4 克、8克、16 克重的砝码5枚,若只能在一边放砝码,问:(1) 用这些砝码可称出多少种不同的重量?(2) 若4克的砝码破损后只剩下3克,则可称出多少种不同的重量?39. 小明家住在一条胡同里,这条胡同里的门牌从1号、2号、…连续下去.全胡同所有住户的门牌号之和减去小明家的门牌,其结果为265. 则(1) 这条胡同共有多少家住户?(2) 小明家的门牌是几号?40. 数一数,图2中共有多少个三角形?41. (1) 图3中有多少个长方形(包括正方形)?(2) 图3中包含*的长方形有多少个(包括正方形)?42. 波兰数学家尔宾斯基(Sierpinski)在1915年提出了尔宾斯基三角形. 以下是它的构造方法:①取一个实心的等边三角形;②沿三边中点的连线,将它分成四个小三角形;③去掉中间的那一个小三角形;④对其余三个小三角形重复②③④.这样下去可以重复无数次操作,如图4 所示. 如果原来的大等边三角形面积为256,那么在4次操作之后,三角形中被去掉的空白部分面积为多少?43. 如图5,8个小等边三角形组成了一个梯形.(1) 数一数图5中有几个等边三角形;(2) 若去掉一个三角形,使得三角形的总数减少1个,你能办得到么?减少两个呢?44. 所谓闭折线,就是一些线段首尾相接构成一个回路.比如五角星,它是一个有5条边的闭折线,并且它的5条边互相相交,共有5个交点(不包括线段的端点交点). 请问:一个有6 条边的闭折线,它的6 条边之间最多可以有多少个交点(不包括线段的端点交点)?45. 如图6,将正面为白色,背面为红色,面积为105 的长方形彩纸背面向正面折起一部分,使这部分重合到彩纸,这时,白色彩纸的面积只剩下了原来的0.2倍,求被折起的这部分(阴影部分)的面积.46. 如图7,长方形ABCD 中,△ABP 的面积为30,△CDQ 的面积为35,求阴影部分的面积.47. 如图8,8边形的8个角都是135°.已知AB=EF,BC=20,DE=10,GF=30,求AH的长.48. 如图9,四边形ABCD 是一个正方形,梯形AEBD 的面积是26,△AOE 的面积比△BOD的面积小10,求正方形的边长.49. 如图10,直角梯形ABCD 中,DF⊥BC,AB=10,DE 的长度是EF 的4 倍,阴影部分的面积为90. 求梯形ABCD的面积.50. 如图11,在梯形ABCD中,AB=15,CD=5,梯形的面积为80,求△AOB的面积.51. 如图12,过平行四边形ABCD 的一点P 作边的平行线EF,GH,若平行四边形BEPH的面积为4,平行四边形PFDG的面积为7,求△PAC 的面积.52. 如图13,△ABC 中,试在AB上取点E,在AC 上取点F,D,连接EF,ED,BD,使得△AEF,△EDF,△BDE,△BCD 的面积都相等(说出一种方法即可,但要证明其正确性).53. 如图14(a)边长分别为13,5 的两个正方形叠放在一起,两个正方形部的阴影部分的面积差为M. 如图14(b)边长分别为15,9的两个正方形叠放在一起,两个正方形部的阴影部分的面积差为N. 试比较M与N 的大小.54. 在边长是2米的等边三角形任意丢放5颗小石子,则总有两颗小石子的距离不大于1米,请说出理由.55. 大伯利用一堵旧墙AB,用长50m 的篱笆围成一个留有1m 宽的门的梯形场地CDEF(CD∥EF),如图15所示.若DE的长为10m,则梯形场地CDEF的最大面积是多少?56. 如图16,ABCD 是正方形,AEGD,EFHG,FBCH 都是长方形,若图16 中所有长方形(含正方形)的周长之和为190,EF=5,求正方形ABCD的面积.57. 用2017 个等腰直角三角形能不能拼成一个正方形? 请说明理由. (注:等腰直角三角形不要求一样大).、58. 一只乌鸦从其鸟巢飞出,飞向其巢北10 千米东7千米的A地,在A地它发现有一个稻草人,所以就转向巢北4 千米东5 千米的B 地飞去,在B 地吃了一些谷物后立即返巢,其所飞的途径构成了一个三角形,这个三角形的面积为多少平方千米?59. 图17 是一个正方体纸盒的展开图,当折叠成纸盒时,与点1 重合的点的编号有哪些?60. 一组积木组成的图形,从正面看是,从侧面看是,则(1) 这组积木最少是用多少块正方体积木摆出来的?(2) 这组积木最多是用多少块正方体积木摆出来的?61. 甲、乙、丙在猜一个完全平方的两位数.甲说:它的因数个数为奇数,而且它比90大.乙说:它是奇数,而且它比80小.丙说:它是偶数,而且它比100小.如果他们三个人每个人都有半句真话,半句假话,那么这个数是多少?62. 如图18,三根绳子系在一起,现在要在绳子的某处点火,如果每分钟火燃烧的距离是1,那么至少需要几分钟才能烧光这些绳子?63. 已知“西门鸡翅”的价格是3元钱2个鸡翅,“好伦哥”的价格是20元自助餐(无论吃多少个鸡翅都是20 元),请根据图19 中的对话判断,小笨至少能吃多少个鸡翅?64. 小笨得到了一笔压岁钱,但却忘了具体有多少钱. 他只记得这个三位数的各位数字之和是17,其中十位数字比个位数字大1. 如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198. 请你帮小笨算算,这笔压岁钱有多少元?65. 某次考试共有12 道判断题.小聪划了7 个钩和5 个叉,结果对了8 道;小笨划了3 个钩和9 个叉,结果对了10 道;大壮一道不会,索性全部打叉,那么他至少可以蒙对多少道题?66. 如图20,在空格填入数字1~4,使得每行、每列和每个粗线围成的区域里数字都是1~4恰好各一个,若M+N>4,则M×N 的值是多少?67. 有61 个人坐成一横排.首先,正中间的一个人站起来,然后,按下述方法大家都或坐或站:(1) 如果邻座的人站起来,那么1秒钟后自己也站起来;(2)站起1秒钟后坐下;(3) 如果左右邻座的人都是站着的,那么即使过了1秒钟,自己仍然坐着.那么最初的那个人站起7秒钟后,有几个人站着?68. 某学生俱乐部有11 个成员,他们的名字分别是A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11 个人里面,总说谎话的有几个人?”那天,J 和K休息,余下的9个人这样回答:那么这个学生俱乐部的11 个成员中,总说谎话的有多少个人?69. 某单位空降一名总经理,五位职员了解了这位经理的一些情况,现列表如下:这五位职员了解的情况,每人只有1项是正确的,请判定该经理的情况.70. 班长小英让x 名同学去种少于100棵的树苗.若每人种7棵,则余下5棵;若每人种8棵,则有1 人只须种6棵. 求:(1)人数x;(2)树苗的棵数.71. 全家四口人,父亲比母亲大3岁,姐姐比弟弟大2岁. 4年前他们全家的年龄之和是58岁,而现在是73岁. 问现在母亲的年龄是多少岁?72. 有一根木棍有三种刻度,第一种刻度将木棍分成10 等份,第二种刻度将木棍分成12等份,第三种刻度将木棍分成15等份.如果沿每条刻度线将木棍锯断,请问木棍共被锯成多少段?73. 某快递公司已囤积部分快件,但仍有快件不断运来,公司决定用快递专车将快件分给客户,若9 辆车发货,12 小时运完;若用8 辆车发货,16 小时可以运完. 问:如果先用6 辆车运,3小时后需再增加几辆车,再过5小时可以运完?74. 10 点多的某个时刻,小明发现1 分钟后表的时针与1 分钟前表的分针夹角是180°,那么现在是10点几分?75. 三堆苹果共48 个. 先从第一堆中拿出与第二堆个数相等的苹果放入第二堆,再从第二堆中拿出与第三堆个数相等的苹果放入第三堆,最后又从第三堆中拿出与第一堆个数相等的苹果放入第一堆,这时三堆苹果数恰好相等.第一堆苹果原来有多少个?76. 甲、乙共有26 颗糖.甲先拿走乙的一半,乙发现后,也拿走了甲的一半. 甲不服气,又偷偷拿了乙5颗糖,此时甲比乙多2颗,问:乙刚开始时有多少颗糖果?77. 甲、乙两车同时从A,B两地相向而行,在距A地70千米处第一次相遇.各自到达对方出发地后立即返回,途中又在距A 地50 千米处相遇. 问:A,B 两地相距多少千米?78. 一列火车速度不变地驶过长为600米的铁路桥需1分钟,以相同的速度完全穿过长为2200米的隧道需要3分钟,问:火车长多少米? (从车头上桥到车尾离桥即为完全驶过铁路桥)79. 华从家到学校上课,先用每分钟80 米的速度走了3 分钟,发现这样走下去将迟到3分钟;于是她就改用每分钟110米的速度前进,结果提前了3分钟到校.华家离学校有多远?80. 有A,B,C 三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分钟、10 分钟、12 分钟追上骑车人.现在知道A车每小时行24 千米,B车每小时行20千米,那么,C 车每小时行多少千米?81. 某人沿着电车道旁的便道以4.5千米每小时的速度步行,每14.4 分钟有一辆电车迎面开过,每24 分钟有一辆电车从后面追过来,如果电车按相等的时间间隔以同一速度不停的往返运行,问:电车发车间隔是多少分?82. 星期六小王去球馆打球,去时发现家中的钟没电了,于是换上电池,把钟暂时调整到8 时整,到球馆时球馆的钟刚好是8 时整,打球到11 时整,他以原速度回家发现家中的钟刚好是12 时整,小王根据这些时间关系再次调整了时间,如果小王在路上的速度是60米/分钟,请问:(1) 从家到球馆的路程是多少米?(2) 小王到家的准确时间是几点?83. 某汽车从A 地开往B 地,如果在计划行驶时间的前一半时间每小时行驶30千米,而后一半时间每小时行驶50千米,则按时到达;但汽车以每小时行驶40千米的速度从A地行驶至离A,B中点还差40 千米的地方发生故障,而停车检修半小时,此后以50 千米每小时的速度行驶,仍按时到达B地,问:(1) 原计划时间是几小时?(2) A,B两地的距离是多少千米?84. 甲、乙两名同学从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动. 已知山坡长360 米,甲上山的速度是乙上山的速度的1.5 倍,并且甲乙下山的速度是各自上山速度的1.5 倍. 当甲第三次到达山顶时,乙所在的位置距山顶多少米?85. 熊大和熊二清晨起床后去学校的环形跑道上跑步锻炼,已知环形跑道的一周是400 米,两只熊分别在相距80 米的A,B 两处同时跑,熊大每秒跑3 米,熊二每秒跑2米,那么熊大和熊二几秒后第一次相遇?86. 甲、乙二人在一条相距20 千米的平直公路的两处同时同向骑自行车(时速不超过60 千米)前进,一小时后两人相距15 千米,已知乙的时速比甲的时速的2倍少10 千米,求甲,乙二人的时速.87. 加工一批零件,如果甲先做4 小时,乙再加入一起做,完成时甲比乙多做400个,如果乙先做4 小时,甲再加入一起做,完成时甲比乙多做40 个. 如果一开始甲乙就一起做,那么,完成时甲比乙多做多少个?88. 猴子A,B 一起上山摘桃子,猴子B 单独摘完需要50 天,如果猴子A 第一天摘,猴子B第二天摘,这样交替摘,恰好整天数可摘完. 如果猴子B 第一天摘,猴子A 第二天摘,这样交替摘,恰好比上次轮流的方法多用半天摘完,那么猴子A单独摘完需要多少天?89. 一个玻璃容器里所装的糖水中含有10克糖,再倒入浓度为5%的糖水200克,配成浓度为2.5%的糖水. 那么原来这个玻璃容器的水有多少克?90. 用黑、白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑、白皮块32 块,则(1) 黑色皮块有多少块?(2) 白色皮块有多少块?91. 小聪与小笨一起爬楼梯上楼,小聪家住5层,小笨算了一下,自己的速度必须是小聪的2倍,这样才可以与小聪同时到达各自家中,那么小笨家住几层?92. 一个牧民买了一头母羊,每年能生2只公羊,4只母羊,每只小母羊两年后,又可以每年生6只羊,其中2只公羊,4只母羊.这样从今年开始到第4年底,一共有多少只羊?93. 一辆长途汽车的起点是甲站,终点是丙站,中途停靠乙站. 从甲站到乙站和从乙站到丙站的票价都是2元,而从甲站到丙站的票价是3元,一天这辆长途汽车离开甲站时载有45 名乘客,到了乙站有12 人下车,19 人上车,那么该长途汽车这一天的车票收入是多少元?94. 甲、乙两人共带90 千克行坐飞机旅行,机场规定:每人所带行重量不超过规定重量免费,超出部分重量按标准收费.两人分开带行分别收费是16.8元和13.2 元;如果由一人带行就要收42元.问:免费规定重量是不超过多少千克?95. 大壮加工一批产品,他每加工出一件正品,得报酬0.75元,每加工出一件次品,罚款1.50元,这天他加工的正品是次品的7倍,得到11.25 元的报酬. 那么他这天加工出几件次品?96. 一个工人与用人单位签订了一个月的短期合同,双方约定,每工作一天得80元,不上班不但没工资,且每天要倒扣10元.月末结账时,该工人领到工资2030元,问这个工人工作了多少天?97. 顾客和店主有如下对话:顾客:老板,这件商品多少元?店主:这件商品五折减5角和六折减6角的结果一样.顾客:按“五折减5 角”的优惠价买可以么?店主:不行!顾客:按“九折减9 角”的优惠价来买可以吗?店主:不行!问:(1) 这件商品的单价是多少?(2) 店主为什么坚持不卖?98. 小聪赶着一头猪到山外的生猪收购站去卖,过秤知猪重150斤,他和收购站的工作人员有如下对话:收购员:你这头猪肚子这么大又这么重,是不是故意让猪吃了很咸的猪食,然后大量喝水造成的?不收!小聪:我们家有诚信的家风,绝不会这样!请收购吧,我走了很远的山路才到这里.收购员:如果马上收购,猪的重量要打九折,如果你明天早上来,当面再称猪的重量,收购价提高两成五,两种选择由你确定!请帮助小聪作出选择,并说明理由.99. 一种商品,甲店:“买四赠一”,乙店:“优惠”,如果只从经济方面考虑,你选择去哪家商店?100. 有27位客人来某厂参观学习,厂领导派车去火车站接人,厂里有两种车子:可乘3 人(司机除外)的小轿车和可乘7 人(司机除外)的面包车,若要求车子全都满载,请确定派车的方案.参考答案1. 02. 13. 304. 105. 5.56. 392,5767. 358. 不会9. 12710. 3311. 3512. 813. 50214. 615. 18616. 1317. 3518. 40 或4519. 15020. 120321. 13822. 123. 9 24. 425. 4或526. 5427. 2,5,1928. 4829. 3630. 21031. 20232. 47,3733. 24,634. 2835. 19636. 837. 2438. 31,2739. 23,1140. 1641. 360,10842. 17543. 10,可以44. 745. 4246. 6547. 2048. 649. 168.7550. 4551. 1.552. 略53. M = N54. 略55. 20556. 10057. 可以58. 1159. 2, 660. 3,961. 8162. 2163. 1464. 47665. 766. 967. 868. 969. 姓黄,男性,年薪240 万元,硕士学历70. 7,5471. 3172. 2873. 874. 2375. 2276. 1677. 13078. 20079. 2000 80. 1981. 1882. 1800,11:3083. 3,12084. 12085. 32086. 15,20;或5,087. 22088. 2589. 59090. 12,2091. 992. 9793. 16194. 2095. 396. 2697. 1元.98. 略99. 乙100. 9 辆小车或者2 辆小车3 辆面包车。
五年级“希望杯”全国数学邀请赛参考答案及评分标准

第十二届小学 希望杯 全国数学邀请赛参考答案及评分标准五年级㊀㊀第2试一㊁填空题(每小题5分㊂其中第4题,每空2.5分㊂)题号123456789101112答案12619102014;40266808.251569.7517284813㊀㊀二㊁解答题13.(1)最初,圆周上有3个数㊂第1次操作后,圆周上有3+3=6(个)数;第2次操作后,圆周上有6+6=12(个)数;第3次操作后,圆周上有12+12=24(个)数㊂(8分)(2)每次操作,新增的数是原来相邻的两个数的和,而原来的数各被加了2次,则新增的数的和是原来的数的和的2倍,即操作后圆周上的数的和是原来的3倍㊂最初,圆周上的3个数的和是1ˑ3=3㊂第1次操作后,圆周上的数的和是3ˑ3=9;第2次操作后,圆周上的数的和是3ˑ9=27;第3次操作后,圆周上的数的和是3ˑ27=81㊂(15分)14.(1)甲走一圈用360ː30=12(分),丙走一圈用㊀360ː90=4(分)㊂12和4的最小公倍数是12,所以,12分钟后,甲㊁丙第一次同时回到出发点㊂(5分)(2)丙走一圈用360ː50=7.2(分)㊂被12,7.2,4除,商都是大于零的整数,满足此条件的被除数最小是36㊂所以,36分钟后,三人第一次同时回到出发点㊂(10分)(3)当三人第一次同时到达同一地点时,他们各自走过的路程除以360所得的余数相同㊂设三人走了x 分钟,根据同余性质,有360∣(50x -30x ),18∣x ;360∣(90x -50x ),9∣x ;360∣(90x -30x ),6∣x ㊂18,9,6的最小公倍数是18㊂所以,18分钟后三人第一次同时到达同一地点㊂(15分)15.解法1㊀因为胜者加分,负者减同样的分,所以两队积分的和不变㊂(5分)若甲队胜,则甲队的积分是乙队的3倍,可知两队的积分和是4的倍数;若乙队胜,则甲队的积分是乙队的2倍,可知两队的积分和也是3的倍数㊂所以,两队的积分和是3ˑ4=12的倍数,即可能是12,24,36,48分㊂讨论如下:(10分)(1)两队的积分和是12分在甲队胜的情况下,甲队的积分是12ː4ˑ3=9(分);在乙队胜的情况下,甲队的积分是12ː3ˑ2=8(分),那么,本场比赛加分或减分的分值是(9-8)ː2=0.5(分),不符合题意㊂(2)两队的积分和是24分在甲队胜的情况下,甲队的积分是24ː4ˑ3=18(分);在乙队胜的情况下,甲队的积分是24ː3ˑ2=16(分),那么,本场比赛加分或减分的分值是(18-16)ː2=1(分),赛前甲队的积分是18-1=17(分),乙队的积分是24-17=7(分)㊂(3)两队的积分和是36分在甲队胜的情况下,甲队的积分是36ː4ˑ3=27(分),在乙队胜的情况下,甲队的积分是36ː3ˑ2=24(分),那么,本场比赛加分或减分的分值是(27-24)ː2=1.5(分),不符合题意㊂(4)两队的积分和是48分在乙队胜的情况下,甲队的积分是48ː3ˑ2=32(分),甲队赛前积分大于32分,不符合题意㊂综上可知,赛前甲队㊁乙队的积分分别是17分和7分㊂(15分)解法2㊀设甲队赛前积分为x分,乙队赛前积分为y分,本场比赛加分或减分的分值为n分(x,y,n都是整数)㊂根据题设条件,得x+n=3(y-n),①x-n=2(y+n),②(8分)①-②,得2n=3y-3n-2y-2n,解得y=7n,x=17n㊂(10分)因为赛前两队的积分都少于25分,所以n 只能取1㊂即赛前甲队积分为17分,乙队积分为7分㊂(15分)16.甲每秒游100ː200=0.5(米),乙每秒游100ː160=0.625(米),乙每秒比甲多游0.625-0.5=0.125(米),乙第1次追上甲,用40ː0.125=320(秒),(5分)在这个时间内,甲游了320ˑ0.5=160(米),还剩1000-160-40=800(米);乙第2次追上甲(距离差是100米),用100ː0.125=800(秒),(10分)在这个时间内,甲游了800ˑ0.5=400(米),此时,甲还剩800-400=400(米),到此,可知乙还可再追上甲1次㊂综上可知,甲被乙追上3次㊂(15分)。
2016希望杯复赛五年级试题答案解析

2016希望杯复赛五年级试题答案解析五年级第2试真题解析一、填空题(每小题5分,共60分)1. 10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)= 。
【答案】:0.25【解析】10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=10÷2×0.3÷0.3×0.04÷0.04×0.05=10÷2×0.05=0.252.小磊买3块橡皮,5支铅笔需付10.6元,若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是元。
【答案】:2.2【解析】根据扩倍法,12块橡皮和20支铅笔的价格:10.6×4=42.4元,20块橡皮和20支铅笔的价格:12×5=60元,橡皮的价格是:(60-42.4)÷(20-12)=2.2元。
去掉的两个相邻偶数的和是:5050-4900=150,所以这两个偶数分别74和76,74×76=5624。
6、如图1,四边形ABCD 是正方形,ABGF 和FGCD 都是长方形,点E 在AB 上,EC 交FG 于点M ,若AB=6,△ECF 的面积是12,则△BCM 的面积是 。
【答案】:6【解析】根据一半模型,△EFM+△BMG=长方形AFBG ÷2,△FMC+△CMG=长方形FDCG ÷2所以△ECF+△BMC=正方形÷2=6×6÷2=18所以S △BMC=18-12=6。
7、在一个除法算式中,被除数是12,除数小于12,则可能出现的不同的余数之和是 。
【答案】:15【解析】除数小于12且有不同余数,除数可能是11、10、9、8、7。
余数分别是1、2、3、4、5。
2016年小学五年级希望杯全国数学邀请赛试题(第二试)(含解析)

得分
二、解答题
12.小磊买3块橡皮,5支铅笔需付10.6元;若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是________________元。
13.张强骑车从公交车的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟。若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?
和差基本公式:(和+差)÷2=较大数,(和—差)÷2=较大数。
1——100这100个数的和是:1+2+3+4+……+100=5050;
剩下的98个数的和是:50×98=4900,则去掉的两个偶数的和是:5050—4900=150;差是2,有和差公式可知这两个数分别为:
(150+2)÷2=76;(150—2)÷2=74,所以这两个数的乘积是:76×74=5624。
14.如图4,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,求五边形EFGHI的面积。
15.定义:[a]表示不超过数a的最大自然数,如[0.6]=0,[1.25]=1。若[5a—0.9]=3a+0.7,求a的值。
16.有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
一、填空题
1.10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=________________。
2.将1.41的小数点向右移动两位,得a,则a—1.41的整数部分是________________。
3.定义:m n=m×m—n×n,则2 4—4 6—6 8—8 10—……—98 100=________________。
“希望杯”全国数学邀请赛真题五年级.docx

“希望杯” 全国数学邀请赛真题(五年级)第一届小学“希望杯”五年级第 1 试一、填空题1.计算= _______ 。
2.将 1、 2、3、 4、 5、 6 分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画 5 条直线,最多可有 _______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若和它的反序数+=139,则=_______ 。
6.三位数的差被 99 除,商等于 _______ 与 _______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图 2 中,正方形有 _______ 个,三角形有 _______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第 (4) 块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长 13 厘米,这个正方形的面积是平方厘米。
10. 六位自然数 1082□□能被 12 整除,末两位数有种情况。
11. 右边的除法算式中,商数是。
第1页共87页12.比 2/3 大,比 3/4 小的分数有无穷多个,请写出三个:。
、B、C、D、E 五位同学进行乒乓球循环赛,比赛进行了一段时间后, A 赛了 4 场, B 赛了 3 场, C赛了 2 场, D赛了1场,这时, E 赛了场。
14. 观察 5*2 = 5+55= 60,7*4 = 7+77+ 777+ 7777= 8638,推知 9*5 的值是。
15. 警察查找一辆肇事汽车的车牌号,一位目击者对数字很敏感,他提供情况说:―第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的 4 倍刚好比后两位数少 2‖。
警察此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得 1 分。
希望杯五年级历届试题与答案

2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a 的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016希望杯五年级答案
2016希望杯五年级答案
【篇一:2016希望杯五年级一试(带答案)】
a、b、c、d、e、f排队依次从猫妈妈手中领鱼干,每只小猫咪每次领
一条,领完后在道队尾继续排队领,直到鱼干发完。
若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是________。
20.16?32?2.016?680?________。
3、某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明聪镜中
看到电子表显示的时间如图所示,则此时的实际时间是________。
4、如果自然数a、b、c、d除以6都余4,则a+b+c+d除以3,所得的余数是
________。
5、b、d、e满足abcde,c、三位偶数a、若a+b+c+d+e=4306,则a最小是________。
6、将100按“加15,减12,加3,加15,减12,加3,?”的顺序不断重复运算,
运算26步后,得到的结果是________。
(1步指每“加”或“减”一个数)
7、如图,若每个小正方形的边长是2,则图中阴影部分的面积是________。
8、某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小
盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心________块。
9、如图,在梯形abcd中,若ab=8,dc=10,svamd=10,svbcm=15,则梯
形abcd的面积是________。
10、两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是
________。
11、14袋糖果每袋的平均重量经四舍五入到小数点后第一位等于90.2克,已知每袋
糖果的重量都是整数,则这14袋糖果的总重量是________。
12、从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是________。
13、某数学竞赛由10道题,规定每答对一题得5分,答错或不答扣2分。
a、b两人各自答题,得分之和是58分,a比b多得14分,则a答对________道题。
14、如图,若长方形s长方形abcd=60平方米,s长方形xyzr=4平方米,则四边形
s四边形efgh=________平方米。
78.15、有一个三位数a,在它的某位数字的前面添上小数点后得数b,若a-b=4,
则a=________。
16、商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍。
如果每天卖出30
镜中看到的与实物是关于镜子对称的,模拟从镜子的背面看即可,当然更简单的方法是直接从纸的背面看。
难易程度:一星
4、1
难易程度:一星
5、326
可用倒推法,也可用正推法,用倒推法容易些:让e、d、c、b尽可能大,若e最大,d、c、b依次少2时a也是三位偶数,则显然此时a最小。
故a=4306-(4000-20)=4306-4000+20=326
难易程度:二星
6、151
难易程度:一星
7、72
此图把三角形扩大变长方形去数更快,犯不着用格点面积公式。
难易程度:一星
相差:654-429.2=232.8(元)
小盒有9-6=3(盒)
难易程度:二星,可能卡在三位数除以三位数上。
9、45
面积问题,求出高即可,有二种求法:
难易程度:二星
10、12
故差最小是27-15=12
难易程度:二星
11、1263
根据四舍五入的原则,易知90.15平均数90.24
难易程度:一星
12、3333
难易程度:三星
注:由1、2、3组成的6个三位数的平均数一般都求过,方法可借鉴。
鸡兔同笼+和倍问题。
如果a全对,应得50分,相差:50-36=14分
所以a答对了:10-2=8题
难易程度:二星
14、32
难易程度:一星
15、532
故a为532
难易程度:一星
16、176
方法一:方程法,列方程比较简单,得会解稍复杂的一元一次方程才行。
方法二:和倍问题
原1倍=新1倍+60,从图中可以看出:
新3倍=原2倍-90+26+60,而原2倍=新2倍+120,故
新3倍=新2倍+120-90+26+60=新2倍+116,因此,新1倍=116
故原1倍=116+60=176,即原有柚子176个。
难易程度:三星,稍复杂的和倍问题
【篇三:2016第十四届希望杯五年级100题】
:2015+201.5+20.15+985+98.5+9.85的值.
●●
7.规定:a△b=(b-0.2a)(a-0.2b),a□b=ab-a+b,求5△(4□3)的值.
300□9□7□5□3
9.a,b,c都是质数,若a+b=13,b+c=28,求a,b,c的乘积
10.若两个自然数的乘积是75,且这两个自然数的差小于15,求这两个数和的个位数字.
12.有6个连续的奇数,其中最大的奇数是最小的奇数的3倍,求这6个奇数的和.
13.有一个两位数,在它的两个数字中间添加2个0,所得到的数是原来数的56倍,求原来的两位数.
15.已知两个自然数的乘机是2016,这两个数的最小公倍数是168,求这两个数的最大公约数.
16.两个数的最大公约数和最小公倍数分别是4和80,求这两个数.
17.2016的约数中,偶数有多少个?
18.有6个数排成一列,从第2个数起每个数都是前一个数的2倍,且6个数的和是78.75,求第2个数.
19.从左到右排列的31个数,到第16个数为止,后面一个数比前面相邻的数大3;从第16个数开始,到第31个数为止,后面的数比前面的数小4,若31个数的和是2012.求16个数.
21.p,q均为质数,且3p+5q=31,求pq的最大值.(注:an表示n个a相乘)
22.有一列小数2.41,41.3,3.51,51.4,4.61?,从第二个数开始,每个数都是它前一个数的小数部分和整数部分互换后加0.1所得,当某一个数的数字中首次出现0时,不再继续,求这个列数的和.
23.按顺序排列一串数,从第3个数起,每一个数都等于其前面两个数的和.如果这串数的第2个数为20.16,第10个数201.6,求前面8个数的和.
26.一个自然数b乘以3后,乘积的最后三位数是103,求b的最小值.
27.求能被3,5,7整除的最小的四位数.
28.有一个自然数除4余2,除6余4,除9余7,求这个数最小是多少?.
29.若被28整除的最小三位数是a,最大的三位数是b,求a+b.
30.在1~50的自然数中所有不能被3整除的数的和是多少?
31.在1~100的自然数中,不是3或7的倍数的数有多少个?
32.一个三位数自然数
某一个数字,求a的值.
减去它的各位数之和,得到□58,其中□代表。