25共轭梯度法
共轭梯度法公式
共轭梯度法公式
共轭梯度法是一种用于求解线性方程组的迭代算法。
其主要思想是通过利用前一次迭代的信息来加速当前迭代的速度,从而减少迭代次数和计算量。
共轭梯度法公式包括以下几个步骤:
1. 初始化:设初始解为x0,残量b0为Ax0-b,共轭方向d0=b0。
2. 迭代求解:对于第k次迭代,计算步长αk,使得xk+1=xk+αkd,其中d是共轭方向,满足dTkAd=0,即d是A的共轭向量。
3. 更新残量:计算新的残量bk+1=Axk+1-b,如果bk+1小于预设精度,则停止迭代。
4. 更新共轭方向:计算新的共轭方向dk+1=bk+1+βkdk,其中βk=(bk+1)Tbk+1/(bk)Tbk,保证dk+1与之前的共轭方向都是A的共轭向量。
5. 重复迭代,直到满足收敛条件,返回最终解xk+1。
共轭梯度法是一种高效的求解大型线性方程组的方法,尤其适用于稀疏矩阵和对称正定矩阵。
公式简单易懂,容易实现,且具有较快的收敛速度。
- 1 -。
共轭梯度法步骤
共轭梯度法步骤共轭梯度法是一种求解线性方程组的迭代算法,它以高效稳定的特点而广受欢迎。
以下是共轭梯度法的步骤:步骤1:初始化首先,我们需要有一个初始向量x0和一个初始残量r0=b-Ax0。
其中,A为系数矩阵,b为常数向量。
步骤2:计算方向向量令d0=r0,表示第一次迭代的方向向量。
步骤3:计算步进长度令α0=(r0·r0)/(d0·Ad0),其中·表示向量的点积。
α0表示迭代过程中每个方向向量的步进长度。
步骤4:更新解向量令x1=x0+α0d0,表示迭代后的解向量。
步骤5:计算新残量令r1=r0-α0Ad0。
步骤6:判断终止条件如果r1的范数小于预设阈值,或者迭代次数达到预设次数,终止迭代。
否则,进入下一次迭代。
步骤7:更新方向向量令β1=(r1·r1)/(r0·r0),表示更新方向向量的轴线。
步骤8:计算新方向向量令d1=r1+β1d0,表示新的迭代方向向量。
步骤9:计算新的步进长度令α1=(r1·r1)/(d1·Ad1)。
步骤10:更新解向量令x2=x1+α1d1。
步骤11:更新残量令r2=r1-α1Ad1。
步骤12:重复步骤6至11,直至满足终止条件。
总结起来,共轭梯度法的步骤主要包括初始化、计算方向向量、计算步进长度、更新解向量、计算新残量、判断终止条件、更新方向向量、计算新的步进长度、更新解向量和更新残量等。
该算法迭代次数较少,收敛速度快,适用于大规模线性方程组的求解。
共轭梯度法
•基本思想:把共轭性与最速下降法相结合,利用已 知点处的梯度构造一组共轭方向,并沿着这组方 向进行搜索,求出目标函数的极小点
4.4共轭梯度法
先讨论对于二次凸函数的共轭梯度法,考虑问题
min f (x) 1 xT Ax bT x c
3, giT d (i) giT gi (蕴涵d (i) 0)
证明: 显然m1,下用归纳法(对i)证之.
当i 1时,由于d (1) g1,从而3)成立,对i 2时, 关系1)和2)成立,从而3)也成立.
4.4共轭梯度法
设对某个i<m,这些关系均成立,我们证明对于i+1
也成立.先证2),
因此
2 / 3 1 5/ 9
d (2)
1/ 1
3
1 9
2 0
5/9 1
从x(2)出发,沿方向d (2)进行搜索,求步长2,使满足 :
f
( x (1)
2d (1) )
min
0
f
(x(2)
d (2))
2 0
4.4共轭梯度法
显然, d (1)不是目标函数在x(1)处的最速下降方向.
下面,我们用FR法构造两个搜索方向.
从x(1)出发,沿方向d (1)进行搜索,求步长1,使满足 :
f
( x (1)
1d (1) )
min
0
f
( x (1)
d (1) )
得1 2 3
A正定,故x是f(x)的极小值点.
共轭梯度法程序
一、共轭梯度法共轭梯度法(Conjugate Gradient)是共轭方向法的一种,因为在该方向法中每一个共轭向量都是依靠赖于迭代点处的负梯度而构造出来的,所以称为共轭梯度法。
由于此法最先由Fletcher和Reeves (1964)提出了解非线性最优化问题的,因而又称为FR 共轭梯度法。
由于共轭梯度法不需要矩阵存储,且有较快的收敛速度和二次终止性等优点,现在共轭梯度法已经广泛地应用于实际问题中。
共轭梯度法是一个典型的共轭方向法,它的每一个搜索方向是互相共轭的,而这些搜索方向d仅仅是负梯度方向与上一次迭代的搜索方向的组合,因此,存储量少,计算方便,效果好。
二、共轭梯度法的原理设有目标函数f(X)=1/2X T HX+b T X+c 式1 式中,H作为f(X)的二阶导数矩阵,b为常数矢量,b=[b1,b2,b3,...b n]T 在第k次迭代计算中,从点X(k)出发,沿负梯度方向作一维搜索,得S(K)=-∆f(X(k))式2 X(k+1)=X(k)+ɑ(k)S(k) 式3在式中,ɑ(k)为最优步长。
设与S(k)共轭的下一个方向S(k+1)由点S(k)和点X(k+1)负梯度的线性组合构,即S (k+1)=-∆f (X (k+1))+β(k)S (k) 式4 根据共轭的条件有[S (k)]T ∆2f (X (k))S (k+1)=0 式5 把式2和式4带入式5,得-[∆f(X (k))]T ∆2f (X (k))[-∆f (X (k+1))+β(k)S (k) ]=0 式6 对于式1,则在点X (k)和点X (k+1)的梯度可写为∆f(X (k))=HX (k)+b 式7 ∆f (X (k+1))=HX (k+1)+b 式8 把上面两式相减并将式3代入得ɑ(k)H S (k)=∆f (X (k+1))-∆f(X (k)) 式9 将式4和式9两边分别相乘,并代入式5得-[∆f (X (k+1))+β(k)∆f(X (k))]T [∆f (X (k+1))-∆f(X (k)]=0 式10 将式10展开,并注意到相邻两点梯度间的正交关系,整理后得 β(k )=22||))((||||))1((||k X f k X f ∆+∆ 式11把式11代入式4和式3,得 S (k+1)=-∆f (X (k))+β(k )S (k )X (k+1)=X (k )+ɑ(k )S (k )由上可见,只要利用相邻两点的梯度就可以构造一个共轭方向。
共轭梯度法(精品文档)
1
g2T (g2 d1T (g2
g1) g1)
g2T g2 g1T g1
4) 一般地,在第 k 次迭代中,令
k 1
dk gk idi i0
适当选取 i ,使 dkTGdi 0 ( i 0,
, k 1),可得到
i
gkT Gdi diT Gdi
gkT (gi1 gi ) diT (gi1 gi )
§4.2 共轭梯度法
提纲
1、共轭梯度法---F-R共轭梯度法 2、共轭梯度法性质定理及例题 3、再开始FR共轭梯度法 4、Beale三项共轭梯度法 5、预条件共轭梯度法(了解)
共轭梯度法
在上一节中讨论了共轭方向法,其中n个共轭方向是预先设定好的。但是如何 让获取这些共轭方向并为提及。本节讨论一种重要的共轭方向法——共轭梯 度法。这种方法是将共轭性和最速下降方向相结合,利用已知迭代点处的梯 度方向构造一组共轭方向,并沿此方向进行搜索,求出函数的极小点。因在 迭代过程中通过对负梯度方向进行适当校正获得共轭方向,故而称之为共轭 梯度法。
算法步骤—FR共轭梯度法
1、选取初始数据,选取初始点 x0 ,给定允许误差 0 ;
2、检查是否满足终止准则,计算 f (x0 ) ,若 || f (x0 ) || ,迭代终
止,x0为近似最优解,否则转向3;
3、 构造初始搜索方向,计算 d0 f (x0 ), k 0;
而
k 1
gkT (gk gk1)
dT k 1
(
gk
gk 1 )
gkT gk gkT1 gk 1
共轭梯度法的迭代公式为:
共轭方向与共轭梯度法-最优化方法
f (X1)T P0 0 ,所以 f (X1)T P0 1P1TQ P0 0
P1TQ P0 0
(1)
以上就是搜索方向P1所必须满足的(必要) 条件。这也是使X2是极小点的充分条件。 P1,P2称为关于Q的共轭方向。
讨论表明 对于二维的具有正定矩阵Q的 二次函数f(X),从任一初始点出发,依次沿关 于Q共轭的两个方向进行一维搜索,必可达到 f(X)的无约束精确极小点。
Pk 1
0
且对j 0,1 , k 2, 有
PjT QPk PjT Q f ( X k ) k1Pk1
PjT Qf
(X
k
)
k
PT
1 j
QPk
1
f ( X k )T QPj
f ( X k )T f ( X j1) f ( X j ) j
f ( X k1 ) QX k1 b Q( X k k Pk ) b (2)
f ( X k1 ) f ( X k ) k QPk
所以
f ( X m ) f ( X m1) m1QPm1
f ( X m2 ) m2QPm2 m1QPm1
其中1 是最优步长,1>0 .因为 X * 是无约束极小点。
故 f ( X * ) 0 即 QX * b 0
f (X1) QX1 b
Q( X * 1P1) b (QX * b) 1QP1 1QP1
又因为 X1是f(X)沿P0方向的直线l0上的极小点,故
设 X En ,
,Q为对称正定矩阵,P0,
P1,···,Pm-1是关于Q共轭的m个共轭方向,
【实用】共轭梯度法反演PPT资料
我们假设在点X0 处开始沿负梯度方向
蒙特卡洛方法 搜索,到达点X1 ,即
设有一组n 维彼此关于n×n 的正定对称矩阵A共轭的向量
,能够使我们分别沿着这n个共轭向量所指的方向各搜索一
非 统计方法 次,就可以达到极值点 。
为了使搜索能够快速到达极值点选取α使
模拟退火法
为了使搜索能够快速到达极值点选取α使
0 ( Ax k b )T d k 1 ( A ( xk 1 k d k ) b )T d k 1
从而,
k
rkT p k
p
T k
ApBiblioteka k(11)将上式带入 (10) 式可得:
x *
xn
x0
n 1 i0
riT p i
p
T i
Ap
i
di
(12)
*
16
三、共轭梯度法的优缺点
优 分别使用最共 速轭 下梯 降度 法法 和组 解 2 3线 6 2x性 28方 程 点 目标函 :(数 x1,x2为 )-2x13x124x1x28x26x22
性
小值,分0别 .60是 10和 : 508.76035
P2局部极 小值
P1全局极 小值
*
20
三、共轭梯度法的优缺点
局限性
初始猜测 反演结果 目标函数值 (2,-1) (3.0,0.0) 0.6011 (-2,-1) (-3.0,0.0) 0.7606 (-1.5,0) (-0.0958,0) 0.9932 (4,-1) (3.0,0.0) 0.6011
*
17
三、共轭梯度法的优缺点
计算效率比较
最速下降法
共轭梯度法
*
18
三、共轭梯度法的优缺点
共轭梯度法
最速下降法1.最速下降方向函数f(x)在点x处沿方向d的变化率可用方向导数来表示。
对于可微函数,方向导数等于梯度与方向的内积,即:Df(x;d) = ▽f(x)T d,因此,求函数f(x)在点x处的下降最快的方向,可归结为求解下列非线性规划:min ▽f(x)T ds.t. ||d|| ≤ 1当 d = -▽f(x) / ||▽f(x)||时等号成立。
因此,在点x处沿上式所定义的方向变化率最小,即负梯度方向为最速下降方向。
2.最速下降算法最速下降法的迭代公式是x(k+1) = x(k) + λk d(k) ,其中d(k)是从x(k)出发的搜索方向,这里取在x(k)处的最速下降方向,即d = -▽f(x(k)).λk是从x(k)出发沿方向d(k)进行一维搜索的步长,即λk满足f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).计算步骤如下:(1)给定初点x(1) ∈ R n,允许误差ε> 0,置k = 1。
(2)计算搜索方向d = -▽f(x(k))。
(3)若||d(k)|| ≤ε,则停止计算;否则,从x(k)出发,沿d(k)进行一维搜索,求λk,使f(x(k) + λk d(k)) = min f(x(k)+λd(k)) (λ≥0).(4)令x(k+1) = x(k) + λk d(k),置k = k + 1,转步骤(2)。
共轭梯度法1.共轭方向无约束问题最优化方法的核心问题是选择搜索方向。
以正定二次函数为例,来观察两个方向关于矩阵A共轭的几何意义。
设有二次函数:f(x) = 1/2 (x - x*)T A(x - x*) ,其中A是n×n对称正定矩阵,x*是一个定点,函数f(x)的等值面1/2 (x - x*)T A(x - x*) = c是以x*为中心的椭球面,由于▽f(x*) = A(x - x*) = 0,A正定,因此x*是f(x)的极小点。
共轭梯度法
2 2 min f ( x ) = x1 + 2x2 x
⎛1⎞ 给定初始点 x (0) = ⎜ ⎜1⎟ ⎟。 ⎝ ⎠
13
⎛ 2 x1 ⎞ ⎛ 2 0⎞ 2 首先, ∇f ( x ) = ⎜ ⎜ 0 4⎟ ⎟ ,以下利用(4.14)确定 β k 。 ⎜ 4x ⎟ ⎟ ,H= ∇ f ( x ) = ⎜ ⎝ ⎠ ⎝ 2⎠ k=0:
0
k +1
) 与搜索方向 s 0 ," , s k 均正交。同时,利用引理 4.1 马上
设 H ∈ R n×n 是对称正定阵,s ," , s
0
n −1
0
n −1
是非零 G—共轭方向组,x ∈ R 。 若对问题(UQP),
0
n
从 x 出发,依次沿 s ," , s
0
进行最优一维搜索,最终得到 x ,则 x 是(UQP)的最优解。
为保证 H-共轭性,在 x 处必须取 s 为搜索方向,而不能取 α s (α > 0) 为搜索方向。
k k
k
利用定理 4.3,马上得到上述算法的有限终止性。 定理 4.4 设 H ∈ R n×n 是对称正定阵。若用凸二次规划的共轭梯度法求解 (UQP) 时产生迭代点
x1 ," , x K ,则 x K 是(UQP)的最优解,并且 K ≤ n 。
首先由(4.7)知, g = ∇f ( x ) ( j = 0, " , k -1)是 s ," , s 的线性组合,因此根据定理 4.2,
j j 0 j
( g k )T g j =0, j = 0, " , k -1
由于
共轭梯度法
证明:采用数学归纳法, 不过, 还是省略它
(5.8)意味着 d iT Qd j 0, j i, i 1, 2, , n - 1 即Broyden 族在用精确搜索求解凸二次函数极小化问题 时, 所产生的方向关于矩阵Q相互共轭.属于共轭方向法.
前面讨论的共轭方向法 需要在算法之初 产生 n个共轭方向,因而需要很大的存贮量,而且 不能用来求解非二次问题.
j 0 k
dT j Qp k 1 d Qp j
T j
d j,
(5.5)
步2 若k n - 2, 则停止, 否则, 令k : k 1, 转步1.
容易验证, 由算法5.1产生的向量组 d 0 , d1 , , d n-1 R n 关于矩阵Q相互共轭
下面的定理解释了第四章介绍的Broyden 族具有二次终 止性的根本原因 :
其中 k 是待定参数, 适当选取 k , 使得 d kT Qd k -1 0.
一般地, 搜搜方向的计算公式为: - f ( x0 ), dk - f ( xk ) k d k -1 , k 0 k 1 (5.10)
在下面我们来推导 (5.10) 参数 k 的计算公式 :
d k -f ( xk ) k d k -1
其中 k 是由精确搜索得到的步长. 即满足
于是求得
d kT-1Qf ( xk ) k T dk -1Qd k -1
在该计算式中含矩阵Q, 为减少计算量及使共轭梯度能 用于求解非二次函数的优化问题, 在计算式中消除 Q.
由上面的条件得到
T T T p0 Qp1 - p0 Qf ( x1 ) p0 Qp 0 0
等值线
f ( x1 )
由此解得 所以 p Qf ( x1 ) T p0 Qp 0
共轭梯度法课件
4.3共轭梯度法4.3.1共轭方向法定义4.3.1设A 是n ×n 对称正定矩阵,d 1,d 2,是n 维非零矢量,如果d 1T Ad 2=0则称d 1和d 2是A-共轭的,简称共轭的设d 1,d 2,...,d m 是R n 中一组非零向量,如果d i T Ad j =0,i ≠j ,j,i=1,2,...,k则d 1,d 2,...,d m 是A-共轭的,简称共轭的,也称它们是一组A 共个方向定理4.3.3设x 0∈Rn 是任意初始点,对于极小化二次函数min f(x)=1/2 x T Ax-b T x 共轭方向法至多经n 步精确线性搜索终止;且每一x i+1都是f(x)在x 0和方向d 1,d 2,....,di, 所张成的线性流形{|x x=x 0+,0j i j j da ∑=j a ∀}中的极小点。
4.3.4共轭梯度法共轭梯度法是一个典型的共轭方向法,他的每一个搜索方向是相互共轭的,而这些搜索方向d k 仅仅是负梯度方向-g k 与上一次迭代的搜索方向d k-1组合。
因此,存储量小,计算方便。
定理4.3.6对于正定二次函数,采用精确线性搜索的共轭梯度法在m ≦n 步后终止,且对1≦i≦n成立下列关系式:d i T Ad j=0,j=0,1,...,i-1,g i T Ag j=0,j=0,1-1,d i T Ag i= - g i T g I[g0,g1,...,g i]=[g0,Ag0,,...,A i g0][d0,d1,...,d i]=[g0,Ag0,,...,A i g0]其中[g0,g1,...,g i]和[d0,d1,...,d i]分别表示g0,g1,...,g i及d0,d1,...,d i张成的子空间,[g0,Ag0,,...,A i g0]表示g0的i阶Krylov子空间。
定理4.3.9(FR共轭梯度法的总体收敛性定理)假定f R n R在有界水平集L={x R n|f(x)≦f(x0)}上连续可微,且有下界,那么采用精确线性搜索的F-R共轭梯度法产生的序列{x k}至少有一个聚点是驻点,即1当{x k}是有穷数列时,其最后一个点是f(x)的驻点;2当{x k}是无穷数列时,它必有聚点,且任一聚点都是f(x)的驻点。
共轭梯度法总结
共轭梯度法总结
共轭梯度法总结
一、什么是共轭梯度法
共轭梯度法(Conjugate Gradient Method),是一种用于求解线性方程组的迭代优化算法,它是一种搜索梯度的迭代算法。
共轭梯度法的基本思想是沿梯度的反方向搜索,并在每一步令搜索的方向接近更新的局部梯度。
它是一种非常有效的求解有约束的非线性优化问题的方法,是求解线性方程组的有效算法。
共轭梯度法可以看作是一种极小化函数的迭代方法,它最主要的思想是不断更新梯度的方向,从而寻找函数值最小的点。
二、共轭梯度法的原理
共轭梯度法是一种迭代优化算法,它以凸二次型函数为例,可以用来求解最小值问题。
它的基本思想是:
(1)首先求得函数的梯度,即每一步优化的搜索方向,使梯度变为最小;
(2)以梯度的反方向搜索,令搜索的方向接近更新的局部梯度,而不是与旧的梯度成正比的步长;
(3)逐步更新搜索的方向为新的梯度;
(4)重复这个过程,直到所有的自变量满足限制条件。
三、共轭梯度法的优缺点
共轭梯度法最大的优点是它具有收敛速度快,可以在有限的迭代步数内收敛到最优解;另外,它还具有计算量小,不需要计算精确的
Hessian矩阵的优点。
共轭梯度法的缺点是它不能用来求解非凸优化问题,因为它只能求解凸优化问题;另外,它也不能用于强不可约的优化问题。
共轭梯度方法
共轭梯度方法(Conjugate Gradient Method)是求解线性方程组的一种迭代算法。
该方法适用于求解大型稀疏的对称正定线性方程组,可以显著减少计算量和存储空间。
该方法的主要思想是利用共轭方向(Conjugate Directions)的性质,在有限次迭代中求解方程组的解。
共轭梯度方法的基本步骤如下:
选取一个初值$x_0$,并令$r_0=b-Ax_0$,其中$b$ 为方程组的右端向量,$A$ 为系数矩阵。
计算一个共轭方向$p_0=r_0$,即$p_0$ 与$r_0$ 正交,并满足$Ap_0 \neq 0$。
对于$k=0,1,2,\ldots$,执行以下操作:
a. 计算$\alpha_k=\frac{r_k^Tr_k}{p_k^TAp_k}$。
b. 更新解向量$x_{k+1}=x_k+\alpha_kp_k$。
c. 计算残差向量$r_{k+1}=r_k-\alpha_kAp_k$。
d. 计算$\beta_k=\frac{r_{k+1}^Tr_{k+1}}{r_k^Tr_k}$。
e. 更新共轭方向$p_{k+1}=r_{k+1}+\beta_kp_k$,即$p_{k+1}$ 与$p_k$ 具有共轭性。
如果残差向量$r_k$ 较小,则停止迭代,输出解向量$x_k$。
共轭梯度方法具有收敛速度快、存储空间小等优点,但对于非对称和非正定的线性方程组,该方法可能不收敛。
同时,该方法也有一些变体,如预处理共轭梯度法、共轭残差法等,可以更好地解决不同类型的线性方程组求解问题。
共轭梯度法
共轭梯度法共轭梯度法(also known as Pearson-Newman gradient method)是电化学反应动力学中一种很有用的技术,主要应用于分析化学、环境工程、农药学、微生物学等领域。
用共轭梯度法时,以活性高的配体替代催化剂上的固定配体(一般为固定相),使原来的催化剂仍能发挥作用,但具有选择性更好、灵敏度更高、应用范围更广的特点,同时能降低毒性和提高催化活性,还可改善催化剂的稳定性。
共轭梯度法(reaction-coordinate density technique,缩写为coAPD),是由美国著名的电化学家S.C.R.(赫维斯特)于1976年提出的,最早是应用于考察水溶液中蛋白质在二级胺诱导下的变性行为。
后来,此方法被用于研究Cu(I)-Zn(II)氧化偶联反应,可用于测定其它一些金属离子。
它能够选择性地催化多种反应,并且操作简便,灵敏度高,催化效率高。
它与同样是基于电极过程机理的原位催化比较,在原理上具有优越性。
对于活性组分分子内部的小的不均匀结构,可以采用共轭梯度法实现更精确的测量。
在这个技术中,如果采用共轭体系,一般可以考虑将其作为一个三电子体系,而与电子得失的量子化运动相联系,即以共振状态作为激发条件。
因此,实验装置也称之为共振极限溶剂。
目前,已经开发了一些共轭体系,其中主要包括共轭二烯体系、共轭异戊二烯体系、共轭二炔体系等。
根据不同的选择性要求,又可将它们划分成几类:双齿配体系列、共轭乙炔体系列、共轭苯炔体系列、共轭乙烯体系列、共轭苯乙炔体系列、双烯类配体系列。
由于选择性较高,该技术广泛用于化学反应机理及反应产物分析。
特别是随着计算机技术的迅速发展,其应用更加广泛。
例如,在定量方面,可以在很短的时间内给出定量结果,可以很快地绘制出实验曲线或计算出数据。
在这个技术中,反应机理以原子轨道理论为基础。
根据反应机理,按照共振条件进行合理的实验设计,通过电化学反应测定反应的产物或催化剂的量,并绘制电位-时间图,即可达到定性、定量的目的。
共轭梯度法 计算化学
共轭梯度法计算化学
共轭梯度法是一种常用于求解线性方程组的迭代方法,也可以用于计算化学中的一些问题。
在计算化学中,共轭梯度法常用于求解分子结构优化、能量最小化、电子结构计算等问题。
其中最常见的应用是求解非常大的线性方程组,如Hartree-Fock方程,即通过求解一个自洽的线性方程组来得到分子的基态电子结构。
共轭梯度法利用了线性方程组的特殊性质,通过迭代计算逼近线性方程组的解。
它不需要事先知道线性方程组的解的精确形式,只需要知道线性方程组的系数矩阵和右端向量。
在每一次迭代中,共轭梯度法利用之前的迭代结果和当前的残差信息来计算一个新的搜索方向,从而逼近解的位置。
通过多次迭代,共轭梯度法可以逐渐接近线性方程组的解。
在化学计算中,尤其是量子化学计算中,共轭梯度法经常用于求解大型稠密矩阵的特征值问题。
这些问题通常涉及求解特征方程,得到能量的本征值和本征函数。
共轭梯度法的迭代性质使得它非常适合处理大型稠密矩阵的特征值计算问题,因为它只需要存储和计算与当前解和残差相关的信息,而不需要存储和计算整个矩阵。
总之,共轭梯度法是一种非常有效的迭代方法,可以用于求解线性方程组以及一些涉及大型矩阵的计算化学问题。
在实际应用中,共轭梯度法经常与其他优化算法结合使用,以获得更高效、更准确的结果。
线性方程组的共轭梯度法
迭代过程
计算方程组的雅可比矩阵A和右端项b,得到线性方程组Ax=b。 计算初始残差r0=b-Ax0。 进行迭代,对于k=0,1,2,...,max_iter,执行以下步骤
迭代过程
01
1. 计算搜索方向pk=-Ak^T。
02
2. 在搜索方向pk上进行线搜索,找到步长λk,使得 Axk+1=b-λk*r^k最小化。
感谢观看
THANKS
定义
线性方程组是由一组线性方程组成的 数学模型,其中包含未知数和已知数。
分类
根据方程的系数矩阵和常数项矩阵, 线性方程组可以分为多种类型,如超 定方程组、欠定方程组和恰定方程组。
线性方程组的求解方法
直接法
通过消元或迭代等方法将方程组化为标准形式,然后 求解。
迭代法
通过不断迭代更新解的近似值,逐步逼近方程的解。
在金融工程中的应用
投资组合优化
共轭梯度法可以用于求解投资组合优化问题 ,以最大化投资收益或最小化风险。
期权定价
在期权定价模型中,共轭梯度法可以用于求解 Black-Scholes方程,以得到期权的合理价格。
风险管理
在风险管理方面,共轭梯度法可以用于求解 风险评估模型中的最优化问题,以评估和管 理金融风险。
解效率。
02
常用的预处理方法包括对角占优预处理、不完全LU
分解预处理等。
03
预处理技术可以消除原始方程组中的病态条件,降低
数值误差的放大效应。
自适应步长调整策略
自适应步长调整策略可以根据上 一步的搜索结果动态调整步长, 提高算法的稳定性和收敛速度。
常见的自适应步长调整策略包括 Armijo线搜索、Goldstein线搜
科学计算
共轭梯度法
一.介绍共轭梯度法(Conjugate Gradient )是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse 矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。
在各种优化算法中,共轭梯度法是非常重要的一种。
其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。
共轭梯度法中最关键的两点是,搜索方向)(k d 和最佳步长k α。
其基本步骤是在点)(k X 处选取搜索方向)(k d , 使其与前一次的搜索方向)1(-k d 关于A 共轭,即(1)()(1),0k k k d d Ad --<>=然后从点)(k X 出发,沿方向)(k d 求得)(X f 的极小值点)1(+k X , 即)(min )()()(0)1(k dX f X f k k αλ+=>+如此下去, 得到序列{)(k X }。
不难求得0,)1()(>=<-k k Ad d 的解为)()()1(k k k k d X X α+=+其中,><><-=)()()()(,,k k k k kAd d Ad r α注意到)(k d 的选取不唯一,我们可取)1(1)()()(--+-∇=k k k k d X f d β由共轭的定义0,)1()(>=<-k k Ad d 可得:><><-=----)1()1()1()(1,,k k k k k Ad d Ad r β 共轭梯度法的计算公式如下:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=><><-=+=><><-=-=-==+------(k)(k)1)(k )()()()()1(1(k))()1()1()1()(1(k)(k)(0)(0)d X X,,r ,,X r Xr d k k k k k k k k k k k k k k Ad d Ad r d d Ad d Ad r A b A b ααββ 二.程序框图定义矩阵A 和向量bAx=b定义x 的初值将x 代入计算公式误差到达精度要求Yes输出xNo 迭代出新的x 结束开始三.源码n=100;%矩阵阶数,可以按照题目需要更改syms x1 r1 d1A=zeros(n,n);b=zeros(n,1);b(1,1)=-1;b(n,1)=-1;for i=1:nA(i,i)=-2;endfor i=1:n-1A(i,i+1)=1;A(i+1,i)=1;endx1=zeros(n,1);for i=1:n*1000r1=b-A*x1;d1=r1;a=(r1'*d1)/(d1'*A*d1);x1=x1+a*d1;r2=b-A*x1;if(norm(x1)<=eps)breakendbb=-(r2'*A*d1)/(d1'*A*d1);d1=r2+bb*d1;enddisp([x1])四.结果矩阵A100阶的结果200阶的结果400阶的结果。
共轭梯度法
共轭梯度法对于任意形式的目标函数()f X ,在极值点*X 附近展开成泰勒级数,且取前三项,有()()()****2**1()...2TT f X f Xf X X X X X f X X X ⎡⎤⎡⎤⎡⎤⎡⎤≈+∇-+-∇-⎣⎦⎣⎦⎣⎦⎣⎦因在极值点*X 处()*0f X ∇=,而()2**()f X H X ∇=为()f X 在*X 的二阶偏导数矩阵,即Hessian 矩阵,故()****1().().2T f X f X X X H X X X ⎡⎤⎡⎤≈+--⎣⎦⎣⎦ 对于二次函数来说,若令()()()2*2*2*221122,,f X f X f X a b c x x x x ∂∂∂===∂∂∂∂则()**1(),a b H X f X d b c ⎡⎤==⎢⎥⎣⎦而—常数 则,得到()()()()()()()()()()()()()()11221212121122*1**112*2**12**112**1222****11122-1()+--2---1=+--2--1-2---2x x a b f X d x x x x b c x x a x x b x x d x x x x b x x c x x d a x x b x x x x c x x ⎡⎤⎡⎤⎢⎥⎡⎤≈⎢⎥⎣⎦⎢⎥⎣⎦⎣⎦⎡⎤+⎢⎥⎡⎤⎣⎦⎢⎥+⎣⎦⎡⎤=+++⎢⎥⎣⎦由上式可知,当12*1**2x x X X x x ⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦时,得到目标函数的极小值()*1()f X f X d ==,当22(),,...f X d d =时,则有等值线族。
令2()f X d =,代入上式,则有()()()()112222****2111221()-2---2f X d d a x x b x x x x c x x ⎡⎤=≈+++⎢⎥⎣⎦所以目标函数()f X 在*X 点附近的等值线方程为()()()()112222****1122-2---0a x x b x x x x c x x d +++=式中,122()d d d =-=常数。
共轭梯度法
共轭梯度法简介共轭梯度法是一种迭代的最优化算法,用于求解线性方程组或求解非线性优化问题。
它在解决大规模线性方程组时表现出色,尤其适用于对称正定矩阵的问题。
共轭梯度法结合了最速下降法和共轭方向法的优点,能够在有限次数的迭代中快速收敛到最优解。
背景在数值计算和优化问题中,线性方程组的求解是一个常见且重要的问题。
例如,在图像处理、数据分析和机器学习等领域,我们经常需要求解一个大规模的线性方程组。
然而,传统的直接方法,如高斯消元法或LU分解,对于大规模问题往往计算量巨大,耗时较长。
因此,我们需要寻找一种高效的迭代方法来解决这些问题。
共轭梯度法的核心思想是通过一系列共轭的搜索方向来逼近最优解。
具体来说,对于一个对称正定的线性方程组Ax=b,共轭梯度法的步骤如下:1.初始化解向量x0和残差x0=x−xx0。
2.计算初始搜索方向x0=x0。
3.进行共轭梯度迭代:重复以下步骤n次或直到收敛为止。
a.计算步长$\\alpha_k=\\frac{r_k^Tr_k}{d_k^TAd_k}$。
b.更新解向量$x_{k+1}=x_k+\\alpha_kd_k$。
c.更新残差$r_{k+1}=r_k-\\alpha_kAd_k$。
d.计算新的搜索方向$d_{k+1}=r_{k+1}+\\frac{r_{k+1}^Tr_{k+1}}{r_k^Tr_k}d_k$。
共轭梯度法与其他迭代方法相比有以下特点:1.高效性:共轭梯度法能够在有限次数的迭代中收敛到最优解,尤其适用于对称正定矩阵。
相比于直接方法,其计算量较小,具有更高的计算效率。
2.无需存储完整矩阵:共轭梯度法只需知道矩阵A的乘法运算结果,不需要存储完整的矩阵。
这对于大规模问题是一个很大的优势。
3.不需要计算矩阵的特征值:相比于其他迭代方法,共轭梯度法不需要计算矩阵的特征值,因此在实际问题中更加实用。
算法应用共轭梯度法广泛应用于各个领域的优化问题和线性方程组求解问题,包括:1.图像处理:共轭梯度法用于图像恢复、图像去噪和图像分割等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共轭,即 piT Apj 0, i j ,i , j 1,2, ,k。 则称这组方向是关于A共轭的,也称它们是一组A共轭方向。
注:如 果A是 单 位 矩 阵 , 则
p1T I p2 0 p1T p2 0
p1 p2
§2.5 共轭梯度法
预备知识 最速下降法 共轭梯度法 数值试验算例
21:26
预备知识:内积的定义
I II
方程组问题: 极值问题:
Ax =
min
b
f
(x)
1
xT Ax
bT
x
xRn
设 x, y Rn , 记 ( x , y) = xT y
2
▪( x, y ) = ( y, x ); ▪( tx, y ) = t ( x, y); ▪( x+ y, z ) = ( x, z ) + ( y, z ); ▪( x, x) ≥ 0, 且( x, x) = 0 x = 0;
p(k 1) r (k 1) k p(k )
进行下一次迭代
例:用CG迭代法求解下列方程组: x(0) (0 0 0)T
2 0 1 x1
3
0 1 0 x2 1
1 0 2 x3
3
解: 易验证系数矩阵是对称正定的.
Step1 计算 p(0) r(0) b Ax(0) (3 1 3)T
0
x2 x1
x*
x3
注 最速下降方向反映了目 标函数的一种局部性质。它只是 局部目标函数值下降最快的方向。 最速下降法是线性收敛的算法。
f(x1,x2)=100x12+x22
最速下降法
21:26
f(x1,x2)=100x12+x22
21:26
Barzilai-Borwein方法
局部思想: 最速下降法思想简单,但是收敛速度慢。本
➢几何意义:
等值线
x
(
0)
•
•x
思
最速下降法是指每次沿着函数值
想
下降最快的方向寻找最小值点。
而函数值下降最快的方向是函数的负梯度方向
➢最速下降法实现过程: 选取初始向量 x(0),由二次函数 H ( x)的基本性质
H ( x(0) ) b Ax(0) r (0) 如果 r (0) 0 ,则 x(0)就是方程组的解; 如果 r (0) 0 ,则沿 r (0)方向进行一维极小搜索:
0
(r(0), r(0) ) ( Ar (0) , r (0) )
19 55
x(1) x(0) 0r (0)
19 (3 1 3)T 55
最好 + 最好 = 最好 ?
• 方向(最速下降) (best rk)
• 步长(精确搜索) (best k)
• x(k1) x(k) k r(k) 是否最好 ?
由极值的必要条件得
r (1)T Ar (1) r (1)T Ap(0) r(1)T r(1)
0
r (1)T Ap(0) p(0)T Ap(0)
0
x% x(1) 0r (1) 0 p(0) 其中 0 ,满0足
00rr((11))TT
Ar (1) Ap(0)
0r (1)T Ap(0) r (1)T 0 p(0)T Ap(0) 0
i 1 j 1
j 1
定理(初等变分原理) 设A =(aij )n×n为实对称正定矩 阵, x, b ,R则n x是二次函数
nn
n
H(x) xT Ax 2bT x
aij xi x j 2 bj x j
i 1 j 1
j 1
的极小值点 x 是线性方程组 Ax = b 的解。
21:26
若 H ( x ) min H ( x), 则由极值的必要条件得 xRn H ( x ) 2Ax 2b 0. Ax b
0
(r(0), r(0) ) ( Ar (0) , r (0) )
注意到
d2
d 2
( x(0)
r(0)
)
2( Ar (0) , r(0) )
0
min
(
x(0)
r(0)
)
(
x(0)
r(0)
0
)
令 x(1) x(0) 0r (0),从而完成第一次迭代。
下面以 x (1)为新的初值,重复上述过程。
x ( x1,L , xn )T , b (b1,L , bn )T ; x* A1b.
思 共轭梯度法将求解方程组问题等价转化为一个 想 二次 泛函的极值问题。
一、与方程组等价的二次泛函问题
定义二次函数 : Rn R
nn
n
H(x) xT Ax 2bT x
aij xi x j 2 bj x j
共轭是正交的推广!!
共轭梯度法
选取初始向量 x(0),
p(0)
r(0),
0
(r(0) , p(0) ) ( Ap(0) , p(0) )
x(1) x(0) 0 p(0) , r (1) b Ax(1)
如何确定下一个搜索方向呢?
➢共轭梯度法的实现过程
选取初始向量
x(0) ,p(0) r (0)
求 0 使得 H ( x(0) r (0) ) 达到最小值, 则
x(1) x(0) 0r (0) .
H ( x(0) r(0) )=
1 ( x(0) r(0) )T A( x(0) r(0) ) bT ( x(0) r(0) )
2
d H(x(0) r(0) ) 0 d
(r(0), r(0) ) ( Ap(0) , p(0) )
19 55
x(1) x(0) 0 p(0)
19 (3 1 3)T 55
Step2 计算
r (1)
r(0)
0 Ap(0)
6 (1 55
6
1)T
0
(r(1) , r(1) ) (r(0), r(0) )
21:26
Th 设 A的特征值为 0 1 ,L n
则由前述最速下降算法产生的序列 x(满k) 足
k
x(k) x
A
n n
1 1
其中 x A。1b
x(0) x A
上述定理说明,当 1 =时最n速下降法收敛非常慢。
锯齿现象
在极小点附近,目标函数可以用二次函数近似,其等值面近似 椭球面。
f x2
L
Hessf M O
2 f
xnx1
L
2 f
x1xn
M
2 f
xn2
预备知识
f ( x) 1 ( Ax, x) (b, x) 2
n
n
=
1 2
aij xi x j bi xi
i, j1
i 1
gradf Ax b
2 f
x12
2 f
该性质说明:求解方程组的解等价于求上述 二次函数的最小值。
迭代法构造思想:构造 { x(k使) }得
H ( x(0) ) H ( x(1) ) L H ( x(k1) ) H ( x(k) ) L H ( x* ),
且 lim H( x(k) ) H( x* ), lim x(k) x*。
设A是 n 阶对称正定阵
▪( Ax, y ) = ( x, Ay ) ; ▪( Ax,x ) ≥0, 且( Ax, x) = 0 x = 0
2/16
预备知识
梯度:
f ( x) gradf ( x)
, ,L , f f
x1 x2
f T xn
Hessian矩阵:
21:26
f
x1
f
(
x)
For k=0 , 1 , 2 , … , n
计算k
(r(k), r(k) ) ( Ap(k) , p(k) )
x(k1) x(k ) k p(k )
r (k 1) r (k ) k Ap(k )
如果 r(k1) 0 ,停止
否则,计算
k
(r(k1) , r(k1) ) (r(k),r(k) )
r (k1) b Ax(k1)
b
A(
x(k)
r(k)
k
)
r (k ) k Ar (k )
收敛速度?????
缺陷:收敛速度慢!
例:用最速下降法求解方程组: x(0) (0 0 0)T
2 0 1 x1
3
0 1 0 x2 1
1 0 2 x3
3
解: 易验证系数矩阵是对称正定的.
Step1 计算 r(0) b Ax(0) (3 1 3)T
r (k 1) r (k ) k Ap(k )
如果 r(k1) 0 ,停止
否则,计算
k
p(k )T Ar (k1) p(k )T Ap(k )
p(k 1) r (k 1) k p(k )
进行下一次迭代
➢共轭梯度法的算法
选取初值 x(0) Rn
计算 r(0) b Ax(0) p(0) r(0)
p(1)、 p(和0) r(1的) 几何意义
2
xg p(1) r(1) x g(1)
p(0)
此时 ( 在x) 上可2 表示为
H x(1) r(1) p(0)
( ,)
1
x(1) r(1) p(0)
T
A
x(1) r(1) p(0)
2
bT x(1) r(1) p(0)
共轭梯度法的关键是构造一组两两共 轭的方向(即一组线性无关向量)。巧妙的是, 共轭方向可以由上次搜索方向和当前的梯 度方向之组合来产生。
pk+1 := rk+1 + tau*pk