简支梁挠度计算公式
简支梁最大挠度计算公式
梁的刚度条件:
][υυ≤ (5.11)
式中 υ——由荷载标准值(不考虑荷载分项系数和动力系数)产生的最大挠度;
][υ——梁的容许挠度值,对某些常用的受弯构件,规范根据实践经验规定的容
许挠度值][υ见附表2.1。
梁的挠度可按材料力学和结构力学的方法计算,也可由结构静力计算手册取用。
受多个集中荷载的梁(如吊车梁、楼盖主梁等),其挠度精确计算较为复杂,但与产生相同最大弯矩的均布荷载作用下的挠度接近。
于是,可采用下列近似公式验算梁的挠度:
对等截面简支梁:
l
EI
l M EI
l l q EI
l
q l x
k x
k x
k ][10848
53845
2
3
υυ
≤
≈
⋅⋅
=
=
(5.12)
对变截面简支梁:
l
I I I EI
l M l x
x x x
k ][)25
31(101υυ
≤
-+
=
(5.13)
式中 k q ——均布线荷载标准值;
k
M
——荷载标准值产生的最大弯矩;
x I ——跨中毛截面惯性矩; 1x I ——支座附近毛截面惯性矩;
l ——梁的长度;
E ——梁截面弹性模量。
计算梁的挠度v 值时,取用的荷载标准值应与附表2.1规定的容许挠度值][υ 相对应。
例如,对吊车梁,挠度υ 应按自重和起重量最大的一台吊车计算;对楼盖或工作平台梁,应分别验算全部荷载产生挠度和仅有可变荷载产生挠度。
挠度计算公式
挠度计算公式挠度计划公式简支梁在百般荷载作用下跨中最大挠度计划公式:均布荷载下的最大挠度在梁的跨中,其计划公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载准绳值(kn/m).E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个齐集荷载下的最大挠度在梁的跨中,其计划公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个齐集荷载准绳值之和(kn).E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距安排两个十分的齐集荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个齐集荷载准绳值之和(kn).E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距安排三个十分的齐集荷载下的最大挠度,其计划公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个齐集荷载准绳值之和(kn).E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受齐集荷载作用时,自由端最大挠度分别为的,其计划公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载准绳值(kn/m). ;p 为各个齐集荷载准绳值之和(kn).你可以凭据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件实行反算,看能餍足的上部荷载要求!。
简支梁在各种荷载作用下跨中最大挠度计算公式
简支梁在各种荷载作用下跨中最大挠度计算公式:1、均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 210000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).2、跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 210000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).3、跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 210000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).4、跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 210000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).5、悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m).p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
扰度计算公式(全)
简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!机械零件和构件的一种截面几何参量,旧称截面模量。
简支梁在各种荷载作用下跨中最大挠度计算公式
简支梁在各种荷载作用下跨中最大挠度计算公式一、均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q为均布线荷载标准值(kn/m).E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I为钢的截面惯矩,可在型钢表中查得(mm^4).二、跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).三、跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = ^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).四:跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = ^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).五、悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).其中:q 为均布线荷载标准值(kn/m).p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
简支梁在各种荷载作用下跨中最大挠度计算公式
简支梁在各种荷载作用下跨中最大挠度计算公式之吉白夕凡创作一、均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q为均布线荷载尺度值(kn/m).E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I为钢的截面惯矩,可在型钢表中查得(mm^4).二、跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载尺度值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).三、跨间等间距安插两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载尺度值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).四:跨间等间距安插三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载尺度值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).五、悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).其中:q 为均布线荷载尺度值(kn/m).p 为各个集中荷载尺度值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
简支梁计算公式总汇
简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = ^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = ^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
挠度计算公式-挠度公式表
简支梁在各种荷载作用下跨中最大挠度计算公式均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。
简支梁在各种荷载作用下跨中最大挠度计算公式
钢材弹性模量为:2.06*105MPa,1GPa=109Pa,1MPa=10.2kg/cm2,1kg/cm2=0.098MPa。
应力压强:1Pa=1N/m2简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).(q单位:N/m,l单位:m,E单位:Pa,I单位:cm4*10-8,Y单位为m。
)跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
简支梁挠度计算公式
简支梁挠度计算公式简支梁就是承载两端竖向荷载,而不提供扭矩的支撑结构。
体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力。
简支梁受力简单,为力学简化模型。
将简支梁体加长并越过支点就成为外伸梁,简支梁支座的铰接是固定铰支座、滑动铰支座的。
只有两端支撑在柱子上的梁,主要承受正弯矩,一般为静定结构。
概述延伸简支梁只是梁的简化模型的一种,还有悬臂梁。
悬臂梁为一端固定约束,另一端无约束。
基数级跨中弯距Mka:Mka= (Md+Mf) × VZ/VJ+ΔMs/VJ -MsMka= (Md+Mf)×1.017/1.0319+△Ms/1.0319-Ms=(17364.38+0)×1.017/1.0319+4468.475/1.0319-164.25 = 21279.736(kN·m)计算各加载级下跨中弯距:Mk= (k(Mz+Md+Mh+Mf) -Mz) × VZ/VJ+ΔMs/VJ -MsMk=(k(Mz+Md+Mh+Mf) -Mz)×1.017/1.0319 +△Ms/1.0319―Ms=(k (31459.38+17364.38+24164.75+0)-31459.38)×1.017/1.0319+4468.475/1.0319-164.25=71934.601×k-26839.0389(kN·m)计算静活载级系数:Kb = [Mh/(1+μ) +Mz+Md+Mf]/(Mh+Mz+Md+Mf)Kb= [24164.75/1.127+31459.38+17364.38+0]/ (24164.75+31459.38+17364.38+0)=0.963计算基数级荷载值:Pka=Mka/α=21279.736/54.75=388.671(kN)计算各荷载下理论挠度值:f = 2 P [ L+2 (L/2-Χ1)(3L-4(L/2-Χ1)) +2 (L/2-Χ2)(3L-4(L/2-Χ2)) ] / 48EI/1000=0.01156P。
简支梁计算公式总汇
简支梁在各种荷载作用下跨中最大挠度计算公式:均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).q 为均布线荷载标准值(kn/m).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 8pl^3/(384EI)=1pl^3/(48EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 6.81pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI).式中: Ymax 为梁跨中的最大挠度(mm).p 为各个集中荷载标准值之和(kn).E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.I 为钢的截面惯矩,可在型钢表中查得(mm^4).悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!。
挠度计算公式
均布荷载下的最大挠度在梁的跨中,其计算公式:
Ymax = 5ql^4/(384EI).
式中: Ymax 为梁跨中的最大挠度(mm).
q 为均布线荷载标准值(kn/m).
E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式:
Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI).
q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).
E 为工字钢的弹性模量,对于工程用结构钢,E = 2100000 kg/cm^2.
J 为工字钢的截面惯矩,可在型钢表中查得(cm^4).
也可以转换成kn;m作单位.
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式:
Ymax = 6.33pl^3/(384EI).
式中: Ymax 为梁跨中的最大挠度(mm).
p 为各个集中荷载标准值之和(kn).
E 为钢的弹性模量,对于工程用结构钢,E = 00,荷载条件25kn/m以及一些其他荷载条件
进行反算,看能满足的上部荷载要求!
均布荷载下的工字钢的最大挠度在梁的跨中,其计算公式:
Ymax = 5ql^4/(384EJ).
式中: Ymax 为梁跨中的最大挠度(cm).
q 为均布线荷载(kg/cm).
I 为钢的截面惯矩,可在型钢表中查得(mm^4).
简支梁跨中挠度
简支梁跨中挠度
简支梁是指在两个支点处受到支持的梁结构。
简支梁的跨中挠度是指在梁跨中点的挠度,即梁在跨中位置的竖直方向上的弯曲程度。
简支梁跨中挠度可以通过梁的受力分析来计算。
一般来说,简支梁的跨中挠度与梁的长度、弯矩、截面惯性矩和弹性模量等参数有关。
挠度计算的方法有多种,常用的是使用梁的挠度公式。
对于简支梁,最常用的是欧拉-伯努利梁挠度公式:
δ = (5wL^4) / (384EI)
其中,δ为梁的挠度,w为梁的集中荷载或均布荷载,L为梁的长度,E为梁的弹性模量,I为梁的截面惯性矩。
需要注意的是,上述公式适用于在跨中受到集中荷载或均布荷载的简支梁。
如果梁受到其他类型的荷载,或者在跨中有其他特殊条件,可能需要使用其他挠度计算公式。
此外,如果简支梁在跨中有支座、连续支座、支持刚度等特殊条件,也需要考虑这些因素对挠度的影响,可能需要使用其他挠度计算方法。
简支梁挠度计算公式
简支梁挠度计算公式均布荷载作用下工字梁的最大挠度在梁跨中间,其计算公式如下: Ymax = 5 ql ^ 4 / (384 ej)。
地点:ymax是中间的最大挠度梁的跨度(CM)Q为均匀线荷载(kg / cm)E为工字梁弹性模量,对于工程结构钢,E = 2100000 kg / cm ^ 2 J为工字梁截面惯性矩,可在型钢表(cm ^ 4)中求得也可转换为kn;以m为单位ra=rb=p/2mc=mmax=pl/4fc=fmax=pl^3/48eiθa=θb=pl^2/16ei符号意义及单位p——集中载荷,n;q——均布载荷,n;r——支座反力,作用方向向上者为正,n;m——弯矩,使截面上部受压,下部受拉者为正,nm;q——剪力,对邻近截面所产生的力矩沿顺时针方向者为正,n;f——挠度,向下变位者为正,mm;θ——转角,顺时针方向旋转者为正,°;e——弹性模量,gpa;i——截面的轴惯性矩,m^4;ξ=x/l,ζ=x'/l,α=a/l,β=b/l,γ=c/l简支梁就是承载两端竖向荷载,而不提供扭矩的支撑结构。
体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力。
简支梁受力简单,为力学简化模型。
将简支梁体加长并越过支点就成为外伸梁,简支梁支座的铰接是固定铰支座、滑动铰支座的基数级跨中弯距Mka:Mka= (Md+Mf) ×VZ/VJ+ΔMs/VJ -MsMka= (Md+Mf)×1.017/1.0319+△Ms/1.0319-Ms=(17364.38+0)×1.017/1.0319+4468.475/1.0319-164.25 = 21279.736(kN·m)计算各加载级下跨中弯距:Mk= (k(Mz+Md+Mh+Mf) -Mz) ×VZ/VJ+ΔMs/VJ -MsMk=(k(Mz+Md+Mh+Mf) -Mz)×1.017/1.0319 +△Ms/1.0319―Ms=(k (31459.38+17364.38+24164.75+0)-31459.38)×1.017/1.0319+4468.475/1.0319-164.25=71934.601×k-26839.0389(kN·m)计算静活载级系数:Kb = [Mh/(1+μ) +Mz+Md+Mf]/(Mh+Mz+Md+Mf)Kb= [24164.75/1.127+31459.38+17364.38+0]/ (24164.75+31459.38+17364.38+0)=0.963计算基数级荷载值:Pka=Mka/α=21279.736/54.75=388.671(kN)计算各荷载下理论挠度值:f = 2 P [ L+2 (L/2-Χ1)(3L-4(L/2-Χ1)) +2 (L/2-Χ2)(3L-4(L/2-Χ2)) ] / 48EI/1000=0.01156P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简支梁挠度计算公式
简支梁的挠度是指在承受外力作用下,梁的中点处产生的弯曲形变。
挠度计算可以通过梁的几何特性和力学公式来求解。
下面将介绍简支梁的挠度计算公式。
首先,我们需要了解简支梁的几何特性。
简支梁是指两端固定,中间自由悬挂的梁。
假设梁的长度为L,弹性模量为E,截面面积为A,惯性矩为I。
简支梁的挠度可以通过弯曲方程来计算。
根据梁的几何形状和外力的作用,可以得到弯曲方程为:
d^2y/dx^2 = M/(E*I)
其中,y为梁的挠度,x为横向距离,M为梁上的弯矩。
接下来,我们需要确定梁上的弯矩M的表达式。
简支梁上的弯矩可以通过外力和梁的几何特性来计算。
一般情况下,简支梁承受的外力可以分为集中力和分布力两种情况。
1.集中力作用的挠度计算
对于集中力在梁上的作用点为a处,作用力为P的情况,可以通过以下公式计算挠度:
y=(Px^2*(L-x)^2)/(6*E*I*L)
其中,x为横向距离,L为梁的长度。
2.分布力作用的挠度计算
对于均匀分布荷载q的情况,可以通过以下公式计算挠度:
y=(q*x^2*(L^2-x^2))/(24*E*I)
其中,x为横向距离,L为梁的长度。
需要注意的是,在进行挠度计算时,我们需要根据具体的情况选择合适的公式。
比如,在不同的挠度计算点处,可能会受到不同的力和力矩作用,需要进行分段计算和积分计算。
综上所述,简支梁的挠度计算公式主要包括弯曲方程和弯矩表达式。
通过确定梁上的外力和几何特性,我们可以求解简支梁在不同位置处的挠度。
挠度计算对于结构工程设计以及材料选择有着重要的作用,可以帮助工程师评估结构的安全性和可靠性。