算法大全第06章 排队论

合集下载

高级运筹学-排队论

高级运筹学-排队论

3、守序性:设在[t, t+t)内到达多于一个顾客的概率为
极小o(t)。 lim o(t) 0 t0 t
Pn (t,t t) o(t)
n2
实际情况是否符合三条性质
到达工厂机修车间的要维修的机器情况分析: 因为每台机器在各个时刻处的状态大致一样,所以在相
等时间区间内各台机器损坏的概率大致相同,即要求维 修的机器的流具有平稳性 由于一台机器的故障不会引起另一台机器的故障,而对 同一台机器,这段时间内损坏的次数不影响到以后损坏 次数多少,这表明具有无后效性 由于每台机器损坏概率很小,在足够小的时间区间内发 生两台及以上机器损坏的概率几乎为0,这就符合普通性。 因此对到达机修车间的要维修的机器数可以认为是最简 单流,即poisson流。
如何减少排队?
减少等候时间的解决方案 :
开设更多的服务点; 提供自助服务解决方案; 雇用更多员工。
排队管理系统的应用
近两年,许多公共服务场所出现了排队机 (ticket dispenser unit) ,窗口秩序为之一变, 一种令人耳目一新的排队方式:
进得大门,在排队机的触摸屏上点一下所要 办理的项目,排队机就会“吐”出一张像名 片大小的号票,拿着这张号票安安静静地坐 在休息区舒适的椅子上等候,轮到自己时, 大屏幕和语音系统会提醒你到相应的窗口办 理,井然有序。
顾客 汽车 卡车 轮船 飞机 人员 装货工人 卸货工人 跑道 飞机 出租车 电梯 消防车 停车空间 急救车
4.1.2 排队系统的组成
排队系统的三个基本组成部分: •输入过程 (顾客按照怎样的规律到达); •排队规则 (顾客按照一定规则排队等待服务); •服务机构 (服务机构的设置,服务台的数量,服务 的方式,服务时间分布等)

排队论课件

排队论课件

③服务方式(输出)指同一时刻有多少服务台可接纳顾客, 每一顾客服务了多少时间。每次服务可以接待单个顾客, 也可以成批接待,例如公共汽车一次就装载大批乘客。 服务时间的分布主要有如下几种: • 负指数分布:即各顾客的服务时间相互独立,服从相 同的负指数分布(看病); • 爱尔朗分布:即各顾客的服务时间相互独立,具有相 同的爱尔朗分布。
• 定长分布:每一顾客的服务时间都相等(发放物品);
为叙述方便,引用下列符号,令
• M代表泊松分布输入或负指数分布服务;
• D代表定长分布输入或定长分布服务; • Ek代表爱尔朗分布的输入或服务。 于是泊松输入、负指数分布服务,N个服务台的排队系 统可以写成M/M/N; • 泊松输入、定长服务、单个服务台的系统可以写成M/D/1。 • 同样可以理解M/ Ek /N,D/M/N…等符号的含义。 • 如果不附其它说明,则这种符号一般都指先到先服务, 单个服务通道的等待制系统。
多通道服务方式
(1)系统中没有车辆的概率 为: 1 P (0) N 1 k N N !(1 / N ) k 0 k! ( 2)系统中有 k个车辆的概率: k .P (0), k! P(k) k P (0), kN N! N k N k N
1

5 5 10s / 辆
两种系统比较
4个M/M/1
平均车辆数 平均排队长 平均耗时 平均等候时间 20 16.68 30 25
M/M/4
6.6 3.3 10 5
设顾客平均到达率为,则到达的平均时距为1/ 。排队从单通道通过接受 服务的平均服务率为,则平均服务时间为1/ 。比率 / 叫做服务强度 或交通强度,可以确定系统的状态。所谓状态,指的是排队系统的顾客数。 1)在系统中没有顾客的概率为P(0) 1 2)在系统中有n个顾客的概率为P (n) n (1 ) 3)系统中的平均车辆数n 4)系统中的平均方差 2 5)平均排队长度q n 6)非零平均排队长度q w 1 1 n

排队论_运筹学

排队论_运筹学

排队论例1题目:某火车站的售票处设有一个窗口,若购票者是以最简单流到达,平均每分钟到达1人,假定售票时间服从负指数分布,平均每分钟可服务2人,试研究售票窗口前排队情况解:由题设λ=1(人/分),μ=2(人/分),ρ=λμ=12平均队长L=1ρρ-=1(人)平均等待队长Lq=21ρρ-=12(人)平均等待时间Wq=λμμ(-1)=12(分)平均逗留时间W=1μλ-=1(分)顾客不需要等待的概率为P o=12,等待的顾客人数超过5人的概率为P(N≥6)=1766666111111()(1)()()()()222222n n nnn n n nPρ-∞∞∞∞=====-===∑∑∑∑1例2题目:在某工地卸货台装卸设备的设计方案中,有三个方案可供选择,分别记作甲、乙、丙。

目的是选取使总费用最小的方案,有关费用(损失)如下表所示设货车按最简单流到达,平均每天(按10小时计算)到达15车,每车平均装货500袋,卸货时间服从负指数分布,每辆车停留1小时的损失为10元。

解:平均到达率λ=1.5车/小时,服务率μ依赖于方案μ甲=1000/500/袋小时袋车=2车/小时μ乙=2000/500/袋小时袋车=4车/小时μ丙=6000/500/袋小时袋车=12车/小时由(7.2.6),1辆车在系统内平均停留时间为W甲=12-1.5=2(小时/车)W乙=14-1.5=0.4(小时/车)W丙=112-1.5=0.095(小时/车)每天货车在系统停留的平均损失费为W⨯10⨯15,每天的实际可变费用(如燃料费等)为(可变操作费/天)⨯设备忙的概率=c p(元/天)而ρ甲=0.75 , ρ乙=0.375 , ρ丙=0.125,所以每个方案的费用综合如下表所示:23例3 题目:要购置计算机,有两种方案.甲方案是购进一大型计算机,乙方案是购置n 台小型计算机.每台小型计算机是大型计算机处理能力的1n设要求上机的题目是参数为λ的最简单流,大型计算机与小型计算机计算题目的时间是负指数分布,大型计算机的参数是μ.试从平均逗留时间、等待时间看,应该选择哪一个方案 解:设ρ=λμ,按甲方案,购大型计算机 平均等待时间 q W 甲=ρμρ(1-)=λμμλ(-)平均逗留时间 W 甲=1μλ- 按乙方案,购n 台小型计算机,每台小计算机的题目到达率为n λ,服务率为nμ, ρ=//n n λμ=λμ平均等待时间 W q 乙=nρμρ(1-)=n ρμρ(1-)=nW q 甲平均逗留时间 W 乙=1n nμλ-=n μλ-=nW 甲所以只是从平均等待时间,平均逗留时间考虑,应该购置大型计算机4例4题目:设船到码头,在港口停留单位时间损失c 1 元,进港船只是最简单流,参数为λ,装卸时间服从参数为μ的负指数分布,服务费用为c μ2,c 2是一个正常数.求使整个系统总费用损失最小的服务率μ 解:因为平均队长L λμλ=-,所以船在港口停留的损失费为1c λμλ-,服务费为c μ1,因此总费用为 1c F c λμμλ=+-2 求μ使F 达到最小,先求F 的导数12()c dF c d λμμλ=-+-2 让dF d μ=0,解出2μλ=因为 22F u μμ*=∂∂=22()c λμλ*-1>0 (μ>λ) 最优服务率是μ*,当μμ*=时, 12()[c F c c λμλ*=+5例5题目:一个理发店只有一个理发师,有3个空椅供等待理发的人使用,设顾客以最简单流来到,平均每小时5人,理发师的理发时间服从负指数分布,平均每小时6人.试求L ,q L ,W ,q W解:λ=5(人/小时) , μ=5(人/小时) , k =4 , 56ρ= 用公式(7.2.10),(7.2.11),(7.2.12),(7.2.13)得到565555[16()5()]666 1.9715[1()]66L -+==- 5555(1)[16()]66 1.97 1.2251()6q L -=+=- 55555()[1()]660.101()6P -==- 5(1)z LLW P λλ==-=1.9750.9=0.438(小时)0.271qq zL W λ==(小时)6例6题目:给定一个//1/M M k 系统,具有λ=10(人/小时), μ=30(人/小时),k =2.管理者想改进服务机构.方案甲是增加等待空间,使k =3.方案乙是将平均服务率提高到μ=40(人/小时),设服务每个顾客的平均收益不变,问哪个方案获得更大收益,当λ增加到每小时30人,又将有什么结果?解:由于服务每个顾客的平均收益不变,因此服务机构单位时间的收益与单位时间内实际进入系统的平均人数k n 成正比(注意,不考虑成本)!(1)(1)1k k k k n p λρλρ+-=-=- 方案甲:k=3, λ=10, μ=3033411()310[]11()3n -=-=9.75 方案乙: k=2, λ=10, μ=40223110(1())311()4n -=-=9.5 因此扩大等待空间收益更大 当λ增加到30人/小时时,λρμ==1.这时方案甲有3330()31n =+=22.5(人/小时) 而方案乙是把μ提高到μ=40人/小时. λρμ==3040<1, k=2 2233(1())430[]31()4n -=-=22.7(人/小时) 所以当λ=30人/小时时,提高服务效益的收益比扩大等待空间的收益大7例7题目:一个大型露天矿山,考虑建设矿山卸矿场,是建一个好呢?还是建两个好.估计矿车按最简单流到达,平均每小时到达15辆,卸车时间也服从负指数分布,平均卸车时间是3分钟,每辆卡车售价8万元,建设第二个卸矿场需要投资14万元解:平均到达率 λ=15(辆/小时) 平均服务率 μ=20(辆/小时) 只建一个卸矿场的情况:1ρρ==1520=0.75 在卸矿场停留的平均矿车数0,,,,,,q q q q p p L L W W λμL λμλ=-=152015-=3(辆)建两个卸矿场的情况:ρ=0.75,2μ=2λμ=0.375 2101220[10.75(0.75)]0.452!22015P -=++=- 220.451520(0.75)0.750.120.750.871!(22015)L +=+=+=-因此建两个卸矿场可减少在卸矿场停留的矿车数为:3-0.87=2.13辆.就是相当于平均增加2.13辆矿车运矿石.而每辆卡车的价格为8万元,所以相当于增加2.13⨯8=17.04万元的设备,建第二个卸矿场的投资为14万元,所以建两个卸矿场是合适的.8例8题目:有一个///M M c ∞系统,假定每个顾客在系统停留单位时间的损失费用为c 1元,每个服务设备单位时间的单位服务率成本为c 2元.要求建立几个服务台才能使系统单位时间平均总损失费用最小解:单位时间平均损失费为F c L c c μ=+12要求使F 达到最小的正整数解c *,通常用边际分析法:找正整数c *,使其满足{()(1)()(1)F c F c F c F c ****≤+≤-由()(1)F c F c **≤+,得到122()(1)(1)c L c c c c L c c c μμ****+≤+++所以 21()(1)c L c L c c μ**-+≤ 同样,由()(1)F c F c **≤-得到21(1)()c L c L c c μ**--≥因此c *必须满足不等式21()(1)c L c L c c μ**-+≤≤(1)()L c L c **-- 取c =1,2,…,计算()L c 与(1)L c +之差,若21c c μ落在()(1)L c L c **-+,(1)()L c L c **--之间,c *就是最优解9例9题目:某公司中心实验室为各工厂服务,设做实验的人数按最简单流到来.平均每天48(人次/天),1c =6(元).作实验时间服从负指数分布,平均服务率为μ=25(人次/天),2c =4(元),求最优实验设备c *,使系统总费用为最小. 解:λ= 48(人次/天),μ=25(人次/天),λμ=1.92 按///M M c ∞计算0P ,()L c 等(注意以下公式只对0 1.92cρ=<1成立). 201100(1.92)(1.92)[]!(1)!( 1.92)n P n c c ρ--==+--∑12(1.92)() 1.92(1)!( 1.92)c L c P c c +=+-- 将计算结果列成下表21c c μ=1006=16.67 所以取c *=3,总费用最小10例10题目:设有2个工人看管5台自动机,组成//2/5/5M M 系统,λ=1(次/运转小时),μ=4(次/小时),求平均停止运转机器数L 、平均等待修理数q L 以及每次出故障的平均停止运转时间W 、平均等待修理时间q W解:14λμ=,18c λμ=由(7.3.1),(7.3.2)有 0P =0.3149 1P =0.391 2P =0.197 由(7.3.3),(7.3.4)有 q L =0.118,L =1.094,c λ=3.906 由(7.3.5),(7.3.6)有W =0.28(小时),q W =0.03(小时)实际上,这些数量指标有表可查例11题目:设某厂有自动车床若干台,各台的质量是相同的,连续运转时间服从负指数分布,参数为λ,工人的技术也差不多,排除故障的时间服从负指数分布,参数为μ.设λμ=0.1,有两个方案.方案一:3个工人独立地各自看管6台机器.方案二,3个工人共同看管20台机器,试比较两个方案的优劣解:方案一.因为是分别看管,可以各自独立分析,是3个//1/6M M 系统.由上面的公式可求出01P -=0.5155,c =0.5155, a =5.155Lq =0.3295, L =0.845,(1)q =0.4845,(1)r =0.0549方案二.m =20,c =3,λμ=0.1,可求得c =1.787,a =17.87,q L =0.339 L =2.126,(3)q =0.4042,(3)r =0.01695机器损失系数,修理工人损失系数都小于方案一,所以方案二较好11例12题目:某露天铁矿山,按设计配备12辆卡车参加运输作业(每辆载重160吨,售价72万元),备用车8辆,要求保证同时有12辆车参加运输的概率不低于0.995.设每辆平均连续运输时间为3个月,服从负指数分布.有两个修理队负责修理工作,修理时间服从负指数分布.平均修复时间为5天.问这个设计是否合理.解:由假设知,这是////M M c m N m +系统,m =12,1λ=3,1μ=6(月)c =2我们有m c λμ=0.3333,c μλ=36用c N ≤的公式,求N ,要求00.995Nn n p =≥∑设N =2,有Nnn p=∑=0.9474,当N =3时,有Nnn p=∑=0.9968.所以3辆备用车就能达到要求,原设计用的备用车太多当N =3时,卡车的利用律(2)q =0.793712例13题目:假定例2.1中工人的到达服从泊松分布,λ=8人/小时,试分别计算1h 内到达4,5,6,…,12个工人的概率。

(完整word版)《运筹学》_第六章排队论习题及_答案

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

运筹学-排队论

运筹学-排队论

定长分布(D):每个顾客接受的 服务时间是一个确定的常数。
负指数分布(M):每个顾客接受
的服务时间相互独立,具有相同
的负指数分布:
b(t)=
e- t
t0
0
t<0
其中>0为一常数。
K阶爱尔朗分布(En):
b(t)=
k(kt)k-1
(K-1)!
e- kt
当k=1时即为负指数分布;k 30,近似
M/M/1 等待制排队模型
单服务台问题,又表示为M/M/1/ : 顾客相继到达时间服从参数为的负 指数分布;服务台数为1;服务时间 服从参数为的负指数分布;系统的 空间为无限,允许永远排队。
队长的分布
记 Pn=p{N=n} , n=0,1,2….为系统达到平衡状态后队 长的概率分布,
则 n=;n= ,= /<1, 有Pn= (1-)n n=0,1,2….
排队系统类型:
顾客到达
服务台串联排队系统
排队系统类型:


服务机构
(输入)
(输出)
随机聚散服务系统
随机性——顾客到达情况与顾客 接受服务的时间是随机的。
一般来说,排队论所研究的排队 系统中,顾客相继到达时间间隔 和服务时间这两个量中至少有一 个是随机的,因此,排队论又称 随机服务理论。
顾客(单个或成批)相继到达的时
间间隔分布:这是刻划输入过程的
最重要内容。令T0=0,Tn表示第n顾
客到达的时刻,则有T0T1 T2…..
Tn ……
记Xn= Tn –Tn-1
n=1,2,…,则Xn是第n顾客与第n-1顾
客到达的时间间隔。
一般假定{Xn}是独立同分布,并 记分布函数为A(t)。

排队论(Lingo方法)

排队论(Lingo方法)

线性规划
01
Lingo方法是线性规划的一种求解算法,可以用于求解排队论中
的优化问题。
迭代法
02
对于一些复杂的问题,可以使用迭代法结合Lingo方法进行求解,
以逐步逼近最优解。
启发式算法
03
对于一些大规模问题,可以使用启发式算法结合Lingo方法进行
求解,以提高求解效率。
04
Lingo方法在排队论中的 案例分析
Lingo方法在排队论中的优化问题
最小化等待时间
通过Lingo方法,可以优化等待时间,以最小化顾 客或任务的等待时间。
最小化队列长度
通过Lingo方法,可以优化队列长度,以最小化等 待空间的使用。
最大化服务台效率
通过Lingo方法,可以优化服务台效率,以提高服 务台的工作效率。
Lingo方法在排队论中的求解算法
等问题。
计算机科学
排队论用于研究计算机 网络的性能分析、负载 均衡和分布式系统等问
题。
排队论的发展历程
1903年,费尔南多·柯尔莫哥洛夫提出概率论的公理化 体系,为排队论奠定了理论基础。
1950年代,肯德尔提出了肯德尔模型,为多服务台排 队模型奠定了基础。
1930年代,厄兰格和朱伯夫提出了厄兰格模型,为单 服务台排队模型奠定了基础。
Lingo方法的适用范围
Lingo方法适用于各种线性规划问题,包括生产计划、资源分 配、运输问题等。
尤其适用于具有大量约束条件和决策变量的复杂问题,能够 有效地解决这些问题的最优解。
Lingo方法的优势和局限性
Lingo方法的优势在于它能够处理大规模的线性规划问题,并且具有较高的计算效率和精度。此外,Lingo方法还具有灵活性 和通用性,可以应用于各种不同的领域和问题。

排队论公式

排队论公式

(10.75)
九、顾客源有限(m)的M / M / c模型( Palm模型) (1)系统的稳态概率Ρ n为 1

2。
⎡ c −1 ⎛ m ⎞ ⎛ λ ⎞ n m ⎛ m ⎞ k ! ⎛ λ ⎞ k ⎤ Ρ0 = ⎢∑ ⎜ ⎟ ⎜ ⎟ + ∑ ⎜ ⎟ ⎟ ⎥ ;(10.76) k −c ⎜ μ k =0 ⎝ k ⎠ ⎝ μ ⎠ k = c ⎝ k ⎠ c !c ⎝ ⎠ ⎥ ⎢ ⎣ ⎦ n ⎧⎛ m ⎞ ⎛ λ ⎞ 0 ≤ n ≤ c, ⎪⎜ ⎟ ⋅ ⎜ ⎟ Ρ 0, ⎪⎝ n ⎠ ⎝ μ ⎠ (10.77) Ρn = ⎨ n ⎪ ⎛ m ⎞ n! ⎛ λ ⎞ c ≤ n ≤ m. ⎪ ⎜ n ⎟ c !c n −c ⎜ μ ⎟ Ρ 0, ⎝ ⎠ ⎝ ⎠ ⎩ Lq = Ls = Lq + Ws =
λe = Ls − ρ (1 − Ρ N ); μ
(10.64)
3。 顾客的平均逗留时间Ws为 Ws =
λe
Ls
= Ls • λ (1 − Ρ N );
(10.65)
顾客的平均等待时间Wq为 4。 Wq = Ws − 1
μ
= λ (1 − Ρ N ) Ls −
1
μ
;
(10.66)
服务台的利用率为 5。 r= c λ = (1 − Ρ N ) = ρ c (1 − Ρ N ). c cμ (10.67)
N −1 n
⎧ N +1 , ρ = 1, ⎪ ⎪ 2λ Ws = ⎨ (10.29) N +1 ⎪ 1 − Nρ , ρ ≠ 1; N ⎪ ⎩ μ − λ λ (1 − ρ )
4o 顾客在系统中的等待时间分布及平均等待时间Wq , 即 Fq ( w) = 1 − ∑

排队论公式推导过程

排队论公式推导过程

排队论公式推导过程排队论是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法。

在咱们生活中,排队的现象随处可见,比如在超市结账、银行办业务、餐厅等座位等等。

咱们先来说说排队论中的一些基本概念。

想象一下,你去一家热门的奶茶店买奶茶,顾客就是“输入”,奶茶店的服务员就是“服务台”,制作奶茶的过程就是“服务时间”,而排队等待的队伍就是“队列”。

排队论中的一个重要公式就是 M/M/1 排队模型的平均排队长度公式。

咱们来一步步推导一下。

假设平均到达率为λ,平均服务率为μ。

如果λ < μ,系统是稳定的,也就是队伍不会无限长下去。

首先,咱们来求一下系统中的空闲概率P₀。

因为没有顾客的概率,就等于服务台空闲的概率。

P₀ = 1 - λ/μ接下来,咱们算一下系统中的平均顾客数 L。

L = λ/(μ - λ)那平均排队长度 Lq 怎么算呢?这就要稍微动点脑筋啦。

Lq = λ²/(μ(μ - λ))推导过程是这样的:咱们先考虑一个时间段 t 内新到达的顾客数 N(t),它服从参数为λt的泊松分布。

在这个时间段内完成服务离开的顾客数 M(t) 服从参数为μt 的泊松分布。

假设在时刻 0 系统为空,经过时间 t 后系统中的顾客数为 n 的概率Pn(t) 满足一个微分方程。

对这个微分方程求解,就能得到上面的那些公式啦。

我记得有一次,我去一家新开的面包店,人特别多,大家都在排队。

我站在那里,心里就琢磨着这排队的情况,不就和咱们学的排队论很像嘛。

我看着前面的人,计算着大概的到达率,再瞅瞅店员的动作,估计着服务率。

那时候我就在想,要是店家能根据这些数据合理安排人手,大家等待的时间就能大大缩短啦。

总之,排队论的公式推导虽然有点复杂,但只要咱们耐心琢磨,就能搞明白其中的道理。

而且这些公式在实际生活中的应用可广泛啦,能帮助我们优化各种服务系统,让大家的生活更加便捷高效!。

第六章 排队论

第六章 排队论

对于S0
1P10P0
Pt0 h t Ph t0
t0
Ph
t t0 Ph Ph t0
t0
1
e (tt0 ) (1 e 1 (1 e t0 )
t0
)
1
e
t
Q .E.D
21
6.3.3 小结
• 如果顾客的到达过程服从最简单流,则顾客单 位时间内的到达数服从泊松分布。
• 如果顾客的到达过程服从最简单流,则顾客到 达的时间间隔服从负指数分布。
iP iiP i (ii)P i
转入率的期望值为
P P i1i1 i1i1
λ0
λ1
λ2
λi-2
λi-1
λi
λi+1
λk-2
λk-1
S0
S1
S2

Si-1
Si
Si+1

Sk-1
Sk
μ1
μ2
μ3
μi-1
μi
μi+1
μi+2
μk-1
μk
P0
P1
P2
Pi
30

( i i)Pi P P i1i1 i1i1
Pn(t)(n! t)n et n=0
可知: P0(h >△t)= P{h >△t}=e△t
故间隔时间 h 的分布为 P{ h △t}=1e△t
F (t) 1 et
f (t ) et h t et dt 1 / 0
0
F(t)
f(t)
t
20
(2)负指数分布的特点
• 负指数分布之所以常用,是因为它有很好的特性,使数学 分析变得方便
12

《运筹学》 第六章排队论习题及 答案

《运筹学》 第六章排队论习题及 答案

《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

6排队论

6排队论

• “忙期”是一个随机变量,可以表征服务台 的工作强度; • 服务台连续保持空闲的时间长度称为闲期。 • 在排队系统中忙期和闲期是交替出现的。 • 服务设备利用率——指服务设备工作时间 占总时间的比例。 • 该指标可以衡量服务设备的工作强度、 磨损和疲劳程度。
• 顾客损失率——由于服务能力不足而造成 的顾客流失的概率称为顾客损失率。 • 该指标过高会造成服务系统利润减少, 因此损失制和混合制排队系统均会重视对 该指标的研究。
• 最简单流的4个基本性质: • 平稳性:在时间段t内,恰有n个顾客到达 系统的概率P{N(t)=n}仅与t的长短有关,而 与该时间段的起始时刻无关; • 无后效性:在不相交的时间区间内到达的 顾客数是相互独立的。 • 如:在[a,a+t]时段内到达K个顾客的概率 与时刻a之前到达多少顾客无关;
普通性:在充分小的间隔时间内至少到达两个 顾客的概率ψ(Δt)=o(t),t→0,即
• • • • •
C 表示服务台的个数; D 表示系统容量; E 表示顾客源包含的全部个体数量; F 表示服务规则 ; 举例:M/M/1/∞/∞/FCFS 表示泊松输入、 服务时间服从负指数分布、1个服务台、系 统容量无限制(即等待制)、顾客源无限、 先到先服务的排队系统 ;
• GI/EK/1/N/∞/FCFS • 表示一般独立输入(顾客到达的间隔时间 服从一般独立分布)、服务时间服从K阶爱 尔朗分布、1个服务台、系统容量为N、顾 客源无限、先到先服务的排队系统。
• 3、 爱尔朗分布 • 当顾客在系统内所接受的服务可以分为K 个阶段,每个阶段的服务时间T1,T2,…, Tk为服从同一分布(参数为kμ的负指数分 布)的k个相互独立的随机变量,顾客在完 成全部服务内容并离开系统后,另一个顾 客才能进入服务系统,则顾客在系统内接 受服务时间之和T=T1+T2+…+Tk服从k阶爱 尔朗分布Ek,其分布密度函数为:

排队论(讲义)

排队论(讲义)
排队论课件 13
随机过程的例子
为了更好的理解随机过程,我们从一个例子开始。例如, n 个同样的电阻,同时记录它们热噪声的电压波形。 电阻上的热噪声是由于电阻中的电子的热运动引起的,因此, 在t1时刻电阻上的热噪声电压是一个随机变量,并记为 x(t1), 也就是说t1时刻任一电阻r(i)上的噪声电压x(i,t1)是无法预先确切 地知道的。 这里n支电阻的热噪声电压的集合是这个随机实验的样本空 间S。对于某一支电阻,其热噪声电压是一时间函数x(i,t),是 随机过程的样本函数。 对所有电阻来说,其热噪声电压就是一族时间函数,记为 x(t),这族时间函数就是“随机过程”,族中每一时间函数称为 随机过程的样本函数。
模型的建立3电话亭模型nknk其中顾客前有个顾客在排队如果简化c1c2为常数并计算第二个人的无需等待返回时间的期望值得用matlab能够作出的函数并从图中得出结果模型的求解4电话亭模型11221uctcpt94模型的求解4电话亭模型第三个人的无需等待返回时间的期望值同理可以算出并用图解法求出模型的求解4电话亭模型131212这种方法太繁琐似乎不好用
3
几何分布
P{X=k}=p(1-p)k-1, k=1,2, … 它描述在k次贝努里实验中首次出现成功的概率。
排队论课件 9
几何分布有一个重要的性质-----后无效性:在前n次实验未出现成 功的条件下,再经过m次实验(即在n+m次实验中)首次出现成功 的概率,等于恰好需要进行m次实验出现首次成功的无条件概率。 用式子表达:
排队论
Queueing Theory
主讲:周在莹
CONTENTS
PREPARATION:概率论与随机过程
UNIT 1 排队模型 UNIT 2 排队网络模型 UNIT 3 应用之:QUICK PASS系统 结束语

第六章 排队论模型

第六章 排队论模型

4
排队模型及类型
根据顾客到达和服务台数,排队过程可用下列模型表示:
模型1 单服务台排队模型
模型2
单队列多服务台并联的排队模型
5
模型3
多队列多服务台的并联排队模型
模型4
单队多个服务台的串联排队模型
6
模型5
多队列多服务台混联网络模型
纵观上述排队模型,实际上都可由下面模型加以统一描述:
称该统一模型为随机聚散服务系统。由于顾客到来的时刻和服务台提 供服务的时间长短都是随机的,因此任一排队系统都是一个随机聚散 7 服务系统。 “聚”表示顾客的到达,“散”表示顾客的离去。
1修理店空闲的概率2店内恰有3个顾客的概率3店内至少有1个顾客的概率4在店内的平均顾客数5每位顾客在店内的平均逗留时间6等待服务的平均顾客数7每位顾客平均等待服务时间8顾客在店内等待时间超过10min的概率581001594在店内的平均顾客数5每位顾客在店内的平均逗留时间067607每位顾客平均等待服务的时间02678顾客在店内逗留时间超过10min的概率由于逗留时间服从参数的负指数分布即分布函数为1003679注
20
例如:某排队问题为M/M/S/∞/∞/FCFS, 则表示顾客到达间隔时间为负指数分布(泊松流); 服务时间为负指数分布;有s(s>1)个服务台;系统 等待空间容量无限(等待制);顾客源无限,采用先 到先服务规则。 某些情况下,排队问题仅用上述表达形式中的 前3个、4个、5个符号。如不特别说明则均理解为系 统等待空间容量无限;顾客源无限,先到先服务, 单个服务的等待制系统。
11
(2) 等待制。指当顾客来到系统时,所有服务台 都不空,顾客加入排队行列等待服务。 例如,排队等待售票,故障设备等待维修等。 等待制中,服务台在选择顾客进行服务时,常有 如下四种规则:

排队论

排队论
( P( X n i ) pk pkin )
P '(t ) P(t ) Q pij '(t ) pik (t ) qkj
k
P '(t ) Q P(t ) pij '(t ) qik pkj (t )
k
j (t ) pi pi j (t )
i
P
(n) i (0) i
k
( n)
i( n 1) P
j '(t ) k (t ) qkj
k
平稳分布
P
( I ) P 0
Q 0
第四节 生灭过程
1 生灭过程简述
生灭过程是每一次状态转移都发生在相邻状态 之间的齐次马氏链 生灭过程有离散时间的也有连续时间的,我们 以连续时间的生灭过程为例来学习 状态的变化只可能有三种情况:加1,减1,不 变: i+1 生
j i
i0 i 1 | j i | 2 i 0, 0 0
5 生灭过程X的状态流图
无限状态的:
0 0 1 1 1 2 2 3 3 4 i-1 3 i-2 i-1 i i-1 i i+1 i
2
m个状态的:
0
0 1 1 2
1
2
2
3 3
3
4
2 生灭过程
定义参数
i(i>0)-在i状态下(例如:系统中有i个 顾客)的增(生)长率 i=qi, i+1 i (i >0)-在i状态下的消(死)亡率i=qi, i-1 qij=0 |i-j|2 qii=-(qi, i+1+qi, i-1)=-(i+ i)

第六章排队论-PPT精选

第六章排队论-PPT精选
解 对此排队队系统分析如下:
(1)先确定参数值:这是单服务台系统,有:
3人 /h,6人 0/h4人 /h
故服务强度为:
15
3 0.75 4
(2)计算稳态概率:
P 0110 .7 5 0 .25
这就是急诊室空闲的概率,也是病人不 必等待立即就能就诊的概率。
而病人需要等待的概率则为:
OnS nS
(1)损失制。这是指如果顾客到达排队系
统时,所有服务台都被先到的顾客占用, 那么他们就自动离开系统永不再来。
2.服务规则
(2)等待制 这是指当顾客来到系统时,所有服务台
都不空,顾客加入排队行列等待服务。等待制中,服务 台在选择顾客进行服务时常有如下四种规则: 1)先到先服务。按顾客到达的先后顺序对顾客进行服务。 2)后到先服务。 3)随机服务。即当服务台空闲时,不按照排队序列而随 意指定某个顾客接受服务。 4)优先权服务。
各符号的意义:
②——表示服务时间分布,所用符号与表示顾 客到达间隔时间分布相同。
③——表示服务台(员)个数:“1”表示单个服 务台,“s”(s>1)表示多个服务台。
④——表示系统中顾客容量限额,或称等待空 间容量。如系统有K个等待位子,则,0<K<∞, 当K=0时,说明系统不允许等待,即为损失制。 K=∞时为等待制系统,此时一般∞省略不写。 K为有限整数时,表示为混合制系统。
各种形式的排队系统
各种形式的排队系统
各种形式的排队系统
随机服务系统
排队论所要研究解决的问题
面对拥挤现象,人们通常的做法是增加服务 设施,但是增加的数量越多,人力、物力的支出 就越大,甚至会出现空闲浪费,如果服务设施太 少,顾客排队等待的时间就会很长,这样对顾客 会带来不良影响。如何做到既保证一定的服务质 量指标,又使服务设施费用经济合理,恰当地解 决顾客排队时间与服务设施费用大小这对矛盾, 就是随机服务系统理论——排队:稳态系统任一 为n时 的刻 概状

排队论方法讲解

排队论方法讲解

排队论方法讲解
排队论是一种运用概率统计方法来分析和解决队列问题的学科。

队列问题是指在等待某个服务或进入某个系统时,人们形成的一种有序排列状态。

排队论主要关注等待时间、排队长度、服务效率等问题。

以下是排队论的一些常见方法:
1. 假设法:假设不同的排队系统具有不同的概率分布,分析不同系统中的各种运行参数,如平均等待时间、服务时间等。

2. 累积等待时间法:计算各客户平均等待时间的总和,再除以系统中客户的总数,用以评价该排队系统是否合理。

3. 平衡方程法:通过统计每个元素在系统中的进入量、离开量、排队量等,建立系统的平衡方程式来求解系统的各项参数。

4. 级数求和法:将排队论中的一些重要参数(如平均等待时间、利用率等)表示成一个级数之和的形式,从而求出这些参数的近似值。

5. Monte Carlo模拟方法:采用随机数模拟的方法,模拟排队系统的服务过程,从而得出系统的性能指标。

以上是排队论的一些常见方法,具体应用时需要考虑具体情况和问题,选择合适的方法进行分析。

《运筹学》 第六章排队论习题及 答案

《运筹学》 第六章排队论习题及 答案

《运筹学》第六章排队论习题1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

第六章 排队论

第六章 排队论

目录
上页
下页
返回
结束
测的,这就决定了公交车的数量并不是完全确定 的固定不变的,而是随着不同时段顾客的多少而 变化.因此顾客和公交车之间存在随机因素. 很明显,顾客和公交车是一个服务和被服务 的关系.如果公交车数量过多,也就是已有的资 源大于需求,虽然公交车的数量能够满足顾客 需求,减少了顾客排队等待的时间,公交车提供 的服务使顾客的满意度很高,却会造成公交车公
目录 上页 下页 返回 结束
(3). 服务机构
(i)服务台数量及构成形式. 从数量上说,服务台有单 服务台和多服务台之分. 从构成形式上看,服务台有: ①单队一---单服务台式;②单队一---多服务台并联 式;③多队一---多服务台并联式;④单队一---多服 务台串联式;⑤单队一---多服务台并串联混合式, 以及多队多服务台并串联混合式等等.
目录 上页 下页 返回 结束
马尔科夫链方法研究排队论,使排队论得到进一步发 展.20世纪60年代起排队论研究的课题日趋复杂,很
多问题很难求得精确解,因此开始了近似方法的研究. 排队论应用范围很广,它适用于一切服务系统.尤 其在通信系统、交通系统、计算机存储系统和生产管理 系统等方面应用的最多. 排队是日常生活和工作中常见的现象.例如等公共 汽车排队,到商店购物排队,交款排队,到医院看病
某些情况下,排队问题仅用上述表达形式 中的前3个符号.例如,某排队问题为M/M/S.
如不特别说明则均理解为系统等待空间容量 无限;顾客源无限,先到先服务,单个服务的等 待制系统.
目录 上页 下页 返回 结束
三、几类排队论模型
1. 2.
M/M/S 模型 GI/M/n 模型
目录
上页
下页
返回
结束
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E[N (t)] = λt ; Var[N (t)] = λt 。
当输入过程是泊松流时,那么顾客相继到达的时间间隔 T 必服从指数分布。这是
由于
P{T > t} = P{[0, t) 内呼叫次数为零} = P0 (t) = e−λt 那么,以 F (t) 表示 T 的分布函数,则有
P{T

t}
=
F (t)
1.2 排队系统的组成和特征 一般的排队过程都由输入过程、排队规则、服务过程三部分组成,现分述如下: 1.2.1 输入过程 输入过程是指顾客到来时间的规律性,可能有下列不同情况: (i)顾客的组成可能是有限的,也可能是无限的。
-118-
(ii)顾客到达的方式可能是一个—个的,也可能是成批的。 (iii)顾客到达可以是相互独立的,即以前的到达情况对以后的到达没有影响; 否则是相关的。 (iv)输入过程可以是平稳的,即相继到达的间隔时间分布及其数学期望、方差等 数字特征都与时间无关,否则是非平稳的。 1.2.2 排队规则 排队规则指到达排队系统的顾客按怎样的规则排队等待,可分为损失制,等待制和 混合制三种。 (i)损失制(消失制)。当顾客到达时,所有的服务台均被占用,顾客随即离去。 (ii)等待制。当顾客到达时,所有的服务台均被占用,顾客就排队等待,直到接 受完服务才离去。例如出故障的机器排队等待维修就是这种情况。 (iii)混合制。介于损失制和等待制之间的是混合制,即既有等待又有损失。有 队列长度有限和排队等待时间有限两种情况,在限度以内就排队等待,超过一定限度就 离去。 排队方式还分为单列、多列和循环队列。 1.2.3 服务过程 (i)服务机构。主要有以下几种类型:单服务台;多服务台并联(每个服务台同 时为不同顾客服务);多服务台串联(多服务台依次为同一顾客服务);混合型。 (ii)服务规则。按为顾客服务的次序采用以下几种规则: ①先到先服务,这是通常的情形。 ②后到先服务,如情报系统中,最后到的情报信息往往最有价值,因而常被优先处 理。 ③随机服务,服务台从等待的顾客中随机地取其一进行服务,而不管到达的先后。 ④优先服务,如医疗系统对病情严重的病人给予优先治疗。 1.3 排队模型的符号表示
的情形,所以略去第六项。 表示顾客到达间隔时间和服务时间的分布的约定符号为:
M —指数分布( M 是 Markov 的字头,因为指数分布具有无记忆性,即 Markov
性);
D —确定型(Deterministic); Ek — k 阶爱尔朗(Erlang)分布; G —一般(general)服务时间的分布; GI —一般相互独立(General Independent)的时间间隔的分布。 例如, M / M /1 表示相继到达间隔时间为指数分布、服务时间为指数分布、单服 务台、等待制系统。 D / M / c 表示确定的到达时间、服务时间为指数分布、 c 个平行
由条件 2o 和 3o 得
n = 1,2,L
因而有
P0 (Δt) = 1 − λΔt + o(Δt)
P0 (t
+
Δt) Δt

P0 (t)
=
−λP0 (t)
+
o(Δt) Δt

Pn (t
+
Δt) Δt

Pn (t)
=
−λPn (t)
+
λPn−1 (t )
+
o(Δt) Δt
.
在以上两式中,取 Δt 趋于零的极限,当假设所涉及的函数可导时,得到以下微分方程
第六章 排队论模型
排队论起源于 1909 年丹麦电话工程师 A. K.爱尔朗的工作,他对电话通话拥挤问 题进行了研究。1917 年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理 论的几个问题的解决”。排队论已广泛应用于解决军事、运输、维修、生产、服务、库 存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。
排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展 的一门学科。它研究的内容有下列三部分:
(i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待 时间分布和忙期分布等,包括了瞬态和稳态两种情形。
(ii)最优化问题,又分静态最优和动态最优,前者指最优设计。后者指现有排队 系统的最优运营。
当 Pn (t1,t2 ) 合于下列三个条件时,我们说顾客的到达形成泊松流。这三个条件是:
1o 在不相重叠的时间区间内顾客到达数是相互独立的,我们称这性质为无后效
性。
2o 对充分小的 Δt ,在时间区间 [t,t + Δt) 内有一个顾客到达的概率与 t 无关,而
约与区间长 Δt 成正比,即
P1(t,t + Δt) = λΔt + o(Δt)
设 N (t) 表示在时间区间 [0, t) 内到达的顾客数( t > 0 ),令 Pn (t1,t2 ) 表示在时间区
间 [t1,t2 )(t2 > t1 ) 内有 n(≥ 0) 个顾客到达的概率,即 Pn (t1,t2 ) = P{N (t2 ) − N (t1) = n} (t2 > t1, n ≥ 0)
指数分布。这时设它的分布函数和密度函数分别是
G(t) = 1 − e−μt , g(t) = μe−μt
我们得到
lim P{T ≤ t + Δt | T > t} = lim P{t < T ≤ t + Δt} = μ
Δt → 0
Δt
Δt→0 ΔtP{T > t}
这表明,在任何小的时间间隔 [t,t + Δt) 内一个顾客被服务完了(离去)的概率是
(iii)排队系统的统计推断,即判断一个给定的排队系统符合于哪种模型,以便 根据排队理论进行分析研究。
这里将介绍排队论的一些基本知识,分析几个常见的排队模型。
§1 基本概念 1.1 排队过程的一般表示 下图是排队论的一般模型。
图 1 排队模型
图中虚线所包含的部分为排队系统。各个顾客从顾客源出发,随机地来到服务机构,按 一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。
排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常 常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说, 到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中 出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机 待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机 性。可以说排队现象几乎是不可避免的。
n=2
(2)
-120-
在上述条件下,我们研究顾客到达数 n 的概率分布。 由条件 2o,我们总可以取时间由 0 算起,并简记 Pn (0,t) = Pn (t) 。
由条件 1o 和 2o,有
P0 (t + Δt) = P0 (t)P0 (Δt)
n
∑ Pn (t + Δt) = Pn−k (t)Pk (Δt), k =0
排队模型用六个符号表示,在符号之间用斜线隔开,即 X / Y / Z / A / B / C 。第一 个符号 X 表示顾客到达流或顾客到达间隔时间的分布;第二个符号Y 表示服务时间的 分布;第三个符号 Z 表示服务台数目;第四个符号 A 是系统容量限制;第五个符号 B 是 顾客源数目;第六个符号 C 是服务规则,如先到先服务 FCFS,后到先服务 LCFS 等。并 约定,如略去后三项,即指 X / Y / Z / ∞ / ∞ / FCFS 的情形。我们只讨论先到先服务 FCFS
数,它是产生其它随机变量的基础。如若 X 为U (0,1) 分布,则Y = a + (b − a) X 服从
U (a,b) 。
(ii)正态分布
以 μ 为期望,σ 2 为方差的正态分布记作 N (μ,σ 2 ) 。正态分布的应用十分广泛。
正态分布还可以作为二项分布一定条件下的近似。 (iii)指数分布
服务台(但顾客是一队)的模型。 1.4 排队系统的运行指标 为了研究排队系统运行的效率,估计其服务质量,确定系统的最优参数,评价系统
的结构是否合理并研究其改进的措施,必须确定用以判断系统运行优劣的基本数量指
-119-
标,这些数量指标通常是: (i)平均队长:指系统内顾客数(包括正被服务的顾客与排队等待服务的顾客)的
=
⎧1 − e−λt , ⎨
⎩0,
t≥0 t<0
而分布密度函数为
f (t) = λe−λt , t > 0 .
-121-
对于泊松流, λ 表示单位时间平均到达的顾客数,所以 1 就表示相继顾客到达平均 λ
间隔时间,而这正和 ET 的意义相符。
对一顾客的服务时间也就是在忙期相继离开系统的两顾客的间隔时间,有时也服从
μΔt + o(Δt) 。 μ 表示单位时间能被服务完成的顾客数,称为平均服务率,而 1 表示 μ
一个顾客的平均服务时间。 2.2 常用的几种概率分布及其产生 2.2.1 常用的连续型概率分布 我们只给出这些分布的参数、记号和通常的应用范围,更详细的内容参看专门的概
率论书籍。 (i)均匀分布
区间 (a, b) 内的均匀分布记作U (a, b) 。服从U (0,1) 分布的随机变量又称为随机
凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员 组成服务系统。对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的 众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。 因此,顾客总希望服务 机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而 会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权 衡决策,使其达到合理的平衡。
相关文档
最新文档