【精品】积分变换课后习题答案2
积分变换习题解答1-2
1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:[]()j j j j 01e e()()()e d e d 0j j t t t t A F f t f t t A t A τωωωωτωωω-----+∞⎡⎤=====⎢⎥-∞-⎣⎦⎰⎰F 2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即 ()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则()()()()()()j j 11e d e d 2π2πt tf t F F ωωωωωω--+∞+∞-==---∞-∞⎰⎰ (令u ω-=)()j 1e d 2πut F u u -∞=+∞⎰(换积分变量u 为ω)()()j 1e d 2πtF f t ωωω+∞=-=--∞⎰ 所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则()()()()()j j e d e d t t F f t t f t t ωωω----+∞+∞-==---∞-∞⎰⎰ (令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证()20012sin πd e αωαωωαω+∞-=>+⎰解:由Fourier 正弦变换公式,有()()s s F f t ω⎡⎤=⎣⎦F ()0sin f t t t ω+∞=⎰d 0sin tt t ω+∞-=⎰e d ()2sin cos 10t t t ωωωω---+∞=+e 21ωω=+ 由Fourier 正弦逆变换公式,有()120022sin ()()sin 1s s s t f t F F t ωωωωωωωω+∞+∞-===⎡⎤⎣⎦+⎰⎰F d d ππ 由此,当0t α=>时,可得()()2sin ππd e 0122f αωαωωααω+∞-==>+⎰5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此()()()()[]j e d j cos jsin d t r i F f t t f t f t t t t ωωωω-+∞+∞⎡⎤==+-⎣⎦-∞-∞⎰⎰ ()()()()cos sin d j sin cos d ri r i f t t f t t t f t t f t t t ωωωω+∞+∞⎡⎤⎡⎤=+--⎣⎦⎣⎦-∞-∞⎰⎰ ()()Re Im F j F ωω⎡⎤⎡⎤=+⎣⎦⎣⎦其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a ()()()Im sin cos d ri F f t t f t t t ωωω+∞⎡⎤⎡⎤=--⎣⎦⎣⎦-∞⎰()b 1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为()()Re cos d rF f t t t ωω+∞⎡⎤=⎣⎦-∞⎰()()Im sin d rF f t t t ωω+∞⎡⎤=-⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()()Re jIm F F F ωωω⎡⎤⎡⎤=-=⎣⎦⎣⎦反之,若已知()()F F ωω-=,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有()()()cos d j sin d r rF f t t t f t t t ωωω+∞+∞=--∞-∞⎰⎰ 亦即表明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为()()Re sin d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im cos d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()Re jIm F F ωω⎡⎤⎡⎤=-+⎣⎦⎣⎦()(){}Re jIm F F ωω⎡⎤⎡⎤=--⎣⎦⎣⎦()F ω=-反之,若已知()()F F ωω-=-,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰, 亦即表明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有()()j π1sin e d cos d 2π0tf t F t ωωωωωωω+∞+∞==-∞⎰⎰ ()()sin 1sin 111d d 2π02π0t t ωωωωωω+∞++∞-=+⎰⎰ 但由于当0a >时sin sin sin πd d()d 0002a a t a t t ωωωωωω+∞+∞+∞===⎰⎰⎰ 当0a <时sin sin()πd d 002a a ωωωωωω+∞+∞-=-=-⎰⎰当0a =时,sin d 0,0a ωωω+∞=⎰所以得 ()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知()()()()j j j 001e d 2π11πδe d πδe d 2π2πt t t f t F ωωωωωωωωωωω+∞=-∞+∞+∞=++--∞-∞⎰⎰⎰j j 00011e e cos 22t t t ωωωωωωω=-==+=8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222aa t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :()()()()j 1δδδδe d 222ta a F f t t a t a t t ωωω+∞--∞⎡⎤⎛⎫⎛⎫⎡⎤==++-+++- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦⎰F j j j j 1e e e e 222t t t t a a t a t a t t ωωωω----⎡⎤⎢⎥=+++⎢⎥=-==-=⎢⎥⎣⎦cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知()()000sin j πδδt ωωωωω⎡⎤=+--⎡⎤⎣⎦⎣⎦F由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由()()3j j 33j j -j 3j e e j sin e 3e 3e e 2j 8t t t t t t f t t --⎛⎫-===-+- ⎪⎝⎭即得()()()()()πjδ33δ13δ1δ34f t ωωωω⎡⎤⎡⎤=---++-+⎣⎦⎣⎦F12.求函数()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于()π1sin 5sin5cos5322f t t t t ⎛⎫=+=+ ⎪⎝⎭故()()()()()πjδ5δ55δ52f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F . 14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F ,其中()t ϕ为一实数,则()()()1cos 2t F F ϕωω⎡⎤⎡⎤=+-⎣⎦⎣⎦F ()()()1sin 2j t F F ϕωω⎡⎤⎡⎤=--⎣⎦⎣⎦F 其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j e e d t t F t ϕωω+∞--∞=⋅⎰()()()j j j j ee d ee d t t tt F t t ϕϕωωω+∞+∞---∞-∞-==⋅⎰⎰()()()()()()j j j j 1e ee d cos e d cos 22t t t t F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t Tf t T ⎧≤≤⎪=⎨⎪⎩其他()00111d d 2TTh C f t t ht t TTT ===⎰⎰()()000j j j 02011e d e d e d TTTn t n t n t n ht h C F n f t t t t t TTT Tωωωω---===⋅=⎰⎰⎰00j j 211j e e d j j 2πTn t n t Thht T n n n ωωωω--⎡⎤=⋅+=⎢⎥-⎣⎦⎰()()()()()000j j 2πδ2πδπδδ.22πn n n n h h hF n h n n nωωωωωωω+∞+∞=-∞=-∞≠≠=+⋅-=+⋅-∑∑。
积分变换习题解答
∫ ∫ ∫ ∫ 证 f (t) = 1
( ) +∞
+∞
f
τ
e− jωτ dτ ejωt dω =
1
+∞ +∞ f (τ ) (cosωτ − jsin ωτ ) cosωtdτ dω
2π −∞ −∞
2π −∞ −∞
∫ ∫ ∫ ∫ + 1
2π
+∞ +∞ f (τ ) (cosωτ − jsin ωτ ) jsin ωtdτ dω =
−∞
1+i 1−ω
+
e⎡⎣1−i(1+ω )⎤⎦t 0
−∞
1−i 1+ω
+
e⎡⎣−1+i(1−ω)⎤⎦t +∞
0
−1+ i 1− ω
+
e⎡⎣−1−i(1+ω )⎤⎦t +∞
0
−1− i 1+ ω
⎫ ⎪ ⎬ ⎪
⎩
⎭
=
1 2
⎡
⎢ ⎣
1+
1
i (1−ω
)
+
1−
1
i (1+ ω )
+
1−
1
i (1− ω )
+∞ +∞
f
t
e−iωt dteiωt dω = 1
+∞ 1 1− t 2 e−iωt dteiωt dω
2π −∞ −∞
2π −∞ −1
∫ ∫ ( ) ∫ = 1
π
+∞ −∞
1 1−t2
0
cosωtdteiωtdω = 1 π
+∞ −∞
积分变换课后题答案
第一章 傅里叶变换内容提要:一 傅里叶变换定义1定义2定义34傅里叶积分定理二 δ函数型序列的充分条件构成δ1.)(21)(,)(21)(,)()( 为傅里叶积分公式即称则若设:dw e dx e x f t f dw e w F t f dt e t f w F iwt iwx iwt iwt ⎰⎰⎰⎰∞+∞--∞+∞-+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡===ππ=)(t f [])(1-w F ℱ;)()()(21逆变换的傅里叶为Fourier w F dw e w F iwt ⎰+∞∞-=π=)(w F [])(t f ;)()()(变换的傅里叶为Fourier t f dt e t f iwt -+∞∞-⎰=ℱ .)(21)(,)(21)(,)()( 为傅里叶积分公式即称则若设:dw e dx e x f t f dw e w F t f dt e t f w F iwt iwx iwt iwt ⎰⎰⎰⎰∞+∞--∞+∞-+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡===ππ满足如下两个条件:若函数)(t f 限个极值点;类间断点,且至多有有上连续或有有限个第一在即条件上满足狄利克雷在实轴的任何有限区间],[)( ,)(],[)( )b a t f Dirichlet b a t f i .],[)( )的反常积分收敛在区间+∞-∞t f ii .)()(,)(21)]0()0([21)(dt e t f w F dw e w F t f t f t f iwtiwt -∞+∞-∞+∞-⎰⎰==-++其中且的傅里叶变换存在,则函数π函数列的该趋向下,,则在)(的某种趋向下,函数若在参数可积,且满足在实轴的任何有限区间设普通函数βεβϕβ++∞∞→==⎰0,1)()(-dt t f t f ).()( )0)(( ))(1()(1)(t t f t f t f δδβϕβϕβϕββ→>=即:型序列,构成一个型序列几个常用 2δ⎪⎩⎪⎨⎧<<===⎩⎨⎧<<=. 0)0( 1)1(1)( . 0)10( 1)( )1其它,,则令其它,εεεεβεεt t f t f t t f ).()(lim 00t t δδδεεε=→+→+型序列,即时为当.)()1(1)(,1)(,)1(1)( )2(22-2πεεεεδπεw w f w dt t f t t f R +===+=⎰+∞∞构造:显然).()(lim 00w w R δδδεεε=→+→+即型序列,时为当.)cos(21sin )()(,sin ,sin )( )3(-⎰⎰-+∞∞=====RRIR dw wt t Rt Rt Rf t dt tt t tt f ππδππ构造:因为).()(lim t t R IR R δδδ=+∞→+∞→型序列,即时为当.2)1(1)(,2,2)( )4(2222-22πβββδππββw G t t ew f w dt eet f -∞+∞--====⎰构造:因为).()(lim 00w w G δδδβββ=→+→+型序列,即时为当函数的积分3δ).)(()()(lim )()()1-00-0处处无穷次可微,定义:t f dt t f t t dt t f t t ⎰⎰+∞∞→+∞∞-=-+εεδδ三 傅立叶变换的性质四 几个常用函数傅里叶变换对1.线性性质2.位移性质)( t f 若ℱ, )(w F 3.微分性质)( n1k ∑=t f C k k . )(1∑=nk k k w F C ℱ )( )1 a t f ±ℱ ;)( )(为实数a w F e iwa ±t iw et f 0)( )2±.)( )(00为实数w w w F ℱ)( t f k 若),,2,1( )(n k w F k =ℱ)( t f 若ℱ, )(w F )( )1 )(t fn ;)( )()(为自然数n w F iw n ℱ)()( )2t f -it n .)( )()(为自然数n w F n ℱ)( t f 若ℱ)(w F 4.积分性质 则ℱ []).(1)(w F iw t g =).( )10)((lim )(1lim )()(lim)()()2000-00-000t f t f dt t f dtt f t t dt t f t t t t =<<+==-=-+++→+→+∞∞→+∞∞⎰⎰⎰θεθεδδδεεεεε函数的筛选性质:2sin 2τw w E).2( 0),2( )()1⎪⎩⎪⎨⎧><=ττt t E t f ℱ)0( )0( 0)0( )()2>⎩⎨⎧<>=-ββt t e t f t 1iw+βℱ习题1.11. 求下列函数的Fourier 变换. (1)ℱ)]([t f =dt e A t i ⎰-τω0=0τωωt i e i A --=)1(ωτωi e i A --.(2) ℱ)]([t f =dt te e t i t⎰+∞∞---ωcos =dt te t i ⎰+∞+-0)1(cos ω+dt te t i ⎰∞--0)1(cos ω由201cos a a dt te at +=⎰+∞-,2001cos cos aa dt te dt te at at +==⎰⎰+∞-∞-, 可知:ℱ)]([t f =22)1(11)1(11ωωωωi i i i -+-++++=22424ωω-+.2. 求Fourier 逆变换. ℱ)]([1ωF -=ωπωωβd e et i ⎰+∞∞--21=ωωπωβωβd e d e it it ⎰⎰∞-++∞+-+0)(0)([21=⎥⎦⎤⎢⎣⎡∞-++∞++-++-010121)()(ωβωβββπit it e it e it=22221t +ββπ=)(22t +βπβ.3. ℱ)]([t f =⎰--⋅ππωdt e t t i sin=-⎰--ππωt d e t i cos =-⎰---⋅--⋅ππωωωππdt e t i te t i t i cos cos=()⎰-----ππωωωωπt d e i e e t i t i t i sin cos=⎰----⋅+-ππωωωωωdt te i i e e t i t i t i sin )(=⎰---+-ππωωωωdt teeeti ti ti sin 2ℱ)(1w iwπδ+)( )5t u )( )3t δℱ 1)( 2w πδ1)4ℱℱ)]([t f =1sin 22-ωωπi由ℱ)()]([1t f F =-ω可知下面的等式成立.4. 求下列函数的Fourier 积分。
积分变换习题解答2-5
2-51.求下列常系数微分方程的解:1)()2e ,00t y y y '-==;8)()()()331,0000y y y y y y y '''''''''+++====;12)()()()()()420,0000,01y y y y y y y ''''''''++=====;16)()π10sin 2,00,12y y t y y ⎛⎫''+=== ⎪⎝⎭。
分析:解题步骤,首先取Laplace 变换将微分方程化为象函数的代数方程, 解代数方程求出象函数, 再取Laplace 逆变换得最后的解.解:1)方程两边取Laplace 变换,并结合初始条件可得()()21e 2t sY s Y s s ⎡⎤-==⎣⎦-L 即()()()1112121Y s s s s s ==-----. 从而方程的解为()()12e e t t y t Y s -⎡⎤==-⎣⎦L8)对方程两边取Laplace 变换,并结合初始条件,有()()()()32133s Y s s Y s sY s Y s s+++= 即()()()332113311Y s s s s s s s ==++++ 由留数计算法,由于10s =是()Y s 的一个一级极点,21s =-是()Y s 的一个三级极点,从而方程的解为()()()121Res e k st s s k f t Y s Y s =-=⎡⎤⎡⎤==⎣⎦⎣⎦∑L ()12232e 1d 1lim e 2!d 1stst s s s s s s s →=⎡⎤=+⎢⎥⎣⎦+ ()2231e 2211lim 2st s s t st s →--+=+2111e 2t t t -⎛⎫=-++ ⎪⎝⎭. 12)对方程两边取Laplace 变换,并结合初始条件,有()()()()()()()()()43220000220200s Y s s y s y sy y s Y s sy y Y s '''''''----+--+= 即()()22221111ss Y s s s s ==⋅+++ 从而方程的解为()()11cos sin sin 2y t Y s t t t t -⎡⎤==*=⎣⎦L . 16)对方程两边取Laplace 变换,并结合初始条件,有 ()()()()22200104s Y s sy y Y s s '--+=+ 即()()()()222020114y Y s s s s '=++++()222020113141y s s s '⎛⎫=-+ ⎪+++⎝⎭,从而 ()()()12010sin sin 20sin 33y t Y s t t y t -'⎡⎤==-+⎣⎦L . 为了确定()0y ',将条件π12y ⎛⎫= ⎪⎝⎭代入上式可得()1703y '=-,所以方程的解为()10sin sin 23y t t t =- 2.求下列变系数微分方程的解:1)()()40,03,00ty y ty y y ''''++===;3)()()()2120,02ty t y t y y '''+-+-==;5)()()()()10,000,0ty n y y y y n ''''+-+===≥.解: 1)方程两边取Laplace 变换,有[]40ty y ty '''++=L即[][][]40ty y ty '''++=L L L ,亦即()()()()()()2d d 00040d d s Y s sy y sY s y Y s s s'⎡⎤⎡⎤---+--=⎣⎦⎣⎦ 从而()()2d 40d Y s sY s s ++= 2d d 04Y s s Y s +=+ 两边积分可得()211ln ln 42Y s c ++=或()Y s =取其逆变换,有()()02y t cJ t =欲求c ,可由条件()03y =得到,即()()0003y cJ c ===,所以方程的解为()()032y t J t =其中()()()2001!12kk k x J x k k ∞=-⎛⎫= ⎪Γ+⎝⎭∑称为零阶第一类Bessel 函数.3)方程两边取Laplace 变换,有[]()()2120ty t y t y '''⎡⎤⎡⎤+-+-=⎣⎦⎣⎦L L L()()()()()2d d 0020d d s Y s sy y sY s y s s'⎡⎤⎡⎤------⎣⎦⎣⎦ ()()()()d2020d sY s y Y s Y s s ⎡⎤---=⎣⎦整理化简后可得()()()()2d21416d s s Y s s Y s s ++++=即()()()2d46d 11Y s Y s s s s +=++这是一阶线性非齐次微分方程,这里()()()246,11P s Q s s s ==++所以()()()()d d e e d P s s P s sY s Q s s c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰()()24161d 1s s c s ⎡⎤=++⎣⎦+⎰()4211cs s =+++从而方程的解为()()132e e 3!t t cy t Y s t ---⎡⎤==+⎣⎦L ()312etc t -=+(1c 为任意常数)5)方程两边取Laplace 变换,有[]()[][]10ty n y y '''+--=L L L即()()()2d 00d s Y s sy y s'⎡⎤---+⎣⎦()()()()100n sY s y Y s ⎡⎤---=⎣⎦ 整理化简后可得()()()2d 11d Y s n ss Y s s -+=两边积分可得()()11ln n Y s s cs -+=-即()()1111e e n s s n cY s cs s ---++==从而方程的解为()(2nn y t ct J =(c 为任意常数)其中n J 称为n 阶第一类Bessel 函数。
复变函数与积分变(北京邮电大学)课后的习题答案
1 i 1 i 1 i 2 2 2
4、证明:当且仅当 z z 时,z 才是实数.
3
1 1 3 1 8
3 1 3
2
2
3
3
3
证明:若 z z ,设 z x iy ,
3 2 2 2 2 x x 2 y 2 2 xy 2 y x y 2x y i
③解: 2 i 3 2i 2 i 3 2i 5 13 65 .
2 i 3 2i 2 i 3 2i 2 i 3 2i 4 7i
za 因为 L ={z: Im =0}表示通过点 a 且方 b
向与 b 同向的直线,要使得直线在 a 处与圆相切, 则 CA⊥ L .过 C 作直线平行 L ,则有∠BCD=β, ∠ACB=90° 故 α-β=90° 所以 L 在 α 处切于圆周 T 的关于 β 的充要条件
习题二xy所以4i的一段即平面上扇形域即是以原点为焦点张口向右抛物线如图所示limlimlimlim的极限不同所以极限不存在limlimlimlim00lim00lim00lim所以fz在整个为正整数所以fz在整个xyxy时才满足cr方程
复变函数与积分变换课后答案(北京邮电大学出版社)
复变函数与积分变换 (修订版)
1 i 3 ∴ Re 1, 2
④解: ∵
3
1 i 3 Im 0. 2
2 2 2 2 π π cos isin i i 2 4 4 2 2 2
复变函数与积分变换(修订版-复旦大学)课后的习题答案
(
)
证明∵ z + w = ( z + w) ⋅ ( z + w) = ( z + w) z + w = z ⋅ z + z ⋅ w + w⋅ z + w⋅ w = z + zw+ z⋅ w + w = z + w
≤
2 2 2 2
(
)
∴ −8π 1 + 3i = 16π ⋅ e 2π 2π ⎞ ⑤解: ⎛ + i sin ⎟ ⎜ cos 9 9 ⎠ ⎝
5、Imz>1,且|z|<2. 解:表示圆盘内的一弓形域。
iϕ (2) 记 w = ρ e ,则
0<θ <
π ,0 < r < 2 4 映成了 w 平面 π . 2
习题二 1 z 下圆周 | z |= 2 的像.
上扇形域,即
0 < ρ < 4, 0 < ϕ <
−7i
⎤ = x ( x − y ) − 2 xy + ⎡ ⎣ y ( x − y ) + 2x y ⎦ i
2 2 2 2 2 2
= x3 − 3 xy2 + ( 3 x2 y − y3 ) i
∴
Re ( z
3
)=x
3
− 3 xy
2
,
Im ( z 3 ) = 3 x 2 y − y 3 .
⎛ 1 + i ⎞ (1 + i ) 1 − i ⎜ 2 ⎟= 2 = 2 ⎝ ⎠
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
π ⎛ 2 i 2 ⎞ 4 解: 3 + 3i= 6 ⋅ ⎜ + i = 6 ⋅ e ⎟ ⎜ 2 ⎟ 2 ⎠ ⎝
高等教育出版社积分变换第四版答案
a cos t d
0
b sin t d
0, t0 2) f t ; t e sin 2 t , t 0
2.求下列函数的 Fourier 积分:
1 t 2 , t 2 1 1) f t ; 2 0, t 1
1 a jb cos t j sin t d 2
由于 a a , b b , 所以
f t 1 1 a cos t d b sin td 2 2
f(t)的 Fourier 积分为
f (t ) =
1 j F e j t d F sin td 2π 0 π 0 2 1 cos sin td π0
f t0 0 f t0 0 2
其中 t -1,0,1(在间断点 t0 处,右边 f(t)应以
1-1
1. 试证:若
f t 满足 Fourier 积分定理中的条件,则有
f t
0
a cos t d
0
b sin t d
其中 a
1 1 f cos d , b f sin d . π π
2 2 0 4
4
π sin π sin t sin t , t π sin t , t π 3) f ( t ) ,证明: d 2 2 0 1 t π 0, 0, t π
t 证明:1)函数 f t e 为连续的偶函数,其 Fourier 变换为
《复变函数与积分变换复旦大学修订版》全部_习题答案
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z 2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根. 解:πi 4e ⎫⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z . 9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换课后习题答案
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()R e in=,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++ ①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈C ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈C ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.πi 4e ⎫⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z=12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案
解:f(z)除 外处处可导,且 .
(4) .
解:因为
.所以f(z)除z=0外处处可导,且 .
6.试判断下列函数的可导性与解析性.
(1) ;
解: 在全平面上可微.
所以要使得
, ,
只有当z=0时,
从而f(z)在z=0处可导,在全平面上不解析.
(2) .
解: 在全平面上可微.
只有当z=0时,即(0,0)处有 , .
它们分别为
∴
∴满足C-R条件.
(3)当z沿y=x趋向于零时,有
∴ 不存在.即f(z)在z=0处不可导.
11.设区域D位于上半平面,D1是D关于x轴的对称区域,若f(z)在区域D内解析,求证 在区域D1内解析.
证明:设f(z)=u(x,y)+iv(x,y),因为f(z)在区域D内解析.
所以u(x,y),v(x,y)在D内可微且满足C-R方程,即 .
15.计算下列各值.
(1)
(2)
(3)ln(ei)=ln1+iarg(ei)=ln1+i=i
(4)
16.试讨论函数f(z)=|z|+lnz的连续性与可导性.
解:显然g(z)=|z|在复平面上连续,lnz除负实轴及原点外处处连续.
设z=x+iy,
在复平面内可微.
故g(z)=|z|在复平面上处处不可导.
所以f(z)在z=0处可导,在全平面上不解析.
(3) ;
解: 在全平面上可微.
所以只有当 时,才满足C-R方程.
从而f(z)在 处可导,在全平面不解析.
(4) .
解:设 ,则
所以只有当z=0时才满足C-R方程.
从而f(z)在z=0处可导,处处不解析.
复变函数与积分变换答案-第2章解析函数
11 27、第二章 解析函数习题详解1、(1) f 1(z )= z 4在定义域(-,+) 内连续;2) f 2(z ) =4z +5在定义域(-,+)内连续; 1在定义域-, 3,3, +内连续。
- 4, v = 16u + 64, 为一抛物线。
4、(1)w = z 3,则w = (2i )3= -8i , w =( 2+2i )3=2 2+12i -12 2-8i =-10 2+4i ;5、 f (z )=Re z =x ,当 y →0时, f (z )→1;当x →0时, f (z )→0,因为极限不等, z x + iy 所以当z →0时, f (z )极限不存在。
1在原点处不连续,故 w =i arg z +1 在负实轴上与原点 zz3) f 3 (z )= 22、w = z2u =x 2-y 2v = 2 xy u =x 2 -4,把直线C :y =2映射成:u =x -4v = 4 xvx = ,代入第一个式子,4u =3、1zw = = = z zzx - iy22,x + yv =x 22 x + y-y 22 x + y把直线C :x =1映射成,:vu =v =1 1+y 2-y 1+y 21-u u 2u= (1- u ) u v 2 + u 22)w = z 3,像域为0arg w 26、i arg z 在负实轴上与原点处不连续, 处不连续。
f (z +z )- f (z )z →0z= limz →0(z +z )2zy 2 = 1 -1 = u为一个圆周。
uz 2-(z +z )2z 2(z +z )2z 2 -z 2 -2z z -z 22= lim = lim = - 。
z →0 z z →0z 2(z +z )2zz 38、(1) f (z ) =5-3z +5z 2,在(-,+)内解析,且导数为 f (z ) = -3+10z ;12、(1) z =e 1-2i =ecos -i sin=-ei ;1222) f (z )=1 1 1z 4 -1 (z 2 -1)(z 2 +1) (z -1)(z +1)(z +i )(z -i )在(-,+)内除z =1,5z +431 1 5 3) f (z )= z +4,在(-,+)内除z = - 3外解析, f (z )=1+ 2 =1+ 52z + 32 2 2z +32 2(2z +3)且导数为: f(z )= 1(2z +3)-2(-2)=-5 (2z +3)29、(1) f (z )=Im z = y 在z 平面上的点点不可导,不解析(因柯西-黎曼条件不满足);2) f (z )= z 4 ,在平面上的点解析。
复变函数与积分变换 第二章课后答案
e z sin z e z sin z 则 dz z 2i dz 2 z 2i z 4 z 3 z 2 i 1
2i
e 2i sin 2i e 2i sin 2i e 2i sin 2i e 2i sin( 2i ) 2i 2i 2i 2i 2i 2 2 sin 2i e 2i e 2i sin 2i cosh 2i . 2
i
i
i i
= 2 cos i .
7. 沿指定曲线的正向计算下列各积分: (1)
C
ez dz , C : z 2 1 ; z2 dz (a 0) , C : z a a ; z a2
2
(2)
C
(3)
C
eiz 3 dz , C : z 2i ; 2 z 1 2 f ( z) dz , C : z 1 ; f ( z ) 在 z 1 上解析, z0 1 ; z z0
z 0
0.
4
(8) f ( z ) 有四个奇点, 其中 z i在c 内,作互不相交互不包含且 在 C 内的小圆周 c1和c2 包含 i 与-i,则
c1
(z
2
1 dz 1 dz 2 4)( z i ) z i c2 ( z 4)( z i ) z i
(2) 由于被积函数在全平面上解析,利用柯西积分定理得
求积分
C
3 z 2 dz 0 .
2. 设 C 是由点 0 到点 3 的直线段与点 3 到点 3 i 的直线段组成的折线,
C
Re zdz .
解 将 C 分为两段,从 z=0 到 z=3, c1 的方程为 z 3 x, 0 x 1,
(含答案)复变函数与积分变换习题解析2
习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明. (1)如果()f z 在0z 连续,那么0()f z '存在. (2)如果0()f z '存在,那么)(z f 在0z 解析. (3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导. (4) 如果0z 是()f z和()g z 的一个奇点,那么0z 也是()()f z g z +和()()f z g z ⋅的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应用导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导. 习题2.21. 设试证)(z f 在原点满足柯西-黎曼方程,但却不可导.(提示:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=; (2)i y x y x z f 22332)(+-=; (3)=)(z f232z z -+; (4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=; (4 4. (1)iz z z f 2)(3+=; (25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--; (2 (0)z ≠; (3)1(33)x iy ω-=-; (4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+. (1)2(1)u x y =-; (2)3223u x x xy =-+;(3)323u x xy =-; (4)23v xy x =+;(5)x y x v 222+-=; (62. 求k 值使22ky x u +=为调和函数,并求满足1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是一个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满足下列条件之一,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ; (7)i 3; (8)i i )1(+;(9)1(34)i i ++; (10))1sin(i +;(11)cos(5)i π+; (12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ; (3(4 (55.证明:(1)122=-z sh z ch ; (2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复 习 题 二一、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B一、单项选择题1. ). D.z sin2. 下列说法正确的是( ).A.函数的连续点一定不是奇点B.可微的点一定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内无奇点D.不存在处处不可导的函数3. 下列说法错误的是( ). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是( ).A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满足C-R 方程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是( ).A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是( ).7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是( ). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数( ). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是( ).A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是( ).A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是( ). A. )(z f 在复平面上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是( ).A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==二、填空题 在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivuzf+=)(.(1)xu=;(2)xyu=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22yxvu-=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数),(yxu和),(yxv都具有二阶连续偏导数,且满足拉普拉斯方程,现令xyvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第二章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)Re()(zzf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导, (44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(; (2)ci z z z f +-=32)(; (3)=)(z f 3z ci +; (4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2; (62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈; ((5(6(7)3ln 2i k e e π-)(Zk ∈; (9 ( (2.(1 (23.(1)正确; (2)正确; (3)正确.复习题二二、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0( ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平面内处处不可导,处处不解析;(2)在0=z 处可导,但在复平面内处处不解析,0)0(='f ;(3)在复平面内处处不可导,处处不解析;6.(1)4e -; (2))4sin 4(cos 3i e +; (3(4(6 (7。
复变函数与积分变换包括答案马柏林、李丹横、晏华辉修订版本,习题2.docx
习题二1. 求映射 w z 1 下圆周| z | 2的像.z解:设因为z x i y,w u i vu i v x iy1i yxx2y2 4 ,所以 u iv则x i y x yx iy x2y2x x2y2i( y x2y2 )5 3x yi44所以 u 5x , v 3 y 44x u, yv 53 44所以u v2u 2v21 ,表示椭圆 . 5232即232544222.在映射w2下,下列z 平面上的图形映射为w 平面上的什么图形,设wiz e 或w u iv .( 1) 0r2,π;( 2) 0 r2,0π;44(3) x=a,y=b.(a, b 为实数 )解:设 w u iv(x iy) 2x2y22xyi所以 u x2y2 , v 2 xy.(1)记 w e i,则 0r2,π映射成 w 平面内虚轴上从O 到 4i 的一段,即40π4,. 2(2) 记 w i ππe ,则 0,0 r 2 映成了 w 平面上扇形域,即 04,0.42—(3) 记 wu iv ,则将直线 x=a 映成了 u a 2y 2 , v 2ay. 即 v 2 4a 2 (a 2 u). 是以原点为焦点,张口向左的抛物线将22y=b 映成了 u xb , v 2 xb.即 v 24b 2 (b 2u) 是以原点为焦点,张口向右抛物线如图所示.3. 求下列极限 .(1) lim1 2 ;1 zz解:令 z1,则 z,t0 .t于是 lim 1limt 20 .z 2t 2z1 t 01(2)lim Re( z) ;z 0z解:设 z=x+yi ,则Re(z)x x 有z i yRe( z)limx1lim zx 0xi kx 1 i kz 0y kx 显然当取不同的值时 f(z)的极限不同所以极限不存在 .(3) limz i2;z(1z iz )解: lim z i = limz i 1 1 z(1 2 ) z(iz)( z lim .z i z z i i ) z i z(i z) 2—zz 2 zz 2.(4) lim2z 1z1解:因为 zz 2 z z 2 ( z 2)( z1) z 221( z 1)(z1) z ,z1所以lim zz2z z 2 lim z 2 3 . z 1z 2 1 z 1 z124. 讨论下列函数的连续性:2xy 2 ,z0,(1) f ( z)x y0,z 0; 解:因为 lim f (z)limxy2 ,x 2yz 0( x, y) (0,0)若令 y=kx,则limxyk ,x2y21 k2( x, y)(0,0)因为当 k 取不同值时, f(z)的取值不同,所以 f(z)在 z=0 处极限不存在 .从而 f( z)在 z=0 处不连续,除 z=0 外连续 .x 3 y (2) f ( z)x 4 y 2 ,z 0, 0,z 0.3x 3yx解:因为 0x y,x 4y22 x2y2所以 limx 3 y0 f (0)y 2( x, y) (0,0)x 4 所以 f( z)在整个 z 平面连续 .5. 下列函数在何处求导?并求其导数. (1) f ( z) (z1)n 1(n 为正整数 );解:因为 n 为正整数,所以 f(z) 在整个 z 平面上可导 .f (z) n(z1)n 1 .(2) f ( z)z 2.( z 1)(z 2 1)解:因为 f(z) 为有理函数,所以 f(z) 在 (z 1)( z 2 1) 0 处不可导 .从而 f( z)除 z1, z i 外可导 .f( z 2) ( z 1)( z 2 1)(z 1)[( z 1)(z 21)](z)(z1)2 ( z 2 1)22z 3 5z 2 4 z 3(z2 221) ( z1)(3)3z 8f ( z).5z 7解: f(z)除 z= 7f ( z)3(5z7) (3z 8)5 61 外处处可导,且 (5z 22 . 57)(5 z 7)(4) f ( z) x y x y2 .2 2 i 2 yx y xx y i( xy) x i yi( xiy) ( x i y)(1i) z(1 i)1 i解:因为 f ( z)x2y2x 2y2x 2y 2 z 2z .所以 f( z)除 z=0 外处处可导,且f ( z)(1 i) .z 26. 试判断下列函数的可导性与解析性.(1)f ( z) xy 2i x 2 y ;解: u( x, y)2,v(x, y) 2xy x y 在全平面上可微 . yy 2 ,u 2 xy, v 2xy, v x 2 xyxy所以要使得u v , u v ,xyyx只有当 z=0 时,从而 f( z)在 z=0 处可导,在全平面上不解析 .(2)f ( z) x 2 i y 2 .解: u( x, y) x 22, v(x, y) y 在全平面上可微 .u 2 x, u0,v 0,vx yx 2yy只有当 z=0 时,即 (0,0)处有u v u v x,y.yy所以 f( z)在 z=0 处可导,在全平面上不解析 .(3)f ( z) 2x 3 3iy 3 ;解: u( x, y) 2 x 3 , v( x, y) 3 y 3 在全平面上可微 . u 6 x 2 , u 0,v 9 y 2 ,v 0x yxy所以只有当 2 x 3y 时,才满足C-R 方程 .从而 f( z)在 2x3y 0 处可导,在全平面不解析 .(4) f ( z) z z 2 .解:设 z x i y ,则 f (z)( x i y) ( x iy)2x 3 xy 2 i( y 3 x 2 y)u ( x, y) x 3 xy 2 , v( x, y)y 3 x 2 yu22u 2 xy,vv 22x 3xy ,2xy,y3 y xy x所以只有当 z=0 时才满足 C-R 方程 . 从而 f( z)在 z=0 处可导,处处不解析.7. 证明区域 D 内满足下列条件之一的解析函数必为常数.(1)f ( z)0 ;证明:因为 f ( z) 0 ,所以u u0 v v x y ,0 .xy所以 u,v 为常数,于是f(z)为常数 .(2) f ( z) 解析 .证明:设 f ( z) u iv 在 D 内解析 ,则u( v) uv x y xyu ( v) v y xyu v u vx,yxy而 f(z)为解析函数,所以 u u , u vx yy x所以vv , v v , 即 uu v v 0xxyyxyxy从而 v 为常数, u 为常数,即 f(z)为常数 .(3) Ref(z)=常数 .证明:因为 Ref(z)为常数,即 u=C 1,u u 0xy因为 f( z)解析, C-R 条件成立。
(含答案)复变函数与积分变换习题解析2
(含答案)复变函数与积分变换习题解析2习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明.(1)如果()f z 在0z 连续,那么0()f z '存在.(2)如果0()f z '存在,那么)(z f 在0z 解析.(3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导.(4)如果0z 是()f z和()g z 的⼀个奇点,那么0z 也是()()f z g z +和()()f z g z ?的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应⽤导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导.习题2.21. 设试证)(z f 在原点满⾜柯西-黎曼⽅程,但却不可导.(提⽰:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=;(2)i y x y x z f 22332)(+-=;(3)=)(z f232z z -+;(4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=;(4 4. (1)iz z z f 2)(3+=;(25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--;(2 (0)z ≠;(3)1(33)x iy ω-=-;(4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+.(1)2(1)u x y =-;(2)3223u x x xy =-+;(3)323u x xy =-;(4)23v xy x =+;(5)x y x v 222+-=;(62. 求k 值使22ky x u +=为调和函数,并求满⾜1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是⼀个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满⾜下列条件之⼀,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ;(7)i 3;(8)i i )1(+;(9)1(34)i i ++;(10))1sin(i +;(11)cos(5)i π+;(12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ;(3(4 (55.证明:(1)122=-z sh z ch ;(2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复习题⼆⼀、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B⼀、单项选择题1. ). D.z sin2. 下列说法正确的是().A.函数的连续点⼀定不是奇点B.可微的点⼀定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内⽆奇点D.不存在处处不可导的函数3. 下列说法错误的是(). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是().A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满⾜C-R ⽅程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是().A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是().7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是(). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数(). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是().A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是().A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是(). A. )(z f 在复平⾯上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是().A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==⼆、填空题在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivu)(.(1)xu=;(2)xy u=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22y=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数xu和),(yxv都具有⼆阶连续偏导数,且满⾜拉普拉斯⽅程,现令x yvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第⼆章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)zf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导,(44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(;(2)ci z z z f +-=32)(;(3)=)(z f 3z ci +;(4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2;(62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈;((5(6(7)3ln 2i k e e π-)(Zk ∈;(9 ((2.(1 (23.(1)正确;(2)正确;(3)正确.复习题⼆⼆、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0(Λ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平⾯内处处不可导,处处不解析;(2)在0=z 处可导,但在复平⾯内处处不解析,0)0(='f ;(3)在复平⾯内处处不可导,处处不解析;6.(1)4e -;(2))4sin 4(cos 3i e +;(3(4(6 (7。
积分变换课后答案
1-1之马矢奏春创作1.2. 试证:若()f t 满足Fourier 积分定理中的条件,则有其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞-∞-∞==⎰⎰ 分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试用三角形式证明.证明:利用Fourier 积分的复数形式,有 由于()()()(),,a a b b ωωωω=-=--所以 2.求下列函数的Fourier 积分:1)()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩; 2) ()0,0;e sin 2,0tt f t t t -⎧<⎪=⎨≥⎪⎩ 3)()0,11,101,010,1t t f t t t ⎧-∞<<-⎪--<<⎪=⎨<<⎪⎪<<+∞⎩分析:由Fourier 积分的复数形式和三角形式都可以解此题,请读者试用三角形式解.解:1)函数()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩为连续的偶函数,其Fourier 变换为12233sin 2cos 2sin sin 4(sin cos )2t t t t t t ωωωωωωωωωωωω⎡⎤⎛⎫-=--+=⎢⎥ ⎪⎝⎭⎣⎦(偶函数)f(t)的Fourier 积分为2)所给函数为连续函数,其Fourier 变换为()224252j j 1121(2)j 1(2)j 256ωωωωωω⎡⎤--⎛⎫⎣⎦=+= ⎪-+-+--+⎝⎭(实部为偶函数,虚数为奇函数)f (t)的Fourier 变换为 这里用到奇偶函数的积分性质.3)所给函数有间断点-1,0,1且f(-t)= -f(t)是奇函数,其Fourier 变换为12j(cos 1)2j 1sin d 0t t ωωω-=-⋅=⎰(奇函数) f(t)的Fourier 积分为其中t ≠-1,0,1(在间断点0t 处,右边f(t)应以()()00002f t f t ++-取代).3.求下列函数的Fourier 变换,并推证下列积分结果: 1)()e(0),tf t ββ-=>证明:22cos πd e ;02tt βωωβωβ-+∞=+⎰ 2)()e cos tf t t -=,证明:242πcos d e cos ;042tt t ωωωω-+∞+=+⎰3)sin ,π()0,πt t f t t ⎧≤⎪=⎨>⎪⎩,证明:2πsin ,πsin πsin 2d 010,πt t t t ωωωω⎧≤+∞⎪=⎨-⎪>⎩⎰ 证明:1)函数()e t f t β-=为连续的偶函数,其Fourier 变换为 再由Fourier 变换得 即2)函数()e cos t f t t -=为连续的偶函数,其Fourier 变换为再由Fourier 变换公式得 即 242πcos d e cos 042tt t ωωωω-+∞+=+⎰3)给出的函数为奇函数,其Fourier 变换为 故4.求函数()()e 0,0t f t t ββ-=>≥的Fourier 正弦积分表达式和Fourier 余弦积分表达式.解:根据Fourier 正弦积分公式,并用分部积分法,有 根据Fourier 余弦积分公式,用分部积分法,有1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则 (令u ω-=)()j 1e d 2πut F u u -∞=+∞⎰ (换积分变量u 为ω)()()j 1e d 2πt F f t ωωω+∞=-=--∞⎰所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则(令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证 解:由Fourier 正弦变换公式,有 由Fourier 正弦逆变换公式,有 由此,那时0t α=>,可得5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此 其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a 1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为所以反之,若已知()()F F ωω-=,则有此即标明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,肯定有亦即标明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为 所以反之,若已知()()F F ωω-=-,则有此即标明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,肯定有()()()sin d j cos d i i F f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰,亦即标明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有但由于那时0a > 那时0a <那时0a =,sin d 0,0a ωωω+∞=⎰所以得()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222aa t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由即得12.求函数()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于故()()()()()πjδ5δ55δ52f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F .14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F ,其中()t ϕ为一实数,则其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j e e d t t F t ϕωω+∞--∞=⋅⎰()()()()()()j j j j 1e eed cose d cos 22t t tt F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t Tf t T ⎧≤≤⎪=⎨⎪⎩其他1-31.若1122()[()],()[()],F f t F f t ωω== F F ,αβ是常数,证明(线性性质):分析:根据Fourier 变换的界说很容易证明. 证明:根据Fourier 变换与逆变换的公式分别有6.若()[()]F f t ω= F ,证明(翻转性质):()[()]F f t ω-=- F 分析:根据Fourier 变换的界说,再进行变量代换即可证明. 证明:()[()]t f t f t t ω+∞--∞-=-⎰F j e d(令t u -=)()()u f u u ω+∞---∞=⎰j e d (换u 为t )()()t f t t ω+∞---∞=⎰j e d 9.设函数()1,10,1t f t t ⎧<⎪=⎨>⎪⎩,利用对称性质,证明:π ,1sin .0,1t t ωω⎧<⎪⎡⎤=⎨⎢⎥>⎣⎦⎪⎩F 证明:()[()]tf t f t t ω+∞--∞=⎰F j ed 11t t ω--=⎰j e d由对称性质:()[()]f t F ω= F ,则()[()]2,F t f ω=-F π有12.利用能量积分()()2212f t t F ωω+∞+∞-∞-∞⎡⎤=⎣⎦⎰⎰d d π,求下列积分的值:1)21cos xx x +∞-∞-⎰d ; 2)42sin x x x +∞-∞⎰d ;3)()2211x x +∞-∞+⎰d ;4)()2221x x x +∞-∞+⎰d .解:1)2222sin 1cos 2xxx x xx +∞+∞-∞-∞-=⎰⎰d d(令2xt =)2sin t t t +∞-∞⎛⎫= ⎪⎝⎭⎰d 2)()22422sin 1cos sin x x xx x x x+∞+∞-∞-∞-=⎰⎰d d 3)()22221111x t t x +∞+∞-∞-∞⎛⎫= ⎪+⎝⎭+⎰⎰d d 221121t ω+∞-∞⎡⎤=⎢⎥+⎣⎦⎰F d π,其中 从而4)()()2222221111x x x x x x +∞+∞-∞-∞+-=++⎰⎰d d ()2221111x x x x +∞+∞-∞-∞=-++⎰⎰d d 1-41.证明下列各式:2)()1f t ()()()()()23123f t f t f t f t f t ⎡⎤⎡⎤=⎣⎦⎣⎦;6)()()()()()()121212d dd;d d d f t f t f tf t f t f t t t t ⎡⎤==⎣⎦ 10)()()()d t f t u t f ττ-∞=⎰分析:根据卷积的界说证明.证明: 2)()()()123f t f t f t ⎡⎤⎣⎦()()()123d f f t f t ττττ+∞-∞⎡⎤=--⎣⎦⎰6)()()()()1212dd d d d f t f t f f t t t τττ+∞-∞⎡⎤⎡⎤=⋅-⎢⎥⎣⎦⎣⎦⎰()()()()1212ddd d d f f t f t f t t t τττ+∞-∞⎡⎤=⋅-=⎣⎦⎰, ()()()()1212d d d d d f t f f t f t t t τττ+∞-∞⎡⎤=-⋅=⎢⎥⎣⎦⎰.10)()()()()d f t u t f u t τττ+∞-∞=-⎰()1,0,t u t t τττ⎛⎫⎧<⎪-= ⎪⎨ ⎪>⎪⎩⎝⎭()d t f ττ-∞=⎰. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t .注意:不能随意调换()1f t 和()2f t 的位置. 解:由()()1e ,0e 0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()2sin ,0sin 0,0t t f t tu t t >⎧==⎨<⎩,所以 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰要确定()()210f f t ττ-≠的区间,采纳解不等式组的方法.因为()()210,0;0,0f t f t ττττ>≠->-≠.即必需满足 00t ττ>⎧⎨->⎩, 即0tττ>⎧⎨<⎩, 因此(分部积分法)()2e sin cos e10ttατααττα-⎡⎤-=⎢⎥+⎣⎦ 4 .若()()()()1122,F f t F f t ωω⎡⎤⎡⎤==⎣⎦⎣⎦F F ,证明: 证明:()()()()121211d 2π2πF F F u F u u ωωω+∞-∞=⋅-⎰ 5.求下列函数的Fourier 变换: 1)()()0sin f t t u t ω=⋅; 2)()()0e sin t f t t u t βω-=⋅; 5)()()0j 0e t f t u t t ω=-;解: 1)已知()()1πδj u t ωω⎡⎤=+⎣⎦F ,又()()()()()00j j 01sin e e 2jtt f t t u t u t u t ωωω-=⋅=-.由位移性质有()()000220πδδ2j ωωωωωωω⎡⎤=--+-⎣⎦-. 2)由Fourier 变换的界说,有5)利用位移性质及()u t 的Fourier 变换,有再由象函数的位移性质,有7.已知某信号的相关函数()21e 4a R ττ-=,求它的能量谱密度()S ω,其中0a >.解 由界说知9.求函数()()()e ,0t f t u t αα-=>的能量谱密度. 解: 因为()()e ,0e0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,那时0τ>,()()0f t f t τ+≠的区间为()0,+∞,所以 那时0τ<,()()0f t f t τ+≠的区间为(),τ-+∞,所以 因此,()1e 2R αττα-=,现在可以求得()f t 的能量谱密度,即1-51.求微分方程()()(),()x t x t t t δ'+=-∞<<+∞的解. 分析:求解微分、积分方程的步伐:1)对微分、积分方程取Fourier 变换得象函数的代数方程;2)解代数方程得象函数;3)取Fourier 逆变换得象原函数(方程的解). 解:设()(),x t X ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,得 即 其逆变换为()0,0.e ,0tt x t t -⎧<⎪=⎨≥⎪⎩4.求解下列积分方程: 1)()()()222210;y a b t b t aτττ+∞-∞=<<+-+⎰d 2)()222t t y τττ+∞----∞=⎰e d πe .解:1)利用卷积定理可以求解此类积分方程.显然,方程的左端是未知函数()y t 与221t a +的卷积,即()221y t t a +.设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,有即 易知:220cos 2tt βωωβωβ+∞-=+⎰πd e ,有即所以()()22b b a a a b Y b aωωωω----==πee πe由上可知222201cos π2d e a t t t a t a a ωω+∞-⎡⎤=⎢⎦=⎥++⎣⎰F , ()()22--a b a b t b a =⎡⎤+⎣⎦π.2)设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,同理可得利用钟形脉冲函数的Fourier 变换224e e t A ωββ--⎡⎤=⎣⎦F 及由Fourier 变换的界说可求得:222e tβββω-⎡⎤=⎣⎦+F ,从而即 从而()()222-1-122y t ωωω--⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦πe πj e F F , 其中,记()22ef t ω-⎡⎤=⎣⎦F ,则()22t f t -=,上式中第二项可利用微分性质()()()()2222f t f t ωωω-''⎡⎤⎡⎤==⎣⎦⎣⎦F F j j e ,则因此()22222t t y t --=-π22221t t -⎫=-⎪⎭e .5.求下列微分方程的解()x t :其中()(),f t h t 为已知函数,,,a b c 均为已知常数.解:设()()()()()(),,.f t F h t H x t X ωωω⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦F F F 对方程两边取Fourier 变换,可得 即 从而2-11.求下列函数的Laplace 变换,并给出其收敛域,再用查表的方法来验证结果.1)()sin 2t f t =.分析:用Laplace 变换的界说解题.解: j j 22001sin sin d d 222j e e e st s t s t t t t t ⎛⎫⎛⎫+∞+∞--+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤==+ ⎪⎢⎥⎣⎦⎝⎭-⎰⎰L()21112Re()0j j 2j 4122s s s s ⎡⎤⎢⎥=-=⎢⎥+⎢⎥-+⎣⎦>. 2)()2e t f t -=.解:()()d d Re()e e eett sts tt t s s >-2222012+∞+∞----+⎡⎤===⎣⎦+⎰⎰L . 3)()2f t t =. 解:2220000112e d d(e )2e d e st stst st t t t t s s t tt -+∞+∞+∞--+∞-⎡⎤⎡⎤==-=--⎣⎦⎢⎥⎣⎦⎰⎰⎰L ∣()022300222d(e )e e d Re()0st st st t t t s s ss +∞+∞--+∞-⎡⎤=-=--=⎢⎥⎣⎦⎰⎰∣ >. 4)()sin cos f t t t =.解:[]0sin cos sin cos e d st t t t t t +∞-=⎰L22121244s s =⋅=++. 7)()2cos f t t =.解 :22001cos 2cos cos e d e d 2ststt t t t t +∞+∞--+⎡⎤==⎣⎦⎰⎰L ()2211112242j 2j 4s s s s s s ⎡⎤+=++=⎢⎥-++⎣⎦. 2.求下列函数的Laplace 变换:1)()3,021,2 4.0,4t f t t t ⎧≤<⎪=-≤<⎨⎪≥⎩解: ()()2402d 3d d e e e st st stf t f t t t t +∞---⎡⎤==-⎣⎦⎰⎰⎰L 2)()π3,2.πcos ,2t f t t t ⎧<⎪⎪=⎨⎪>⎪⎩解:()()π2π02e d 3e d cos e d stst stf t f t t t t t +∞+∞---⎡⎤==+⎣⎦⎰⎰⎰L ()()()()ππj j πππ222222313111e e Re()02j j 1e e e s s s ss s s s s s s -+----⎛⎫⎛⎫⎛⎫ ⎪=-+-=--> ⎪ ⎪ ⎪+-+⎝⎭⎪⎝⎭⎝⎭3) ()()2e 5δt f t t =+解:()()()()220005δe d d 5δe d e et s tst st f t t t t t t +∞+∞+∞---⎡⎤⎡⎤=+=+⎣⎦⎣⎦⎰⎰⎰L()0115e 5Re()222st t s s s -==+=+>--∣. 4)()()()cos δsin f t t t t u t =⋅-⋅ 解:()()()∣∣∣j j j 00011cos e e d 12j 2j j j e e ees t j s tttst st t t t s s--++∞+∞+∞---=⎡⎤⎢⎥=--=-+-+⎢⎥⎣⎦⎰()222111111Re()2j j j 11s s s s s s ⎛⎫=---=-= ⎪+-++⎝⎭>0. 2-21.求下列函数的Laplace 变换式: 1)()232f t t t =++.解:由[]2132!1232132mm m t s ss s s t t +⎡⎤⎡⎤==++=++⎣⎦⎣⎦及有L L L .2)()1e t f t t =-. 解 :[]()()1111,e e t tt t t s ss s --⎡⎤⎡⎤===-⎣⎦⎣⎦222+1-1L L,L 1-.3)()()21e t f t t =-. 解:5)()cos f t t at =. 解: 由微分性质有: 6) ()5sin23cos2f t t t =- 解:已知[][]2222sin ,cos st t s s ωωωωω==++L L ,则 8)()4e cos4t f t t -=.解: 由[]2cos 416t s +s=L 及位移性质有 42cos4416e ts t s -⎡⎤=⎣⎦++4(+)L . 3.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的微分性质):特别地,()()tf t F s '⎡⎤=-⎣⎦L ,或()()11f t F s t-'⎡⎤=-⎣⎦L ,并利用此结论计算下列各式:1)()3e sin2t f t t t -=,求()F s . 解:()()()322sin 224ett s s ωωω-===++22+3+3L,2)()30e sin 2d tt f t t t t -=⎰,求()F s .解:()0332112sin 2d sin 234e e t t t t t t ss s --⎡⎤⎡⎤==⋅⎢⎥⎣⎦⎣⎦++⎰L L ,3)()1ln1s F s s +=-,求()f t . 解:()1ln,1s F s s +=-()(),F s f t ⎡⎤=⎣⎦令-1L故 ()()-12sinh t F s f t t⎡⎤==⎣⎦L . 4.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的积分性质):()()d s f t F s s t ∞⎡⎤=⎢⎥⎣⎦⎰L ,或()()1d s f t t F s s ∞-⎡⎤=⎢⎥⎣⎦⎰L并利用此结论计算下列各式:1)()sin ktf t t=,求()F s . 解: ()2222sin kkkt s s k ωωω===++L , 2)()3e sin 2t t f t t-=,求()F s .解:()()322e sin 234t t s -=++L ,2-31.设()()12,f t f t 均满足Laplace 变换存在定理的条件(若它们的增长指数均为c ),且()()()()1212,f t f t F s F s ⎡⎤⎡⎤==⎣⎦⎣⎦L L ,则乘积()()12f t f t ⋅的Laplace 变换一定存在,且其中(),Re .c s c ββ>>+证明: 已知()()12,f t f t 均满足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ⋅也满足Laplace 变换存在定理的条件且标明()()12f t f t ⋅的增长指数为2c .因此()()12f t f t ⋅的Laplace 变换 在半平面()Re 2s c >上一定存在,且右端积分在()()Re s c c ββ≥+>上绝对且一致收敛,而且在()Re 2s c >的半平面内,()F s 为解析函数.根据()()11F f t s ⎡⎤=⎣⎦L ,则()1f t 的Laplace 反演积分公式为 从而(交换积分次第)()()()1j 0j 2e 12πj d d s q t F q f t t q ββ++∞-∞∞--⎡⎤=⎢⎥⎣⎦⎰⎰ 2.求下列函数的Laplace 逆变换(象原函数);并用另一种方法加以验证.1)()221F s s a=+. 2)()()()sF s s a s b =--. 3)()()()2s cF s s a s b +=++. 10)()()()2214sF s ss =++.解: 1)12211sin at s a a-⎡⎤=⎢⎥+⎣⎦L . 2)()()1sa b s a s b a b s a s b ⎛⎫=- ⎪-----⎝⎭, 3)()()()()()222111s cc a b c F s s a s b b a s a s b b a s b +--⎡⎤==-+⋅⎢⎥++-⎣⎦++-+, 故10)由()()()2222131414ss s s s s F s s ⎛⎫=⎪++++⎝⎭=-,有()()()11cos cos 23f t F s t t -⎡⎤==-⎣⎦L.3.求下列函数的Laplace 逆变换: 1)()()2214F s s=+.6)()221ln s F s s -=.13)()221e sF s s-+=.解 : 1)用留数计算法,由于122j,2j s s ==-均为()F s 的二级极点, 所以6)令()()()22212ln ,ln 1s F s F s s s s -'==-,()()()()112e e 211t t F s tf t s s s-'=+-=+-=-+-L L , ()()21212ln 1cosh s f t t s t -⎛⎫-==- ⎪⎝⎭L. 13)2211122221e 1e s s ss s s -----⎡⎤⎡⎤⎡⎤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LLL ()()()21,222,02t t t t u t t t ⎧->⎪=+--=⎨≤<⎪⎩.2-41.求下列卷积:3)m t n t (,m n 为正整数). 解:mt ()()()000d 1C d nttnknmmk n k k n k t t t ττττττ-==⋅-=-∑⎰⎰()1!!1!m n m n t m n ++=++.注:本小题可先用卷积定理求出m t n t 的Laplace 变换,再由Laplace 逆变换求出卷积6)sin kt ()sin 0kt k ≠.解 :sin kt ()()001sin sin sin d cos cos 2d 2ttkt k k t kt k kt τττττ⎡⎤=-=---⎣⎦⎰⎰ ()0sin 211sin cos cos 2422tt k ktt kt t kt kkτ-=-+=-+. 7) t sinh t解 :t sinh sinh t t =t ()0sinh d tt τττ=⋅-⎰()()()000111d(e )d(e )2e e sinh 2220t t t t t t t t t ττττττ---⎡⎤=-+-=-++-=-⎢⎥⎣⎦⎰⎰ 9)()u t a -()()0f t a ≥ .解:()u t a -()()()()00,d d ,tt a t a f t u a f t f t t a τττττ⎧<⎪=-⋅-=⎨-≥⎪⎩⎰⎰.10)()δt a -()()0f t a ≥. 解: 当t a <,()δt a -()0f t =. 当t a ≥,()()()()δd aa f t f t f t a τττττ+∞-∞==-⋅-=-=-⎰.2.设()()f t F s ⎡⎤=⎣⎦L ,利用卷积定理,证明:()()0d t F s f t t s⎡⎤=⎢⎥⎣⎦⎰L证明:()()()()()1f t u t f t u t F s s⎡⎤⎡⎤⎡⎤=⋅=⋅⎣⎦⎣⎦⎣⎦L L L ,()()()()()()000d d d t t tf t u t u f t f t f t t τττττ⎡⎤⎡⎤⎡⎤⎡⎤=⋅-=-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎰⎰⎰L L L L 3.利用卷积定理,证明:()2221sin 2s a at a s t -⎡⎤⎢⎥=⎢⎥+⎣⎦L. 证明 :()()22222221ss F s s a s asa ==⋅+++,由 有2-51.求下列常系数微分方程的解: 1)()2e ,00t y y y '-==;8)()()()331,0000y y y y y y y '''''''''+++====; 12)()()()()()420,0000,01y y y y y y y ''''''''++=====;16)()π10sin 2,00,12y y t y y ⎛⎫''+=== ⎪⎝⎭.分析:解题步伐,首先取Laplace 变换将微分方程化为象函数的代数方程, 解代数方程求出象函数, 再取Laplace 逆变换得最后的解.解:1)方程两边取Laplace 变换,并结合初始条件可得 即()()()1112121Y s s s s s ==-----. 从而方程的解为8)对方程两边取Laplace 变换,并结合初始条件,有 即由留数计算法,由于10s =是()Y s 的一个一级极点,21s =-是()Y s 的一个三级极点,从而方程的解为2111e 2t t t -⎛⎫=-++ ⎪⎝⎭. 12)对方程两边取Laplace 变换,并结合初始条件,有即从而方程的解为()()11cos sin sin 2y t Y s t t t t -⎡⎤==*=⎣⎦L . 16)对方程两边取Laplace 变换,并结合初始条件,有即()()()()222020114y Y s s s s '=++++()222020113141y s s s '⎛⎫=-+ ⎪+++⎝⎭,从而 ()()()12010sin sin 20sin 33y t Y s t t y t -'⎡⎤==-+⎣⎦L . 为了确定()0y ',将条件π12y ⎛⎫= ⎪⎝⎭代入上式可得()1703y '=-,所以方程的解为2.求下列变系数微分方程的解:1)()()40,03,00ty y ty y y ''''++===;3)()()()2120,02ty t y t y y '''+-+-==;5)()()()()10,000,0ty n y y y y n ''''+-+===≥.解: 1)方程两边取Laplace 变换,有即[][][]40ty y ty '''++=L L L ,亦即从而()()2d 40d Y s sY s s++= 两边积分可得()211ln ln 42Y s c ++=或()Y s =取其逆变换,有欲求c ,可由条件()03y =获得,即()()0003y cJ c ===,所以方程的解为其中()()()2001!12kkk x J x k k ∞=-⎛⎫= ⎪Γ+⎝⎭∑称为零阶第一类Bessel 函数. 3)方程两边取Laplace 变换,有整理化简后可得即这是一阶线性非齐次微分方程,这里所以从而方程的解为()()132e e 3!t t c y t Y s t ---⎡⎤==+⎣⎦L ()312e t c t -=+(1c 为任意常数) 5)方程两边取Laplace 变换,有即整理化简后可得两边积分可得即从而方程的解为()(2n n y t ct J =(c 为任意常数)其中n J 称为n 阶第一类Bessel 函数.3.求下列积分方程的解:1)()()()0sin d t y t at t y τττ=+-⎰;3)()()0d 16sin4t y y t t τττ-=⎰;5)()()20d e t t y y t t τττ--=⎰.解:1)显然,原方程可写为两边取Laplace 变换,并利用卷积定理,有所以从而方程的解为3)原方程可写为两边取Laplace 变换,并利用卷积定理,有即取其Laplace 逆变换,有()()()1084y t Y s J t -⎡⎤==±⎣⎦L ,即标明()()084y t J t =及()()084y t J t =-均为所求.这里,0J 为零阶第一类Bessel 函数.5)原方程可写为两边取Laplace 变换,并利用卷积定理,有所以从而方程的解为()()12t t y t Y s ---⎛⎫⎡⎤==±=± ⎪⎣⎦ ⎪⎝⎭L ,即()t y t -=及()t y t -=-均为所求. 4.求下列微分积分方程的解:1)()()()()0cos d ,01t y t y t y τττ'-==⎰;3)()()()()()022d ,02t y t y t y u t b y ττ'++=-=-⎰; 5)()()()()30144d ,003t y t y t y t y ττ'-+==⎰;解:1)原方程可写为两边取Laplace 变换,得即从而方程的解为3)利用微分性质与积分性质,对方程两边取Laplace 变换,有即利用延迟性质,方程的解为5)利用微分性质与积分性质,对方程两边取Laplace 变换,有即方程的解为5.求下列微分、积分方程组的解:1)e ,322e t t x x y y x y '⎧+-=⎪⎨'+-=⎪⎩()()001x y ==; 4)()()()()()()0,01,0,000;0,000x x y z x x y y z y z x x y z z y z ''⎧-++==⎪'''+-+===⎨⎪''''++-===⎩8)()02d 0,4et t x x y x x y ττ-⎧'''++=⎪⎨⎪'''-+=⎩⎰()()00,0 1.x x '==-解:1)对方程组的两个方程两边分别取Laplace 变换,有 即解之可得取其逆变换,可得方程组的解为4)对方程组的三个方程两边分别取Laplace 变换,有解之可得(注意:后两个方程标明()()Y s Z s =且()()2X s s Y s =-) 取其逆变换,可得解为8)对方程组的两个方程两边分别取Laplace 变换,有即消去()Y s ,可得即将()X s 的结果代入得化简得取其逆变换,可得方程组的解为7.设在原点处质量为m 的一质点在0t =时在x 方向上受到冲击力()k t δ的作用,其中k 为常数,假定质点的初速度为零,求其运动规律.解:由题意知,在t 时刻质点m 处于x 轴正向的点()x t 处,其运动速度为()x t ',而加速度为()x t '',且有初始条件()()000x x '==.根据Newton 定律,该质点的运动规律归结为下述微分方程的初值问题: 方程两边取Laplace 变换,且记()()x t X s ⎡⎤=⎣⎦L ,则即()2kX s ms =,从而方程的解(即质点的运动规律)为11.某系统的激励()sin x t t =,当系统响应()e cos sin t y t t t -=-+时,求1)系统的传递函数()G s ;2)系统的脉冲响应函数()g t ;3)系统的频率响应函数()j G ω. 解:1)由传递函数的界说知2)由脉冲响应函数的界说知3)当系统的传递函数()G s 中s 取j ω时,则获得系统的频率响应函数,即。