八年级数学下册知识点重点难点整理新人教版

合集下载

新人教版八年级数学下册知识点总结归纳(全面-实用)

新人教版八年级数学下册知识点总结归纳(全面-实用)

八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a ≥0,b ≥0); b b a a =(b ≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 1、概念与性质例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x例3、 在根式1) 222;2);3);4)275xa b x xy abc+-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。

求代数式22,211881-+-+++-+-=x yy x x yy x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a ≥bD. a ≤b 2、二次根式的化简与计算a (a >0) a -(a <0) 0 (a =0);例1. 将根号外的a 移到根号内,得 ( )A.; B. -; C. -; D.例2. 把(a -b )-1a -b化成最简二次根式 例3、计算: 例4、先化简,再求值:11()b a b b a a b ++++,其中a=512+,b=512-.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >,则a b >;②如果a b <,则a b <。

新人教版八年级数学知识点总结归纳上下册

新人教版八年级数学知识点总结归纳上下册

新人教版八年级上册数学知识点总结归纳1 第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。

5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

人教版八年级数学下册-第18章-平行四边形-章节知识点和常考易错点归纳

人教版八年级数学下册-第18章-平行四边形-章节知识点和常考易错点归纳

平行四边形章节知识梳理一.知识点:1、定义两组对边分别平行的四边形是平行四边形.定义中的“两组对边平行”是它的特征,抓住了这一特征,记忆理解也就不困难了.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.同学们要在理解的基础上熟记定义.2、性质平行四边形的有关性质和判定都是从边、角、对角对称性四个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)对称性:平行四边形是中心对称图形,对角线的交点是对称中心;(5)面积:①=底×高=ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形4、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:1.平行四边形;2.一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:1.平行四边形;2.一组邻边相等,两者缺一不可.(3)正方形:一组邻边相等的矩形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:1.一组对边平行;2.一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.5.几种特殊四边形的有关性质(1)矩形:1.边:对边平行且相等;2.角:对角相等、邻角互补;3.对角线:对角线互相平分且相等;4.对称性:既是轴对称图形又是中心对称图形.(2)菱形:1.边:四条边都相等;2.角:对角相等、邻角互补;3.对角线:对角线互相垂直平分且每条对角线平分每组对角;4.对称性:既是轴对称图形又是中心对称图形.(3)正方形:1.边:四条边都相等;2.角:四角相等;3.对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;4.对称性:既是轴对称图形又是中心对称图形.6、几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一个角是直角的菱形;②有一组邻边相等的矩形;③对角线相等的菱形;④对角线互相垂直的矩形.7、几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD 为平行四边形,再说明对角线互相垂直. ③说明四边形ABCD 的四条边相等.(3)识别正方形的常用方法①先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.②先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角.二、几种特殊四边形的面积问题(1)设矩形ABCD 的两邻边长分别为a,b ,则 S 矩形=ab .(2)设菱形ABCD 的一边长为a ,高为h ,则 S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则 S 菱形=2ab。

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

八年级数学下册第二十章数据的分析知识点归纳新版新人教版

第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。

2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。

3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。

4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。

5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。

一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。

初二数学下册重点难点知识归纳

初二数学下册重点难点知识归纳

初二数学下册重点难点知识归纳初二数学下册重点难点知识归纳很多初二的学生在学习的数学的时候都会选择做习题练习,其实我们也不能忽视最基本的概念、公理、定理和公式,这些基础知识点都是需要理解明白的。

下面是店铺帮大家整理的初二数学下册重点难点知识归纳,供大家参考借鉴,希望可以帮助到有需要的朋友。

初二数学下册重点难点知识归纳篇11、分式:(1)分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。

(2)分式是否有意义的条件:分式的分母是否等于0,有意义则分母不为0,无意义则分母为0。

(3)分式值为零的条件:分式A/B=0的条件是A=0,且B≠0。

注意:求出使分子为0的字母的值,一定要注意检验这个字母的值是否使分母的值为0,一般当分母的值不为0时,就是所要求的字母的值。

(4)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

(5)分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

注意:通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:● “各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;● 如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;● 如果分母是多项式,一般应先分解因式。

(6)分式的约分:根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

注意:约分的关键是找出分式中分子和分母的公因式◆(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;◆(2)找公因式的方法:① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。

2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。

3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。

4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。

5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。

6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。

知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

2) 注意每一步运算的算理。

3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。

2.二次根式的加减运算:先化简,再运算。

3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。

2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例题:1.下列各式中一定是二次根式的是()。

A。

$-3$;B。

$x$;C。

$x^2+1$;D。

$x-1$2.$x$取何值时,下列各式在实数范围内有意义。

1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。

18.1.2+第2课时+中位线定理2023-2024学年人教版八年级数学下册

18.1.2+第2课时+中位线定理2023-2024学年人教版八年级数学下册

是 对角线相互平分
,是通过作辅助线构
造出来的.
一组(2)对说边平明行四且相边等形 DBCF 是 平 行 四 边 形 的 理 由

已知条件
,是根据之
前构造出来的平行四边形ADCF的性质并结合
得到
(3)由平行四边形DBCF的性质,又能得到DF 平行且等于 BC,
而DE=12DF.
归纳总结 中位线定理:三角形的中位线平行于三角形
第2课时 中位线定理
1.知道中位线的概念. 2.理解中位线定理,会用中位线定理寻找线段间的位置关系 与数量关系. ◎重点:中位线定理. ◎难点:中位线在复杂图形中的应用.
预习导学
我们在之前学习过三角形的特殊线段,其中有高线、中线、 角平分线.这节课,我们将要学习三角形中另外一条重要的特殊 线段——中位线,以及中位线的性质定理.三角形中的特殊线段 都是中考重点考查的内容.
3.如图,D,E分别是△ABC的边AB,AC的中点,连接BE,过点C 作CF∥BE,交DE的延长线于点F,若EF=3,求DE的长.
解:∵D,E分别是△ABC的边AB,AC的中点, ∴DE为△ABC的中位线, ∴DE∥BC,DE=12BC,∴EF∥BC. ∵CF∥BE, ∴四边形BCFE为平行四边形, ∴BC=EF=3, ∴DE=12BC=32.
解:(1)△ABC是等腰三角形. 理由:∵D,E分别是AB,AC的中点, ∴DE=12BC,DE∥BC,∴∠DEB=∠EBC. ∵BE是∠ABC的平分线,∴∠DBE=∠EBC, ∴∠DEB=∠DBE, ∴DE=DB=12AB,∴AB=BC,∴△ABC是等腰三角形.
(2)由(1)得DE=12BC=5,DF=12AB=4,∴EF=DE-DF=1. (3)当点F在线段DE上时,由(2)得,EF=12(BC-AB); 当点F在线段DE的延长线上时,EF=12(AB-BC).

初二数学下册知识点人教版

初二数学下册知识点人教版

初二数学下册知识点人教版一、有理数的运算初二数学下册的第一个章节是有理数的运算。

有理数分为正有理数、负有理数和零,包括整数、分数、小数等。

有理数进行加、减、乘、除运算时,有一些基本的规律需要掌握。

例如:1.同号两数相加,异号两数相减;2.负数与正数相乘结果为负数,同号两数相乘结果为正数;3.除法的规律为“乘倒数”。

需要注意的是,运算时要进行数学推导,属于数学的精髓之一。

二、图形的认识初二数学下册的第二个章节是图形的认识。

这一章节主要介绍了平面几何和立体几何两部分内容。

1.平面几何中,需要掌握解题方法和步骤,如平移、旋转、对称等操作。

平面几何中的图形有:点、线、面的基本概念、直线、角、三角形、四边形、圆等。

需要掌握图形性质、判定定理和证明方法。

2.立体几何中,需要认识各种几何体的性质和分类方法。

例如,球体、棱锥、棱柱等,需要掌握计算它们的面积和体积的方法。

三、统计与概率初二数学下册的第三个章节是统计与概率。

这一章节侧重于对各种数据进行统计和分析,同时介绍了概率的基本知识,包括概率的定义、计算公式等。

1.在统计方面,需要掌握数据的收集、整理、展示和分析方法。

例如,频数表和频数直方图的制作方法、比较数据的方法、数据的变化趋势等。

2.在概率方面,要掌握基本概念和计算方法。

例如,“肯定事件”和“不可能事件”等概念,掌握计算概率的方法,如加法原理和乘法原理等。

四、函数初二数学下册的第四个章节是函数。

函数是数学中一个非常重要的概念,是数学中的基础。

1.需要掌握函数的定义、图象、性质和分类等内容,同时也要学习函数的运算、逆函数及它的性质和计算方法等。

2.对于图象的绘制和解析,需要掌握函数的参数、函数的变化趋势,通过散点图等方法来进行分析和研究。

五、线性关系初二数学下册的第五个章节是线性关系。

线性关系是又函数的一种,是对直线上的变化趋势的分析。

1.需要掌握直线的方程和一次函数的定义及性质,并且要掌握一次函数与几何直线之间的关系。

人教版八年级下册数学课本知识点归纳

人教版八年级下册数学课本知识点归纳

人教版八年级下册数学课本知识点归纳第十六章 分式一、分式1. 分式:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

(分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 ) 2. 分式的基本性质:分式的分子与分母同乘(或除)以一个不等于0的整式,分式的值不变。

用式子表示如下: (C ≠0) 其中A,B,C 是整式 3.最简公分母:取各分母的所有因式的最高次幂的积做公分母,它叫做最简公分母4.通分:分子和分母同乘最简公分母,不改变分式值,把几个整式化成相同分母的分式。

这个过程叫通分。

(分母为多项式时要分解因式)5.约分:约去分子和分母的公因式,不改变分式值,这个过程叫约分。

二、分式的运算 1.分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

2.分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

上述法则可以用式子表示:3分式乘方法则:一般地,当n 为正整数时 这就是说, 分式乘方要把分子、分母分别乘方4.分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减。

C B C A B A ⋅⋅=C B C A B A ÷÷=bc ad c d b a d c b a bd ac d c b a =⋅=÷=⋅;n nn b a b a =)(上述法则可用以下式子表示:,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 5.整数指数幂1.任何一个不等于0的数的0次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a ,也就是说a n (a≠0)是a -n 的倒数。

正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:n m n m a a a +=⋅;(2)幂的乘方:mn n m a a =)(;(3)积的乘方:n n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);(5)商的乘方:n nn b a ba =)(( n 是正整数);(b ≠0) 三、分式方程1. 分式方程:分母中含未知数的方程叫分式方程。

新人教版八年级数学(下册)第四单元知识点总结

新人教版八年级数学(下册)第四单元知识点总结

新人教版八年级数学(下册)第四单元知识
点总结
本单元主要内容为几何初步,以下为知识点总结:
1. 平行线及其性质
- 定义:在同一个平面内,若两条直线没有交点,则这两条直线互相平行。

- 判定方法:
- 充分条件一:同一直线上的两个锐角或两个钝角相等,则所在直线平行。

- 充分条件二:以直线为一边的内角和小于180度,则与这条直线不交的另一条直线与这条直线平行。

- 充分条件三:过点做平行于已知直线,所得直线与已知直线平行。

- 平行线性质:两个平行线夹角相等,平行线上的任意一条直线与另一平行线的交线上的对应角相等,同侧内角互补,异侧角互补。

2. 三角形
- 定义:由三条边和三个内角组成的图形叫做三角形。

- 分类:
- 按边分类:等边三角形、等腰三角形、一般三角形。

- 按角分类:锐角三角形、直角三角形、钝角三角形。

- 三角形性质:
- 半周角定理:三角形的一个角的度数等于所对的边的半周角度数。

即∠B=1/2∠ACB。

- 三角形内角和定理:三角形三个内角的度数和为180°。

- 三边关系定理:任意一边小于另外两边之和,任意一边大于另一边之差。

- 直角三角形定理:勾股定理和一般勾股定理。

- 三角形面积公式:S=1/2×a×b×sinC
以上为本单元主要知识点总结,应理解并掌握。

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结

人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。

每章节都包括基本概念、计算方法和应用场景等内容。

阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。

新人教版初中数学知识点重难点归纳整理

新人教版初中数学知识点重难点归纳整理

新人教版初中数学知识点重难点归纳整理一、初中数学知识点总体概述初中数学是数学学科的一个重要组成部分,也是初中学生必修的一门课程。

初中数学的主要任务是培养学生综合运用数学知识,发展数学思维,提高解决数学问题的能力。

初中数学知识点主要包括代数、几何、函数、概率、统计等方面的内容。

其中,数与代数是初中数学的基础;几何涉及图形与空间的运用;函数是初步探讨数与几何之间的联系;概率与统计是初中数学的应用部分。

二、重难点归纳整理1. 代数代数是初中数学的重难点之一。

代数的基础是方程式的解法和一些代数法则的运用。

学生在这个阶段应该掌握以下重点内容:•一元一次方程的解法;•二元一次方程组的解法;•一元二次方程的解法;•代数表达式的化简;•因式分解和分式的运算;•式子的等价变形。

2. 几何几何也是初中数学的重点之一。

初中阶段的几何主要涉及图形的形状、大小、位置、方向和运动等方面的问题。

几何需要学生具备切实地操作能力和抽象迁移能力,尤其是能够通过图形模型解决实际问题。

学生在这个阶段应该掌握以下重点内容:•各种平面图形的构造与性质;•三角形的构造、性质及判定;•直线、角、周长与面积的计算;•勾股定理的运用;•空间几何中的图形与计算;•数轴及其应用。

3. 函数初中数学中的函数是初步掌握数与几何之间联系的一个关键环节。

学生应该学会根据函数的图像或表格来推断函数的性质以及绘制函数的图像,理解函数与自然界和社会现象之间的相互关系。

学生在这个阶段应该掌握以下重点内容:•线性函数的概念、图像及其性质;•平方函数、立方函数、绝对值函数的概念、图像及其性质;•一次函数和二次函数的关系;•函数的复合、反函数及其运算;•不等式中的代数式和函数式;•应用题中的函数建模。

4. 概率与统计概率与统计是初中数学的应用部分。

它对于学生提高对现实问题的理解和解决问题的能力有着非常重要的作用。

学生在这个阶段应该掌握以下重点内容:•概率的概念、计算方法及应用;•随机事件和样本空间的概念;•统计数据的收集、整理、分析及表示方法;•中心趋势度量和离散程度度量的计算及应用;•正态分布的概念、计算和应用。

整理版人教版八年级下册数学全册知识点大全

整理版人教版八年级下册数学全册知识点大全

整理版人教版八年级下册数学全册知识点
大全
本文档整理了人教版八年级下册数学全册的知识点,帮助学生
和老师更好地研究和教授数学课程。

以下是该文档的主要内容:
1. 整数运算: 包括整数的概念、整数的加减乘除运算规则、整
数的大小比较等。

2. 分数运算: 包括分数的基本概念、分数的相加、相减、相乘、相除运算规则等。

3. 小数运算: 包括小数的概念、小数的四则运算、小数的大小
比较等。

4. 代数式和方程: 包括代数式的概念、代数式的加减乘除运算、一元一次方程等。

5. 平面图形: 包括平面图形的基本概念、各种图形的性质、图
形的面积、周长计算等。

6. 空间与图形: 包括立体图形的基本概念、各种立体图形的性质、体积和表面积计算等。

7. 数据与统计: 包括数据的收集和整理、图表的制作和分析、概率的计算等。

8. 几何变换: 包括平移、旋转、翻转等基本变换,以及变换后的图形性质。

9. 计算器的使用: 包括计算器的基本使用方法,如加减乘除、分数运算等。

这份文档旨在为学生和老师提供一个全面且易于理解的数学知识点参考,帮助大家更好地掌握八年级下册数学课程。

请注意,本文档只是知识点的整理,具体的教学内容和例题请参考人教版八年级下册数学教材。

人教版八年级数学下册第1课时 中位数和众数

人教版八年级数学下册第1课时 中位数和众数

17、17,则这组数据的中位数是 16 .
2.在一次女子体操比赛中,八名运动员的年龄(单
位:岁)分别为:12、14、12、15、14、14、16、
15,这组数据的众数是( B )
A.12
B.14
C.15
D.16
综合应用
如图是连续十周测试甲、乙两名运动员体能 训练成绩的折线统计图,教练组规定:体能测试 成绩70分以上(包括70分)为合格.
例4 在一次男子马拉松长跑比赛中,抽得12名选手 所用的时间(单位:min)如下:
136 140 129 180 124 154
146 145 158 175 165 148 (1)样本数据(12名选手的成绩)的中位数是多 少? (2)一名选手的成绩是142min,他的成绩如何?
解:(1)先将样本数据按照由小到大的顺序排列: 124 129 136 140 145 146
20.1.2 中位数和众数
第1课时 中位数和众数
R·八年级数学下册
新课导入
上节课我们学习了平均数,知道它可以作为 一组数据的代表,利用它可以反映一组数据的集 中趋势.
除了平均数,还有什么样的数也可以来作为 一组数据的代表,反映一组数据的集中趋势呢?
学习目标
1.理解中位数、众数的意义. 2.会利用样本的中位数去估计总体的中位数. 3.体会中位数和众数在统计中的作用.
错因分析:导致错误的原因是没有准确地理 解中位数、众数的概念,求中位数时,所有的数 据都要参与排序,不仅仅是把不同的数排序.在 理解记忆平均数、中位数、众数概念的时候,要 准确掌握它们的计算方法,特别注意在求中位数 时要记住对所有数据进行排序.
误区 二 求中位数时误认为数据的顺序已定
一组数据:2,3,4,x若中位数与平均数相等,

人教版八年级数学下册知识点总结

人教版八年级数学下册知识点总结

人教版八年级数学下册知识点总结第十六章二次根式。

1. 二次根式的概念。

- 形如√(a)(a≥0)的式子叫做二次根式。

“√()”称为二次根号,a叫做被开方数。

- 二次根式有意义的条件是被开方数a≥0。

例如,√(x - 1)有意义,则x-1≥0,即x≥1。

2. 二次根式的性质。

- √(a)(a≥0)是一个非负数,即√(a)≥0(a≥0)。

- (√(a))^2=a(a≥0)。

例如(√(3))^2 = 3。

- √(a^2)=| a|=<=ft{begin{array}{l}a(a≥0) -a(a < 0)end{array}right.。

如√((-2)^2)=| - 2|=2。

3. 二次根式的乘除。

- 二次根式乘法法则:√(a)·√(b)=√(ab)(a≥0,b≥0)。

例如√(2)×√(3)=√(2×3)=√(6)。

- 二次根式除法法则:(√(a))/(√(b))=√(frac{a){b}}(a≥0,b > 0)。

如(√(8))/(√(2))=√(frac{8){2}}=√(4) = 2。

4. 二次根式的加减。

- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。

例如√(8)不是最简二次根式,因为8 = 2^3,√(8)=√(4×2)=2√(2),2√(2)是最简二次根式。

- 二次根式加减时,先把各个二次根式化成最简二次根式,再把同类二次根式(被开方数相同的二次根式)合并。

例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。

第十七章勾股定理。

1. 勾股定理。

- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。

- 例如,在直角三角形中,a = 3,b = 4,则c=√(a^2)+b^{2}=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。

2. 勾股定理的逆定理。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册知识点整理新人教版
八年级数学下册知识点整理新人教版
第十六章分式
分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

()3.分式的通分和约分:关键先是分解因式
4.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

分式乘方法则:分式乘方要把分子、分母分别乘方。

分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

异分母的分式相加减,先通分,变为同分母分式,然后再加减
混合运算:运算顺序和以前一样。

能用运算率简算的可用运算率简算。

5. 任何一个不等于零的数的零次幂等于1,即;当n为正整数时,(
6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)
(1)同底数的幂的乘法:;
(2)幂的乘方:;
(3)积的乘方:;
(4)同底数的幂的除法:( a≠0);
(5)商的乘方:();(b≠0)
7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

解分式方程的步骤:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.
增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.
应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题在数字问题中要掌握十进制数的表示法. (3)工程问题基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水.
8.科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法.
用科学记数法表示绝对值大于10的n位整数时,其中10的指数是
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)
第十七章反比例函数 1.定义:形如y=(k为常数,k≠0)的函数称为反比例函数。

其他形式xy=k
2.图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x和 y=-x。

对称中心是:原点。

相关文档
最新文档