三角形基础练习题1_1
八年级数学三角形专题训练
八年级数学三角形专题训练一、三角形的基本概念1. 三角形的定义题目:下列图形中,属于三角形的是()选项:A. 由三条线段首尾顺次相接组成的封闭图形;B. 由三条线段组成的图形;C. 由不在同一直线上的三条直线组成的图形。
解析:三角形的定义是由不在同一条直线上的三条线段首尾顺次相接所组成的封闭图形。
选项B中只说三条线段组成的图形,没有强调首尾顺次相接和封闭,选项C中说三条直线是错误的,所以答案是A。
2. 三角形的分类题目:三角形按角分类可分为()选项:A. 锐角三角形、直角三角形、钝角三角形;B. 等腰三角形、等边三角形、不等边三角形;C. 直角三角形、等腰三角形、锐角三角形。
解析:三角形按角分类分为锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。
选项B是按边分类,选项C分类混乱,所以答案是A。
二、三角形的三边关系1. 定理内容题目:已知三角形的两边长分别为3和5,则第三边的取值范围是()解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。
设第三边为x,则5 3<x<5+3,即2<x<8。
2. 应用解析:对于①,3+4 = 7<8,不满足两边之和大于第三边,所以不能组成三角形。
对于②,5+6 = 11>10,6 + 10=16>5,5+10 = 15>6,且10 5 = 5<6,10 6=4<5,6 5 = 1<10,满足三边关系,可以组成三角形。
对于③,5+5 = 10<11,不满足两边之和大于第三边,所以不能组成三角形。
三、三角形的内角和定理1. 定理内容题目:三角形的内角和等于()选项:A. 90°;B. 180°;C. 360°。
解析:三角形内角和定理表明三角形的内角和等于180°,所以答案是B。
2. 应用题目:在△ABC中,∠A = 50°,∠B = 60°,求∠C的度数。
人教版八年级上册数学:第十一章三角形练习题(一)
八年级上册数学:第十一章三角形练习题(一)一.选择题1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm2.已知△ABC的三边长分别为a、b、c,且M=(a+b+c)(a+b﹣c)(a﹣b﹣c),那么()A.M>0 B.M≥0 C.M=0 D.M<03.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7 C.n=8 D.n=94.下列各图中,正确画出AC边上的高的是()A.B.C.D.5.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°6.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°7.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形8.若三角形三个内角度数比为2:3:4,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.下列各线段中,能与长为4,6的两线段组成三角形的是()A.2 B.8 C.10 D.1210.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°11.如图,点D,E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=40°,∠A′DB=110°,则∠A等于()A.30°B.35°C.60°D.70°12.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°二.填空题13.三角形两边长分别是2,4,第三边长为偶数,第三边长为.14.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.15.八边形的内角和为,外角和为.16.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,与BD 交于点D,若∠D=28°,则∠A=.17.在△ABC中,AD为BC边上的高,∠BAD=55°,∠CAD=25°,则∠BAC=.18.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.三.解答题19.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.20.如图,在△ABC中,分别作其内角∠ACB与外角∠DAC的角平分线,且两条角平分线所在的直线交于点E(1)填空:①如图1,若∠B=60°,则∠E=;②如图2,若∠B=90°,则∠E=;(2)如图3,若∠B=α,求∠E的度数;(3)如图4,仿照(2)中的方法,在(2)的条件下分别作∠EAB与∠ECB的角平分线,且两条角平分线交于点G,求∠G的度数.21.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,∠A =40°,则∠ABX +∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =40°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =133°,∠BG 1C =70°,求∠A 的度数.22.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△AC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.23.如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,(1)∠BAC=,∠DAC=.(填度数)(2)求∠EAD的度数.24.(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程)(2)如图2,如果点B向右移动到AC上,那么还能求出∠A+∠DBE+∠C+∠D+∠E的大小吗?若能结果是多少?(可不写推理过程)(3)如图,当点B向右移动到AC的另一侧时,上面的结论还成立吗?(4)如图4,当点B、E移动到∠CAD的内部时,结论又如何?根据图3或图4,说明你计算的理由.参考答案一.选择题1.解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.2.解:∵△ABC的三边长分别为a、b、c,且M=(a+b+c)(a+b﹣c)(a﹣b﹣c),∴a+b+c>0,a+b﹣c>0,a﹣b﹣c<0,∴M<0.故选:D.3.解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.4.解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.5.解:∵直角三角形中,一个锐角等于40°,∴另一个锐角的度数=90°﹣40°=50°.故选:C.6.解:∵∠A+∠B+∠ACB=180°,∠ACB=100°,∠A=20°,∴∠B=60°,根据翻折不变性可知:∠CB′D=∠B=60°,∵∠DB′C=∠A+∠ADB′,∴60°=20°+∠ADB′,∴∠ADB′=40°,故选:A.7.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.8.解:设三个内角度数为2x、3x、4x,由三角形内角和定理得,2x+3x+4x=180°,解得,x=20°,则三个内角度数为40°、60°、80°,则这个三角形一定是锐角三角形,故选:A.9.解:设组成三角形的第三边长为x,由题意得:6﹣4<x<6+4,即:2<x<10,故选:B.10.解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选:B.11.解:∵∠A′EC=40°,∴∠AEC+∠A′EC=180°+40°=220°,由翻折可知:∠AED=∠A′ED=×220°=110°,∵∠A′DB=110°,∴∠A′DA=70°,由翻折可知:∠ADE=∠A′DE=A′DA=35°,∴∠A=180°﹣∠ADE﹣∠AED=35°.故选:B.12.解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.二.填空题(共6小题)13.解:设第三边为a,根据三角形的三边关系知,4﹣2<a<4+2.即2<a<6,由周长为偶数,则a为4.故答案为:4.14.解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.15.解:八边形的内角和为(8﹣2)•180°=1080°;外角和为360°.故答案为:1080°,360°.16.解:∵BD为∠ABC的平分线,CD为∠ACE的平分线,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠DCE=∠DBC+∠D,∠ACE=∠ABC+∠A,∴∠DBC+∠D=(∠ABC+∠A),∴∠D=∠A,∴∠A=2∠D=2×28°=56°.故答案为56°.17.解:画图如下:①如左图:∠BAC=∠BAD+∠CAD=55°+25°=80°;②如右图:∠BAC=∠BAD﹣∠CAD=55°﹣25°=30°.故答案为:80°或30°.18.解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.三.解答题(共6小题)19.解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°.∵CE是∠ACB的平分线,∴∠BCE=∠ACB=×68°=34°.∵CD⊥AB即∠CDB=90°,∴∠BCD=180°﹣90°﹣72°=18°,∴∠DCE=∠BCE﹣∠BCD=34°﹣18°=16°.∵DF⊥CE即∠DFC=90°,∴∠CDF=180°﹣90°﹣16°=74°.20.解:(1)①∠DAC﹣∠ACB=∠B=60°,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC﹣∠ACE=∠B=30°;②∠DAC﹣∠ACB=∠B=60°,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC﹣∠ACE=∠B=45°;(2)∠DAC﹣∠ACB=∠B=α,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC﹣∠ACE=∠B=α;(3)∵AG,CG分别是∠EAB与∠ECB的角平分线,∴∠G=∠HAC﹣∠ACG=∠FAC﹣∠ACE=(∠FAC﹣∠ACE)=×∠B=α.21.解:(1)如图(1),连接AD并延长至点F,,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°,故答案为:50.②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE=(∠ADB+∠AEB)+∠DAE=45°+40°=85°;C=(∠ABD+∠ACD)+∠A,③∠BG1C=70°,∵∠BG1∴设∠A为x°,∵∠ABD+∠ACD=133°﹣x°∴(133﹣x)+x=70,∴13.3﹣x+x=70,解得x=63,即∠A的度数为63°.22.解:(1)如图(1),∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB,∴∠ADC+∠AEC==45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.23.解:(1)∠BAC=60°,∠DAC=20°,在△ABC中∠B=50°,∠C=70°,∠BAC=180°﹣∠B﹣∠C=60°,∵AD是高,∠C=70°,∴∠DAC=90°﹣70°=20°,故答案为:60°;20°;(2)∵AE是角平分线,∴∠EAC=∠BAC=30°又∵AD是高,∴∠DAC+∠C=90°,∠DAC=90°﹣70°=20°,∴∠EAD=∠EAC﹣∠DAC=10°.24.解:(1)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)如图,由三角形的外角性质,∠A+∠D=∠1,∵∠1+∠DBE+∠C+∠E=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°;(3)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(4)如图,延长CE与AD相交,由三角形的外角性质,∠A+∠C=∠1,∠B+∠E=∠2,∵∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.。
2021-2022学年北师大版八年级数学下册《1-1等腰三角形》同步练习题(附答案)
2021-2022学年北师大版八年级数学下册《1-1等腰三角形》同步练习题(附答案)1.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB 于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个2.如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°3.以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2B.1,1,3C.2,2,1D.2,2,54.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下列叙述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.点D是线段AC的中点D.AD=BD=BC5.若(a﹣2)2+|b﹣3|=0,则以a、b为边长的等腰三角形的周长为()A.6B.7C.8D.7或86.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.7.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=cm.8.如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.9.如图,P、M、N分别是△ABC三边上的点,BM=BP,CP=CN,∠MPN=40°,则∠A =.10.如图,在△ABC中,AB=AC,D、E分别为AB、AC上的点,∠BDE、∠CED的平分线分别交BC于点F、G,EG∥AB.若∠BGE=110°,则∠BDF的度数为11.如图,在△ABC中,若AB=AC,∠A=40°,O点是△ABC的角平分线BD及高线CE 的交点,则∠DOC的度数为.12.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE =∠BAD.13.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.14.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.15.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.16.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O (1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.17.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.18.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.19.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.20.如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.参考答案1.解:在△ABC中,∠A=36°,∠C=72°,∴∠ABC=∠C==72°,∴△ABC是等腰三角形,∴∠DBC=36°,∴∠ABD=∠DBC=36°,∴BD平分∠ABC,∴∠ABD=∠DBC=36°,∵DE∥BC,∴∠EDB=∠DBC=36°,∴∠ABD=∠EDB=∠A,∴AD=BD,EB=ED,即△ABD和△EBD是等腰三角形,∵∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,即△BCD是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴AE=AD,即△AED是等腰三角形.∴图中共有5个等腰三角形.故选:C.2.解:∵AB=AC,∠A=100°,∴∠ABC=∠C=40°.∵BD平分∠ABC,∴∠ABD=∠DBC=20°.故选:C.3.解:A、∵1+1=2,∴本组数据不可以构成等腰三角形;故本选项不符合题意;B、∵1+1<3,∴本组数据不可以构成等腰三角形;故本选项不符合题意;C、∵1+2>2,且有两边相等,∴本组数据可以构成等腰三角形;故本选项符合题意;D、∵2+2<5,∴本组数据不可以构成等腰三角形;故本选项不符合题意;故选:C.4.解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故D正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故C错误.故选:C.5.解:∵(a﹣2)2+|b﹣3|=0,∴a﹣2=0,b﹣3=0,解得a=2,b=3,①当腰是2,底边是3时,三边长是2,2,3,此时符合三角形的三边关系定理,即等腰三角形的周长是2+2+3=7;②当腰是3,底边是2时,三边长是3,3,2,此时符合三角形的三边关系定理,即等腰三角形的周长是3+3+2=8.故选:D.6.解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.7.解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,∴S△ABC=2S△ABD=2×AB•DE=AB•DE=3AB,∵S△ABC=AC•BF,∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.8.解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.9.解:∵∠MPN=40°,∴∠BPM+∠CPN=140°,∵BM=BP,CP=CN,∴∠BMP=∠BPM,∠CPN=∠CNP,∴∠BMP+∠CNP=140°,∴∠B+∠C=80°,∴∠A=100°.故答案为:100°.10.解:∵EG∥AB,∠BGE=110°,∴∠B=180°﹣∠BGE=70°,∠CEG=∠A,∠GED=∠ADE.∵AB=AC,∴∠C=∠B=70°,∠A=180°﹣∠B﹣∠C=40°,∴∠CEG=∠A=40°,∵EG平分∠CED,∴∠GED=∠CEG=40°,∴∠ADE=∠GED=40°,∴∠BDE=180°﹣∠ADE=140°.∵DF平分∠BDE,∴∠BDF=∠BDE=70°.故答案为70°.11.解:∵在△ABC中,若AB=AC,∠A=40°,∴∠ABC=∠ACB=(180°﹣40°)=70°,∵BD是△ABC的角平分线,∴∠DBC=∠ABC=35°.∵CE是△ABC的高线,∴∠BEC=90°,∴∠BCE=90°﹣∠ABC=20°,∴∠DOC=∠DBC+∠BCE=35°+20°=55°.故答案为55°.12.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∠BAD=∠CAD,∵BE⊥AC,∴∠BEC=∠ADC=90°.,∴∠CBE=90°﹣∠C,∠CAD=90°﹣∠C,∴∠CBE=∠CAD.,∴∠CBE=∠BAD.13.证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.14.解:(1)∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°,在Rt△FDC中,∴∠C=90°﹣25°=65°,∵AB=BC,∴∠C=∠A=65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.(2)连接BF∵AB=BC,且点F是AC的中点,∴BF⊥AC,∠ABF=∠CBF=∠ABC,∴∠CFD+∠BFD=90°,∠CBF+∠BFD=90°,∴∠CFD=∠CBF,∴∠CFD=∠ABC.15.证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.16.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°∴△BEC≌△CDB∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∵∠DOE+∠A=180°∴∠BOC=∠DOE=180°﹣80°=100°.17.证明:过E作EF∥AB交BC延长线于F.∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,∴BD=EF,在△DBG与△GEF中,,∴△DGB≌△EGF(AAS),∴GD=GE.18.解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.19.(1)证明:∵AC=BC,∴∠B=∠BAC,∵∠ACE=∠B+∠BAC,∴∠BAC=,∵CF平分∠ACE,∴∠ACF=∠ECF=,∴∠BAC=∠ACF,∴CF∥AB;(2)解:∵∠BAC=∠ACF,∠B=∠BAC,∠ADF=∠B,∴∠ACF=∠ADF,∵∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,又∵∠AGD=∠CGF,∴∠F=∠CAD=20°.20.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.。
四年级三角形专题训练
四年级三角形专题训练一、三角形的认识基础题。
1. 由三条()围成的图形(每相邻两条线段的端点相连)叫做三角形。
- 答案:线段。
- 解析:三角形的定义就是由三条线段首尾顺次相接围成的封闭图形。
2. 三角形有()条边,()个角,()个顶点。
- 答案:3,3,3。
- 解析:这是三角形的基本特征,三条边、三个角和三个顶点。
3. 从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的()。
- 答案:高。
- 解析:这是三角形高的定义,三角形的高是从一个顶点向对边作的垂线段。
4. 一个三角形有()条高。
- 答案:3。
- 解析:因为三角形有三个顶点,过每个顶点都可以作对边的高,所以一个三角形有3条高。
二、三角形的分类题。
5. 三角形按角分类可以分为()三角形、()三角形和()三角形。
- 答案:锐角、直角、钝角。
- 解析:锐角三角形是三个角都是锐角(小于90°)的三角形;直角三角形是有一个角是直角(等于90°)的三角形;钝角三角形是有一个角是钝角(大于90°小于180°)的三角形。
6. 一个三角形中最大的角是89°,这个三角形是()三角形。
- 答案:锐角。
- 解析:因为最大角是89°,小于90°,所以三个角都是锐角,这个三角形是锐角三角形。
7. 一个三角形中至少有()个锐角。
- 答案:2。
- 解析:直角三角形有2个锐角,钝角三角形也有2个锐角,锐角三角形有3个锐角,所以一个三角形至少有2个锐角。
8. 等腰三角形的两腰(),两个底角()。
- 答案:相等,相等。
- 解析:这是等腰三角形的重要特征,两腰长度相等,两底角的度数相等。
9. 等边三角形的三条边(),三个角也(),每个角都是()度。
- 答案:相等,相等,60。
- 解析:等边三角形是特殊的等腰三角形,它的三条边都相等,根据三角形内角和是180°,三个角相等,所以每个角都是180°÷3 = 60°。
四年级数学三角形练习题1
1. 什么是三角形?三角形是由三条不在同一直线上的线段首尾顺次连结所组成的图形叫做三角形。
2. 三角形的性质和特点。
三角形具有三个角、三条边、三个顶点、三条高。
三角形具有稳定性。
3. 三角形的三条边关系:三角形的任意两边之和大于第三边。
(通常情况下判断三条线段是否能组成一个三角形,采用这种方法:取最小的两边之和与最长的一条边做比较,只要最小的两边之和大于最长的边,就一定能构成三角形。
)4. 三角形的高:就是从底边所对应的顶点,到底边上垂直距离,叫做三角形的高。
5. 三角形的周长=三条边相加三角形的面积=底×高÷26. 三角形的内角和等于180度。
7. 三角形的分类。
锐角三角形:三个角全都是锐角的三角形叫做锐角三角形。
直角三角形:其中有一个角为90度的三角形叫做直角三角形。
钝角三角形:其中有一个角为钝角的三角形叫做钝角三角形。
8. 等腰三角形:在一个三角形中,有两条边一样长(或有两个角相等)的三角形叫做等腰三角形。
等腰三角形的特点:①两条腰的长度相等;②两个底角的度数相等;③两条腰上的高长度相等。
9. 等边三角形:在一个三角形中,三条边都一样长(或三个角的度数都相等)的三角形叫做等边三角形。
等边三角形的特点:①三条边的长度相等;②三个角的度数相等且都等于60度;③三条边上的高长度都相等。
10.①顶角为60度的等腰三角形一定是等边三角形。
②有一个底角为60度的等腰三角形一定等边三角形。
《三角形》专项训练一、填空1、一个三角形,其中两个角分别是40°和60°,这个三角形是( )三角形。
2、一个三角形最多可以画( )条高。
3、一个等腰三角形,从它的顶点向对边作垂线,分成的每个小三角形的内角和是( )。
4、由三条( )围成的图形叫三角形。
5、一个等腰三角形,其中一个角是40°,它的另个两个角可能是( )和( ),也可能是( )和( )。
6、三角形按角可分为( )三角形、( )三角形、( )三角形。
全等三角形练习题一
一、选择题 1、全等三角形是( )A.三个角对应相等的两个三角形B.周长相等的两个三角形C.面积相等的两个三角形D.能够完全重合的两个三角形 2、如下图,在△ABC 中,D、E 分别是 AC、BC 上的点,若△ADB≌△EDB≌△EDC, 则∠C 的度数为( )A.15°B.20°C.25°D.30° )3、已知线段 BC 交 AD 于 O 点,连接 AB、CD,且△OAB≌△OCD,则 AB 与 CD( A.不一定相等 B.一定平行C.一定相等且平行D.一定相等可能平行 )4、对下列各组条件,不能判定△ABC≌△A′B′C′的一组是( A.∠A=∠A′,AB=A′B′,AC=A′C′1B.∠B=∠B′,AB=A′B′,AC=A′C′C.∠C=∠C′,BC=B′C′,AC=A′C′D.AB=A′B′,BC=B′C′,AC=A′C′ 5、 如图, 已知 MB=ND, ∠MBA=∠NDC, 下列哪个条件不能判定△ABM≌△CDN ( )A.∠M=∠NB.AC=BDC.AM=CND.AM∥CN )6、如图,△ABC≌△DEF,BE=4,AE=1,则 DE 的长是(A.5B.4C.3D.2 )7、如图,已知 AB=AC,AD=AE,欲证△ABD≌△ACE,须补充的条件是(2A.∠B=∠CB.∠D=∠EC.∠1=∠2D.∠CAD=∠DAC )8、△ABC≌△DEF,若满足以下条件一定全等的是( A.AB=DE,∠B=∠E,AC=DFB.AB=DF,∠A=∠D,AC=DEC.BC=EF,∠B=∠E,AB=DFD.AB=DF,∠A=∠F,BC=EF 9、要测量河两岸相对的两点 A,B 的距离,先在 AB 的垂线 BF 上取两点 C,D, 使 CD=BC,再定出 BF 的垂线 DE,使 A,C,E 在一条直线上(如图所示),可以 说明△EDC≌△ABC,得 ED=AB,因此测得 ED 的长就是 AB 的长,判定△EDC≌△ ABC 最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角310、如图,OA=OB,点 C 在 OA 上,点 D 在 OB 上,OC=OD,AD 和 BC 相交于点 E, 则图中全等三角形共有( )A.2 对B.3 对C.4 对D.5 对B二、解答题卷11、△ABC≌△DEF,且△ABC 的周长为 18.若 AB 等于 5,EF 等于 6,求 AC 的值.隐藏答案解:∵△ABC≌△DEF, ∴EF=BC=6, ∵△ABC 的周长为 18,AB=5, ∴AC=18-6-5=7.412、已知,如图 A、F、C、D 四点在一直线上,AF=CD,AB//DE,且 AB=DE,求 证:(1)△ABC≌△DEF(2)∠CBF=∠FEC隐藏答案证明:(1)∵AF=CD,∴AF+FC=DC+FC ∵DE//AB,∴∠A=∠D.即 AC=DF.在△ABC 和△DEF 中 ∴△ABC≌△DEF(SAS) (2)由(1)得∠ABC=∠DEF,又可得△ABF≌△DEC,∠ABF=∠DEC. ∴∠ABC-∠ABF=∠DEF-∠DEC,即∠CBF=∠FEC. 13、已知:如图 AB=DC,AC=DB,求证:OB=OC隐藏答案证明:连结 BC,5在△ABC 和△DCB 中 ∴△ABC≌△DCB(SSS) ∴∠A=∠D在△AOB 和△DOC 中 ∴△AOB≌△DOC(AAS) ∴OB=OC 14、如图①,要测量池塘两端 A,B 两点间的距离,小明的思路如图②所示,AC =CD,BC=CE,小颖的思路如图③所示,AC=CD.请你选择一种思路,先设计测 量方案,再说明测量方案的合理性.隐藏答案6解:图②的设计方案: (1)先在岸上取一点 C,从该点可以直达 A 点和 B 点; (2)连接 AC 并延长到点 D,使 CD=AC; (3)连接 BC 并延长到点 E,使 CE=BC; (4)连接 DE,并测出它的长度. DE 的长度就是 A,B 两点间的距离. 理由:在△ABC 和△DEC 中, 因为 CB=CE,∠ACB=∠DCE,AC=CD, 所以△ABC≌△DEC, 则 AB=DE; 图③的设计方案: (1)在 AB 的垂线 AF 上取两点 C,D,使 CD=AC; (2)过点 D 作 AF 的垂线 DG,并在 DG 上取一点 E,使点 B,C,E 在同一条 直线上; (3)测得 DE 的长度,DE 的长度就是 A,B 两点间的距离. 理由:因为点 B,C,E 在同一条直线上, 所以∠ACB=∠DCE, 又 AB⊥AF,DE⊥AF,则∠BAC=∠EDC=90°, 而 AC=CD,所以△ABC≌△DEC, 则 AB=DE.7。
2022-2023学年北师大版八年级数学下册《1-1等腰三角形》同步选择专项练习题(附答案)
2022-2023学年北师大版八年级数学下册《1.1等腰三角形》同步选择专项练习题(附答案)1.等腰三角形一边为6,另一边是方程4x﹣5=7的根,则这个等腰三角形的周长为()A.12B.15C.12或15D.不能确定2.如图,在△ABC中,AB=AC,BD为△ABC的高.若∠CBD=20°,则∠BAC的度数是()A.30°B.40°C.50°D.60°3.如图,在△ABC中,∠A=α,∠B=∠C,点D是△ABC外一点,E,F分别在AB,AC 上,ED与AC交于点G,且∠D=∠B,若∠1=2∠2,则∠EGF的度数为()A.180°﹣2αB.60°+αC.90°﹣αD.30°+α4.若等腰三角形一腰上的高与另一腰的夹角为50°,则这个等腰三角形的底角的度数为()A.20°B.50°或70°C.70°D.20°或70°5.如图,在等腰三角形ABC中,AC=BC,AC边上的垂直平分线分别交AC、BC于点D、点E.若∠BAE=45°,DE=2,则AE的长度为()A.2B.4C.6D.86.如图,△ABC中,AB=AC,D为BC上一点,BD=AD,AC=DC,则∠B的度数为()A.30°B.36°C.40°D.46°7.如图,AD=BC,AB=AC=BD,∠D=∠DEA=∠C,则图中一共有()个等腰三角形.A.3B.4C.5D.68.如图,已知点A(2,2),在x轴上确定一点P,使得△AOP为等腰三角形,则满足条件的点P共有()A.5个B.4个C.3个D.2个9.如图,在格点中找一点C,使得△ABC是等腰三角形,且AB为其中一条腰,这样的点C个数为()A.8B.9C.10D.1110.如图,△ABC中,IB,IC分别平分∠ABC,∠ACB,DE过点I,且DE∥BC,若AB=A.8B.9C.10D.1111.如图,△ABC中,∠B=2∠C,AD是高,BD=2,CD=7,则AB长为()A.4B.5C.6D.712.如图,DE=11,FG=3,BF、CG分别平分∠ABC、∠ACB,DE∥BC.则BD+CE=()A.3B.11C.7D.813.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②③C.①②④D.①③14.如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.615.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,A.B.4C.D.4.516.如图,在等腰三角形ABC中,∠CAB=120°,AD⊥BC于点D,DE⊥AB于点E.若AD=2,则BE的长为()A.2B.3C.4D.617.如图,△ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE =2,下列结论错误的是()A.∠ADE=30°B.BD=4C.△EFC的周长为18D.△ABC的周长为2118.如图所示,在△ABC中,∠ACB=90°,∠B=15°.DE垂直平分AB,交BC于点E.若BE=10cm.则AC=()A.3cm B.4cm C.5cm D.10cm19.如图,已知在△ABC中,∠ACB=90°,∠A=60°,AC=4,点M,N在边AB上,CM=CN.若MN=2,则AM=()A.1B.2C.3D.420.用反证法证明命题“已知在△ABC中,AB=AC,则∠B<90°”时,首先应该假设()A.∠B≥90°B.∠B>90°C.AB≠AC D.AB≠AC且∠B≥90°21.如图,在△ABC中,∠ABC的角平分线与∠ACB的外角平分线交于点D,过点D作EF ∥BC,交AB于E,交AC于F,若BE=8,CF=6,则EF的长是()A.4B.2.5C.2D.1.522.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个23.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定参考答案1.解:∵4x﹣5=7,∴x=3,当腰3时,三角形的三边为3、3、6,此时构不成三角形;当腰为6时,三角形三边的长为3、6、6,此时周长为15;综上,该等腰三角形的周长为15.故选:B.2.解:∵BD为△ABC的高,∴∠BDC=90°.∵∠CBD=20°,∴∠C=90°﹣∠CBD=90°﹣20°=70°,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=70°,又∵∠ABC+∠ACB+∠BAC=180°.∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.3.解:∵∠A=α,∠B=∠C,∴∠B=∠C=×(180°﹣α)=90°﹣,∴∠D=∠B=90°﹣,∵∠AGE=∠DGF,∴∠A+∠1=∠D+∠2,∵∠1=2∠2,∴α+2∠2=90°﹣+∠2,∴∠2=90°﹣α,∴∠EGF=∠D+∠2=90°﹣+90°﹣α=180°﹣2α,故选:A.4.解:①如图1,当该等腰三角形为钝角三角形时,∵一腰上的高与另一腰的夹角是50°,∴底角=(90°﹣50°)=20°,②如图2,当该等腰三角形为锐角三角形时,∵一腰上的高与另一腰的夹角是50°,∴底角=[180°﹣(90°﹣50°)]=70°.故选:D.5.解:设∠C=x,∵ED是AC的垂直平分线,∴∠EDA=90°,EA=EC,∴∠EAC=∠C=x,∵∠BAE=45°,∴∠BAC=∠BAE+∠EAC=45°+x,∵AC=BC,∴∠B=∠BAC=45°+x,∵∠B+∠BAC+∠C=180°,∴2(x+45°)+x=180°,解得:x=30°,∴∠EAC=∠C=30°,∵DE=2,∴AE=2DE=4,故选:B.6.解:设∠B=x°,∵AB=AC,∴∠B=∠C=x,∵DB=DA,∴∠B=∠BAD=x°,∴∠ADC=∠B+∠BAD=2x°,∵CD=CA,∴∠ADC=∠CAD=2x°,∵∠C+∠ADC+∠CAD=180°,∴5x°=180°,∴x=36,∴∠B=36°,故选:B.7.解:∵AB=AC=BD,∴△ABD和△ABC是等腰三角形,∵∠D=∠C=∠DEA=∠BEC,∴AD=AE,BC=BE,∴△ADE和△BEC是等腰三角形,∵AD=BC,∴AE=BE,∴△AEB是等腰三角形,故选:C.8.解:(1)若AO作为腰时,有两种情况,当A是顶角顶点时,P是以A为圆心,以OA 为半径的圆与x轴的交点,共有1个,若OA是底边时,P是OA的中垂线与x轴的交点,有1个,当O是顶角顶点时,P是以O为圆心,以OA为半径的圆与x轴的交点,有1个;(2)若OA是底边时,P是OA的中垂线与x轴的交点,有1个.以上4个交点没有重合的,故符合条件的点有4个.故选:B.9.解:如图所示:满足条件的点C有9个,故选:B.10.解:∵∠ABC和∠ACB的平分线相交于点I,∴∠DBI=∠CBI,∠ECI=∠BCI,∵DE∥BC,∴∠DIB=∠CBI,∠BCI=∠EIC,∴∠DBI=∠DIB,∠ECI=∠EIC,∴DB=DI,EI=EC,∴△ADE的周长=AD+DE+AE=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC=5+4=9.故选:B.11.解:在CD上取一点E,使BD=DE=2,∵CD=7,∴CE=5,∵AD⊥BC,∴AB=AE,∴∠AEB=∠B=2∠C,∵∠AEB=∠C+∠EAC=2∠C,∴∠C=∠EAC,∴AE=CE=5,∴AB=5,故选:B.12.解:∵BF、CG分别平分∠ABC、∠ACB,∴∠DBF=∠CBF,∠ECG=∠BCG,∵DE∥BC,∴∠DFB=∠CBF,∠EGC=∠ECG,∴∠DBF=∠DFB,∠EGC=∠ECG,∴BD=DF,EG=CE,∴BD+CE=DF+EG=DE﹣FG=11﹣3=8,故选:D.13.解:∵有两个角等于60°,则第三个角为180°﹣60°﹣60°=60°,∴这个三角形是等边三角形,故①选项符合题意;有一个角等于60°的等腰三角形是等边三角形,故②选项符合题意;∵三个外角都相等,∴三个内角也都相等,∴这个三角形是等边三角形,故③选项符合题意;∵一腰上的中线也是这条腰上的高的等腰三角形,∴腰和底边相等,∴这个三角形是等边三角形,故④选项符合题意,∴正确的选项有①②③④,故选:A.14.解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.15.解:如图,以CD为边作等边△CDE,连接AE.∵∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,∴在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.又∵∠ADC=30°,∴∠ADE=90°.在Rt△ADE中,AE=5,AD=3,于是DE=,∴CD=DE=4.故选:B.16.解:∵AB=AC,∠BAC=120°,∴∠B=30°.∵AD⊥BC,∴∠BAD=60°,∵DE⊥AB于E,∴在△ADE中,∠ADE=30°,∴AD=2AE=2,∴AE=1,在△ABD中,AB=2AD=4,∴BE=AB﹣AE=3.故选:B.17.解:∵△ABC是等边三角形,∴∠A=60°,AB=BC=AC,∵DE⊥AC,∴∠AED=90°,∴∠ADE=30°∵AE=2,∴AD=2AE=BD=4,故选项A,B正确,∴AB=BC=AC=8,∴△ABC的周长为24,故选项D错误.∵EF∥AB,∴∠CEF=∠A=60°,∠EFC=∠B=60°,∴△EFC是等边三角形,∴△EFC的周长=3×(8﹣2)=18,故选项C正确,故选:D.18.解:∵DE垂直平分AB,∴EB=EA=10cm,∴∠B=∠BAE=15°,∴∠AEC=∠B+∠BAE=30°,∵∠ACB=90°,∴AC=AE=5(cm),故选:C.19.解:如图,过点C作CD⊥AB于D,∵CM=CN,且MN=2,∴DM=MN=1,∵CD⊥AB,∴∠ADC=90°,∵∠A=60°,∴∠ACD=30°,∴AD=AC,∵AC=4,∴AD=2,∴AM=2﹣1=1.故选:A.20.解:用反证法证明命题“已知在△ABC中,AB=AC,则∠B<90°”时,首先假设∠B ≥90°,故选:A.21.解:∵BD平分∠ABC,BE=8,CF=6,∴∠ABD=∠DBC,∵EF∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴EB=ED=8,同理可得FD=FC=6,∴EF=EO﹣FO=EB﹣FC=8﹣6=2.故选:C.22.解:∵△ABC和△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴△BCE≌△ACD(SAS),∴AD=BE,故选项①正确;∵∠ACB=∠ACE=60°,由△BCE≌△ACD得:∠CBE=∠CAD,∴∠BMC=∠ANC,故选项②正确;由△BCE≌△ACD得:∠CBE=∠CAD,∵∠ACB是△ACD的外角,∴∠ACB=∠CAD+∠ADC=∠CBE+∠ADC=60°,又∠APM是△PBD的外角,∴∠APM=∠CBE+∠ADC=60°,故选项③正确;在△ACN和△BCM中,,∴△ACN≌△BCM,∴AN=BM,故选项④正确;∴CM=CN,∴△CMN为等腰三角形,∵∠MCN=60°,∴△CMN是等边三角形,故选项⑤正确;故选:D.23.解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选:B.。
小学数学三角形试题1
三角形一、填空1、在一个三角形中,∠1=72°,∠2=48°,∠3=();在一个等腰三角形中,一个底角是36°,顶角是()。
2、一个等边三角形分成两个直角三角形后,直角三角形的锐角分别是()度和()度。
3、一个三角形,最小的角是30°,最大的角是90°,另一个角是()4、三角形按角可以分为()三角形、()三角形、()三角形。
5、直角三角形中,一个锐角是37°,另一个锐角是()6、一个三角形,两边之和为a,另一边为b,则a b (填“>”或“<”)7、一个三角形的三条边的长度分别是3厘米,3厘米,4厘米,按照边来分,这是一个()三角形;围成这个三角形至少要()厘米长的绳子8、一个等腰三角形的底角是55°,顶角是()9、在直角三角形中,一个锐角是60°,另一个锐角是()10、一个等腰三角形,它的一个底角是35°,它的顶角是()11、在一个三角形中,至少有()个锐角12、如果三角形的两条边的长分别是5cm和6cm,那么第三条边的长可能是()cm13、在等腰三角形中,顶角为100°,它的一个底角是()14、一个三角形和一个平行四边形底相等,面积也相等。
平行四边形的高是6厘米,那么三角形的高是()厘米。
15、三角形ABC中,∠A=35°,∠B=52°,∠C=(),这是一个()三角形。
16、一个三角形的两条边分别是5厘米和3厘米,第三边最短是()厘米,最长是()厘米。
(填整数)17、一个等腰三角形的底角是80°,它的顶角是()18、160°角比平角少()度19、一个直角三角形中,一个锐角是55°,另一个锐角是()20、一个三角形的两边分别是5和6,另一条边可能是()A、小于11B、大于11C、小于11大于1二、判断题1、如果一个三角形有两个内角是锐角,它就一定是锐角三角形()2、锐角三角形的内角和比钝角三角形的内角和小()3、三角形的内角和是180度()4、三角形具有稳定性()5、把一个三角形剪成两个三角形,则每个三角形的内角和是90°()6、等边三角形一定是锐角三角形()7、用3厘米、4厘米、5厘米长的三根绳子不能围成三角形()8、三角形两边之和一定大于第三边。
八年级上册数学 1.1认识三角形(一) 基础训练(含答案)
第1章三角形的初步知识1.1 认识三角形(一)(第1题)1.如图,图中共有__6__个三角形,以AD为边的三角形有△ABD,△ADE,△ADC,以E为顶点的三角形有△ABE,△ADE,△AEC,∠ADB是△ABD的内角,△ADE的三个内角分别是∠ADE,∠AED,∠DAE.2.三角形的两边长分别是2和3,若第三边的长是奇数,则第三边的长为__3__;若第三边的长是偶数,则三角形的周长为7或9.3.在现实生活中,有些人为抄近路而践踏了草坪,这是一种不文明的现象,我们应予以制止或劝解.请你用数学知识解释这一现象的原因:两点之间线段最短.4.(1)已知在△ABC中,AB=6,BC=4,则边AC的长可能是(B)A. 11B. 5C. 2D. 1(2)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为(B)A. 9B. 12C. 7或9D. 9或125.在三个内角互不相等的△ABC中,最小的内角为∠A,则在下列四个度数中,∠A最大可取(B)A. 30°B. 59°C. 60°D. 89°6.若一个三角形三个内角的度数之比是2∶3∶7,则这个三角形一定是(C)A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定(第7题)7.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围.(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【解】(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°.又∵∠A=55°,∴∠C=180°-∠AEC-∠A=70°.8.若a,b,c是三角形的三边长,则化简|a-b-c|+|a+c-b|-|c-a-b|=(B)A. 3a-b-cB. -a-b+3cC. a+b+cD. a-3b+c【解】∵a+b>c,b+c>a,a+c>b,∴原式=b+c-a+a+c-b-a-b+c=-a -b+3c.9.三角形纸片上有100个点,连同三角形的顶点共103个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形共有201个.【解】从最大的三角形纸片计数,任意选中纸片内一点,沿顶点与该点连线剪开,可以得到3个小三角形,即增加了2个小三角形.同理,再从中任取一点,剪开,也是增加了2个三角形,因此每多取一个点,三角形就增加2个,所以共有100×2+1=201(个)三角形.10.各边长都是整数,且最大边长为8的三角形共有多少个?【解】∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8.故各边长都是整数,且最大边长为8的三角形共有20个.(第11题)11.在农村电网改造中,四个自然村分别位于如图所示的A,B,C,D处,现计划安装一台变压器,使到四个自然村的输电线路的总长最短,那么这个变压器应安装在AC,BD 的交点E处,你知道这是为什么吗?【解】如图,另任取一点E′(异于点E),分别连结AE′,BE′,CE′,DE′.在△BDE′中,DE′+BE′>D B.在△ACE′中,AE′+CE′>A C.∴AE′+BE′+CE′+DE′>AC+BD,即AE+BE+CE+DE最短.12.观察并探求下列各问题:(1)如图①,在△ABC中,P为边BC上一点,则BP+PC__<__AB+AC(填“>”“<”或“=”).(2)将(1)中的点P移到△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中的点P变为两个点P1,P2,得图③,试观察比较四边形BP1P2C的周长与△ABC 的周长的大小,并说明理由.(第12题)【解】(1)BP+PC<AB+A C.理由:三角形两边的和大于第三边.(2)△BPC的周长<△ABC的周长.理由如下:如解图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,两式相加,得BP+PC<AB+AC,∴BP+PC+BC<AB+AC+BC,即△BPC的周长<△ABC的周长.(第12题解)(3)四边形BP1P2C的周长<△ABC的周长.理由如下:如解图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+A C.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC,∴BP1+P1P2+P2C+BC<AB+AC+BC,即四边形BP1P2C的周长<△ABC的周长.。
(完整版)全等三角形练习题及答案(一)
ir全等三角形练习一、填空题:1.如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为,BD的对应边为 .2.如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌△,理由是,△ABE≌△,理由是 .(第1题)(第2题)(第4题)3.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是cm.4.如图,AD、A´D´分别是锐角△ABC和△A´B´C´中BC与B´C´边上的高,且AB= A´B´,AD=A´D´,若使△ABC≌△A´B´C´,请你补充条件(只需填写一个你认为适当的条件)5. 若两个图形全等,则其中一个图形可通过平移、或与另一个三角形完全重合.6. 如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=___________度(第6题)(第7题)(第8题)7.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值为__________.8.如图,在△ABC中,∠B=90o,D是斜边AC的垂直平分线与BC的交点,连结AD,若∠DAC:∠DAB=2:5,则∠DAC=___________.9.如图,等腰直角三角形ABC中,∠BAC=90o,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为___________.MNDCBAEDCBAHEDCBAB ′C ′D ′O ′A ′ODC BA(第1410.如图,锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第9题) (第10题)13题)二、选择题:11.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°12.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<AD <7B .2<AD <14C .2.5<AD <5.5 D .5<AD <1113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .1014.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A ′O ′B ′=∠AOB 的依据是A .(S .S .S .)B .(S .A .S .)C .(A .S .A .)D .(A .A .S .15. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60º,∠α的补角∠β=120º,∠β>∠αB.∠α=90º,∠α的补角∠β=900º,∠β=∠αC.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角16. △ABC 与△A´B´C ´中,条件①AB =A´B´,②BC = B´C´,③AC=A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥17.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形()A .7对B .6对C .5对D .4对D CBAn h18.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm19.如图,△ABC 与△BDE 均为等边三角形,AB <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .AE >CDC .AE <CD D .无法确定20.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( )A .10°B .80°C .100°D .80°或100°三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为,你得到的一对全等三角形是 .∆∆≅(第21题)22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF ,已知:EG ∥AF , = , = ,求证:证明:(第22题)ECD BAEA BD FC23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明.①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明;(2)用序号再写出三个真命题(不要求证明);(3)真命题不止以上四个,想一想就能够多写出几个真命题25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.(第25题)E DAC4321FB26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF 、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.OPAMNEB CD FACEFBD图①图②图③28.如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现)ACF BE ACFB图a 图b参考答案一、1.∠DBE, CA 2.△ACE, SAS,△ACD, ASA(或SAS)3. 64.CD=C´D´(或AC=A´C´,或∠C=∠C´或∠CAD=∠C´A´D´)5.平移,翻折6. 907. 10 8. 20º 9. 10. 4548-2二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择等条件中的一个.可得到△ACE≌△ADE∠=、∠=、BDBCDABCABDECE=或△ACB≌△ADB等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系可选①AB=AC,②DE=DF,作为已知条件,③BE=CF作为结论;推理过程为:∵EG∥AF,∴∠GED=∠CFD,∠BGE=∠BCA,∵AB=AC,∴∠B=∠BCA,∴∠B=∠BGE∴BE=EG,在△DEG和△DFC中,∠GED=∠CFD,DE=DF,∠EDG=∠FDC,∴△DEG≌△DFC,∴EG=CF,而EG=BE,∴BE=CF;若选①AB=AC,③BE=CF为条件,同样可以推得②DE=DF,23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE=CF还可推得BC=EF,根据三角形全等的判定方法,可选论断:①AB=DE,②AC=DF,④BE=CF为条件,根据三边对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断③∠ABC=∠DEF,同样可选①AB=DE,③∠ABC=∠DEF,④BE=CF为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断②AC=DF.24. (1)如果①②③,那么④⑤证明:如图,延长AE交BC的延长线于F因为AD∥BC 所以∠1=∠F又因为∠AED=∠CEF,DE=EC所以△ADE≌△FCE,所以AD=CF,AE=EF因为∠1=∠F,∠1=∠2所以∠2=∠F所以AB=BF.所以∠3=∠4所以AD+BC=CF+BC=BF=AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④.(3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C 在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF . (2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°,∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图②证法一:如图1,在AC 上截取AG =AE ,连接FG∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作FG ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EGF ≌△DHF ∴ FE =FD28. (1)AF =BE . 证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE . (2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°. ∴∠ACB -∠FCB =∠FCE -∠FCB.图⑤ 即∠ACF=∠BCE. ∴△AFC≌△BEC. ∴AF=BE. (3)此处图形不惟一,仅举几例. 如图,(1)中的结论仍成立. (4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE. 。
三角形练习题一
错例分析例1:画出三角形ABC 的高。
A解析:学生在作图时往往会因为怕麻烦而不使用作图工具,不采用标准的作图方法,相信自己的眼睛大致的做出一条垂直线段,就容易出现不经过顶点,不与底边垂直的情况。
画三角形的高通常用三角尺做工具来画:把三角尺的一条边与指定的底边重合,沿底边平移三角尺,直到另一条边通过与该底边相对的顶点,再从顶点起沿直角边向底边画线段,此线段便是三角形的高,最后标上直角符号。
答案 如图所示:例2:下图中,∠2 = 50o ,∠4 =110o ,求∠1的度数。
A B C DBCD 1∠1 =180o—∠2 —∠4= 180o —50o —110o = 20o错因分析:没有看懂题目中每个角的关系,没有理解三角形内角和等于180度这句话的含义,只是盲目的运用所学的知识进行解题。
答案:方法1此题可应用三角形内角和知识进行解答。
已知∠2 = 50o,∠3 的度数没有直接给出,但是∠4和∠3合起来正好是一个平角,等于180o,与这个三角形的内角和相等,即∠3 + ∠4 = ∠1 + ∠2 + ∠3 ,所以∠4 = ∠1 + ∠2 ,由此可知∠1的度数。
因为∠4 = ∠1 + ∠2,故∠1 = ∠4 —∠2 = 110o —50o = 60o 方法2∠3和∠4组成了一个平角,已知∠4 =110o,所以∠3通过180o —∠4可求出,再利用三角形内角和180o减去∠2和∠3,就可求出∠1的度数。
∠3 = 180o—∠4 = 180o—110o = 70o∠1 =180o—∠2 —∠3= 180o —50o —70o = 60o归纳总结三角形的内角和是180o,三角形三个角中已知两个角的度数,求第三个角的度数,用内角和(180o)连续减去已知的两个角的度数或减去这两个角的度数之和即可。
思路拓展1、三角形的一个外角等于不相邻的两个内角之和。
2、三角形内角和的应用:利用三角形内角和可求出任意一个多边形的内角和。
四年级三角形练习题(1)
一、填空:1、由( )围成的图形叫作三角形,三角形有( )条边,( )个角,()个顶点。
2、三角形按角可以分为()三角形、()三角形、()三角形。
3、等边三角形的三个内角(),都是()度,等边三角形又叫()三角形。
4这条边叫做三角形的()5、三角形一个内角的度数是108°,这个三角形是()三角形6、一个三角形三条边的长度分别为7厘米,8厘米,7厘米,这个三角形是()三角形。
7、一个三角形两个内角的分别为35°,67°,另一个内角的度数是(),这是一个()三角形。
8、等腰三角形的底角是75°,顶角是(),9、在一个直角三角形中,一个锐角是75°,另一个锐角是()。
10、一个等腰三角形的一条边是5厘米,另一条边长4厘米,围成这个等腰至少要()厘米的绳子。
11.一个三角形最多有( )个直角,最少要有( )个锐角。
12.如果一个三角形有两个内角的度数之和等于900,那么这个三角形就是( )三角形。
13、如右图,一块三角形纸片被撕去了一个角。
这个角是()度,原来这块纸片的形状是(三角形,也是()三角形。
二、判断题:(正确的打“∨”,错误的打“×”)1、一个钝角三角形里最多有两个钝角。
()2、两个一样的三角形可以拼成一个平行四边形。
()3.有一个内角是600的等腰三角形一定是等边三角形。
( )4.等腰直角三角形的底角一定是450 ()5.底和高都分别相等的两个三角形,它们的形状一定相同。
()6、用三根长度分别为5厘米、5厘米和11厘米的绳子可以围成一个等腰三角形。
()7、直角三角形、钝角三角形只有一条高。
()1、等边三角形是()三角形。
①锐角②直角③钝角2、一个三角形的三个内角都不小于60°,这个三角形一定是()三角形。
①等边②直角③钝角3、一个三角形的三个内角分别是75°、30°、75°,这个三角形是()。
初中数学三角形基础测试题附答案解析(1)
初中数学三角形基础测试题附答案解析(1)一、选择题1.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为()A.1 B.34C.23D.12【答案】D【解析】【分析】由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.【详解】∵AD是△ABC角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=4,AC=3,∴BG=1,∵AE是△ABC中线,∴BE=CE,∴EF为△CBG的中位线,∴EF=12BG=12,故选:D.【点睛】此题考查等腰三角形的判定和性质、三角形的中位线性质定理,解题关键在于掌握三角形的中位线平行于第三边,并且等于第三边的一半.2.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【解析】【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x <7+2,即5<x <9.因此,本题的第三边应满足5<x <9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x <9,只有6符合不等式,故选C .【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.3.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.4.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A.33°B.34°C.35°D.36°【答案】B【解析】【分析】由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.故选:B.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.5.下列长度的三条线段能组成三角形的是()A.2, 2,5B.3,3C.3,4,8D.4,5,6【答案】D【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】根据三角形三边关系可知,三角形两边之和大于第三边.A、2+2=4<5,此选项错误;B、3<3,此选项错误;C、3+4<8,此选项错误;D、4+5=9>6,能组成三角形,此选项正确.故选:D.【点睛】此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.6.如图11-3-1,在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC【答案】D【解析】【分析】【详解】设∠ADE=x,∠ADC=y,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以13x y,即∠ADE=13∠ADC.故答案选D.考点:三角形的内角和定理;四边形内角和定理.7.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.8.图中的三角形被木板遮住了一部分,这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能【答案】D【解析】从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D.9.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF 的最小值,再根据菱形的性质求出E′F的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴2234,作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.10.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【答案】A【解析】【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=12∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=12∠A=12×30°=15°.故选A.【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.11.如图,AA',BB'表示两根长度相同的木条,若O 是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为( )A .8 cmB .9 cmC .10 cmD .11 cm【答案】B【解析】 解:由题意知:OA =OA ′,∠AOB =∠A ′OB ′,OB =OB ′,∴△AOB ≌△A ′OB ′,∴A ′B ′=AB =9cm .故选B .点睛:本题考查了全等三角形的判定及性质的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.12.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=o ;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a ∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.13.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠ADC =∠GCD ;③CA 平分∠BCG ;④∠DFB =12∠CGE .其中正确的结论是( )A .②③B .①②④C .①③④D .①②③④【答案】B【解析】【分析】 根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG ∥BC ,∴∠CEG=∠ACB ,又∵CD 是△ABC 的角平分线,∴∠CEG=∠ACB=2∠DCB ,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD 平分∠ACB ,∴∠ACD=∠BCD ,∴∠ADC+∠BCD=90°.∵EG ∥BC ,且CG ⊥EG ,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.14.下列条件中,不能判断一个三角形是直角三角形的是()A.三条边的比为2∶3∶4 B.三条边满足关系a2=b2﹣c2C.三条边的比为1∶1∶2D.三个角满足关系∠B+∠C=∠A【答案】A【解析】【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.【详解】A、三条边的比为2:3:4,22+32≠42,故不能判断一个三角形是直角三角形;B、三条边满足关系a2=b2-c2,即a2+c2=b2,故能判断一个三角形是直角三角形;C、三条边的比为1:1:2,12+12=(2)2,故能判断一个三角形是直角三角形;D、三个角满足关系∠B+∠C=∠A,则∠A为90°,故能判断一个三角形是直角三角形.故选:A.【点睛】此题考查勾股定理的逆定理的应用.解题关键在于掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.15.如图,AD∥BC,∠C =30°,∠ADB:∠BDC= 1:2,则∠DBC的度数是( )A.30°B.36°C.45°D.50°【答案】D【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【详解】∵AD ∥BC,∠C=30°∴∠ADC=150°,∠ADB=∠DBC∵∠ADB:∠DBC=1:2∴∠ADB=13×150°=50°,故选D. 【点睛】熟练掌握平行线的性质是本题解题的关键.16.如图,ABC V 中,5AB AC ==,AE 平分BAC ∠交BC 于点E ,点D 为AB 的中点,连接DE ,则DE 的长为( )A .2B .2.5C .3D 5【答案】B【解析】【分析】 根据等腰三角形三线合一可得AE ⊥BC ,再根据直角三角形斜边上的中线是斜边的一半即可求得DE 的长度.【详解】解:∵5AB AC ==,AE 平分BAC ∠,∴AE ⊥BC ,又∵点D 为AB 的中点,∴1 2.52DE AB ==, 故选:B .本题考查等腰三角形三线合一和直角三角形斜边上的中线.熟练掌握相关定理,并能正确识图,得出线段之间的关系是解题关键.17.如图:AD AB ⊥,AE AC ⊥,AD AB =,AE AC =,连接BE 与DC 交于M ,则:①DAC BAE ∠=∠;②DAC BAE ∆∆≌;③DC BE ⊥;正确的有( )个A .0B .1C .2D .3【答案】D【解析】【分析】 利用垂直的定义得到90DAB EAC ∠=∠=︒,则ADC BAE ∠=∠,于是可对①进行判断;利用“SAS ”可证明DAC BAE ∆≅∆,于是可对②进行判断;利用全等的性质得到ADC ABE ∠=∠,则根据三角形内角和和对顶角相等得到90DMB DAB ∠=∠=︒,于是可对③进行判断.【详解】解:AD AB ⊥Q ,AE AC ⊥,90DAB ∴∠=︒,90EAC ∠=︒,DAB BAC EAC BAC ∴∠+=∠+∠,即ADC BAE ∠=∠,所以①正确;在DAC ∆和BAE ∆中,DA AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS ∴∆≅∆,所以②正确;ADC ABE ∴∠=∠,∵∠AFD=∠MFB ,90DMB DAB ∴∠=∠=︒,DC BE ∴⊥,所以③正确.故选:D .【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.18.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于12DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定...是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF【答案】A【解析】【分析】根据作图过程和等腰三角形的定义进行分析即可.【详解】由作图过程可得:CD=CD,DF=EF,CD=CK所以,是等腰三角形的有△CDK,△CDE,△DEF;△CDF不一定是等腰三角形.故选:A【点睛】考核知识点:等腰三角形.理解等腰三角形的定义是关键.19.满足下列条件的两个三角形不一定全等的是()A.有一边相等的两个等边三角形B .有一腰和底边对应相等的两个等腰三角形C .周长相等的两个三角形D .斜边和一条直角边对应相等的两个等腰直角三角形【答案】C【解析】A.根据全等三角形的判定,可知有一边相等的两个等边三角形全等,故选项A 不符合;B.根据全等三角形的判定,可知有一腰和底边对应相等的两个等腰三角形全等,故选项B 不符合;C.根据全等三角形的判定,可知周长相等的两个三角形不一定全等,故选项C 符合;D.根据全等三角形的判定,可知斜边和直角边对应相等的两个等腰直角三角形全等,故选项B 不符合.故本题应选C.20.如图,在四边形ABCD 中,,90,5,10AD BC ABC AB BC ∠=︒==P ,连接,AC BD ,以BD 为直径的圆交AC 于点E .若3DE =,则AD 的长为( )A .55B .45C .35D .25【答案】D【解析】【分析】先判断出△ABC 与△DBE 相似,求出BD ,最后用勾股定理即可得出结论.【详解】如图1,在Rt △ABC 中,AB=5,BC=10,∴AC=55,连接BE ,∵BD 是圆的直径,∴∠BED=90°=∠CBA ,∵∠BAC=∠EDB ,∴△ABC ∽△DEB ,∴AB AC DE DB=,∴53DB =,∴DB=在Rt△ABD中,,故选:D.【点睛】此题考查勾股定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.。
三角形练习题及答案
三角形练习题及答案一、选择题1、下列长度的三条线段,能组成三角形的是()A 1cm,2cm,3cmB 2cm,3cm,6cmC 4cm,6cm,8cmD 5cm,6cm,12cm答案:C解析:三角形的三边关系为:任意两边之和大于第三边,任意两边之差小于第三边。
A 选项中,1 + 2 = 3,不满足任意两边之和大于第三边,所以不能组成三角形;B 选项中,2 + 3<6,不满足任意两边之和大于第三边,所以不能组成三角形;C 选项中,4 + 6>8,6 4<8,满足三角形三边关系,所以能组成三角形;D 选项中,5 + 6<12,不满足任意两边之和大于第三边,所以不能组成三角形。
2、一个三角形的三个内角的度数之比为 2∶3∶5,则这个三角形一定是()A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形答案:B解析:设三角形的三个内角分别为 2x°,3x°,5x°。
因为三角形内角和为 180°,所以 2x + 3x + 5x = 180,解得 x =18。
所以三个内角分别为 36°,54°,90°,所以这个三角形是直角三角形。
3、已知等腰三角形的两边长分别为 3cm 和 7cm,则这个等腰三角形的周长为()A 13cmB 17cmC 13cm 或 17cmD 无法确定答案:B解析:分两种情况讨论:当腰长为 3cm 时,3 + 3 = 6<7,不满足三角形三边关系,所以这种情况不成立。
当腰长为 7cm 时,7 + 7 = 14>3,7 7 = 0<3,满足三角形三边关系,此时周长为 7 + 7 + 3 = 17cm。
综上,这个等腰三角形的周长为 17cm。
4、下列说法正确的是()A 三角形的高是一条垂线B 三角形的三条中线相交于一点C 三角形的角平分线是一条射线D 三角形的三条高都在三角形内部答案:B解析:A 选项,三角形的高是从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高,所以三角形的高是线段,不是垂线,A 选项错误;B 选项,三角形的三条中线相交于一点,这个点叫做三角形的重心,B 选项正确;C 选项,三角形的角平分线是线段,不是射线,C 选项错误;D 选项,锐角三角形的三条高都在三角形内部;直角三角形有两条高为直角边,一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,D 选项错误。
第7章 三角形复习练习题1
第七章三角形复习练习(一)1.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为.2. 锐角三角形的三条高都在,钝角三角形有条高在三角形外,直角三角形有两条高恰是它的。
3. 在△ABC中,若∠A=∠C=13∠B,则∠A= ,∠B= ,这个三角形是。
4、三角形有两条边的长度分别是5和7,则第三条边a的取值范围是___________。
5. 已知三角形的两边长为4,8,则第三边的长度可以是(写出一个即可).6.两根木棒的长分别为7cm和10cm.要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x(cm)的范围是____________.7.等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰边长为_____cm..8.若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____.9.已知△ABC的周长是偶数,且a=2,b=7,则此三角形的周长是_________。
10.等腰△ABC的两边长分别为2和5,则第三边长为.11.若等腰三角形的一个内角为50°,则这个等腰三角形顶角的度数为.12.已知等腰三角形的一个角为70°,则它的顶角为度.13.若等腰三角形的一个外角为70°,则它的底角为度.14.等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周长之差为2cm,则这个等腰三角形的腰长为_____________________.15.在等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6 两部分,则这个三角形的腰长及底边长分别是_____________________________________.16.将一个三角形截去一个角后,所形成的一个新的多边形的内角和__________。
三角形测试题及答案
三角形测试题及答案1. 选择题:- 以下哪个选项不是三角形的一个性质?A. 三角形的内角和为180度B. 三角形的任意两边之和大于第三边C. 三角形的任意两边之差小于第三边D. 三角形的任意两边之和等于第三边2. 填空题:- 如果一个三角形的两边长分别是3厘米和4厘米,那么第三边的长度至少是____厘米。
3. 计算题:- 已知三角形ABC中,角A是45度,角B是75度,求角C的度数。
4. 简答题:- 什么是等腰三角形?请给出一个等腰三角形的两个主要性质。
5. 应用题:- 一个等边三角形的边长是10厘米,求它的面积。
6. 证明题:- 证明:在直角三角形中,斜边的中线等于斜边的一半。
答案1. 选择题:D- 解释:三角形的任意两边之和必须大于第三边,而不是等于。
2. 填空题:1- 解释:根据三角形的不等式定理,任意两边之和必须大于第三边,所以第三边的长度至少是1厘米。
3. 计算题:60度- 解释:三角形内角和为180度,所以角C = 180 - 45 - 75 = 60度。
4. 简答题:- 等腰三角形是两边等长的三角形。
它的两个主要性质是:两边等长,且底角相等。
5. 应用题:25根号3平方厘米- 解释:等边三角形的高可以通过勾股定理求得,高h = √(10²- (10/2)²) = √(100 - 25) = √75。
面积S = (底 * 高) / 2 = (10 * √75) / 2 = 25√3。
6. 证明题:- 证明:设直角三角形ABC,其中角C为直角,斜边为AB。
中线CD 将斜边AB分为两等分,即AD = DB。
根据勾股定理,AC² + CD² = AD²,BC² + CD² = BD²。
由于AD = DB,我们可以得出AC² -BC² = AD² - BD²,即AB² = 4CD²,所以CD = AB/2。
一年级三角形练习题及答案
一年级三角形练习题及答案一、选择题1.下列图形中具有稳定性的有A 、正方形B、长方形 C、梯形 D、直角三角形2.下列长度的三条线段能组成三角形的是A、,4,B、,6,11C、 1,2,3D、,6,103.关于三角形的边的叙述正确的是A、三边互不相等B、至少有两边相等C、任意两边之和一定大于第三边D、最多有两边相等4.一个多边形的内角和是外角和的2倍,它是A、四边形B、五边形C、六边形D、八边形5.如图,点P有△ABC内,则下列叙述正确的是A、x?yB、x>yC、x By0xPDAB 第题C第题C 6.已知,如图,AB∥CD,∠A=700,∠B=400,则∠ACD=A、50B、00C、00D、 1100二、填空题7.已知在△ABC中,∠A=700,∠B=∠C,则∠C= 0 8.七边形的外角和为,n边形的外角和为9.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为10.如图,则∠1= ,∠2=0,∠3= 000第题1003211.桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的性;而活动挂架是四边形结构,这是利用四边形的性。
12.在△ABC中,∠A=900,∠B-∠C=240,那么∠B= 0,∠C= 013.一个多边形中,它的内角最多可以有个锐角14.正方形每个内角都是度,每个外角都是度15.已知一个十边形中九个内角的和的度数是12900,那么这个十边形的另一个内角为度三、解答题16.如图,按规定,一块横板中AB、CD的延长线相交成85角,因交点不在板上,不便测量,工人师傅连结AC,测得∠BAC=320,∠DCA=650,此时AB、CD的延长线相交所成的角是不是符合规定?为什么?ABDCFE17.已知△ABC是等腰三角形,如果它的周长为18㎝,一条边长4㎝,那么腰长是多少?18.△ABC中,∠B=∠A+100,∠C=∠B+200,求△ABC 各内角的度数20.如图,四边形ABCD中,AB∥CD,∠A=∠C,AD与BC有什么关系?为什么?∠B与∠D相等吗?为什么?附加题:1.BCPBCAD如图,已知点P在△ABC内任一点,试说明∠A与∠P的大小关系 A在n边形某一边上任取一点P,连结点P与多边形的每一个顶点,可得多少个三角形?你能否根据这样划分多边形的方法来说明n边形的内角和等于1800一年级数学上册单元作业题班级姓名分数一、填空。
2022-2023学年北师大版八年级数学下册《1-1等腰三角形》同步练习题(附答案)
2022-2023学年北师大版八年级数学下册《1.1等腰三角形》同步练习题(附答案)一.选择题1.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的腰长为()A.3cm B.6cm C.3cm或6cm D.3cm或9cm 2.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.50°或70°3.在△ABC中,已知∠A=∠B=2∠C,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB,若BE=2,则AE的长()A.B.1C.2D.5.如图所示,已知∠AOB=60°,点P在边OA上,OP=13,点M,N在边OB上,PM =PN,若MN=2,则OM的长为()A.4B.5C.6D.5.56.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5B.4C.3D.27.用反证法证明命题:“在△ABC中,∠A≠∠B,则AC≠BC”.应先假设()A.AC>BC B.AC<BC C.∠A=∠B D.AC=BC8.如图,平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在坐标轴上找一点P,使得△P AB是等腰三角形,则符合条件的P点共有()个.A.8B.7C.6D.59.如图,直线l1∥l2,△ABC是等边三角形∠1=50°,则∠2的大小为()A.60°B.80°C.70°D.100°10.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E的度数为()A.25°B.20°C.15°D.7.5°二.填空题11.等腰三角形一底角平分线与其对边所成的锐角为84°,则等腰三角形的顶角大小为.12.如图,△ABC中,AB=AC,∠ABC=40°,点D在线段BC上运动(点D不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.当△ADE是等腰三角形时,∠BAD的度数为.13.如图,△ABC中,AB=AC,AD=AE,BD=3cm,DE=4cm,则CD=cm.14.如图,在Rt△ABC中,∠B=30°,以点A为圆心,AC长为半径作弧,交直线AB于点D,连结DC,则∠DCB的度数是.15.在△ABC中,∠ABC=60°,AD为BC边上的高,AB=6,CD=1,则BC的长为.16.如果一条线段将一个三角形分割成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”;如果两条线段将一个三角形分割成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.(1)如图,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,则∠A=度;(2)在△ABC中,∠B=27°,AD和DE是△ABC的“好好线”,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,则∠C的度数为.三.解答题17.如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)若∠E=24°,求∠B;(2)若AB=5,AD=4,求△ABE面积.18.如图,在等腰△ABC中,AB=AC,过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.(1)求证:△ACD为等腰三角形;(2)若∠BAD=140°,求∠ACD的度数.19.如图,在△ABC中,AB=AC,∠BAC=36°,CD是∠ACB的平分线交AB于点D,(1)求∠ADC的度数;(2)过点A作AE∥BC,交CD的延长交于点E.①求证:△ADE是等腰三角形;②判断:△ACE是否是等腰三角形,请先写出结论,再说明理由.20.在△ABC中,AB=AC,BD平分∠ABC,交AC于点D,BD=AD.(1)如图1,求∠BAC的度数;(2)如图2,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.求证:AF=AB+BC.21.如图,在△ABC中,∠C=90°,BD分∠ABC交AC于点D,过点D作DE∥AB交BC 于点E,DF⊥AB,垂足为点F.(1)求证:BE=DE;(2)若DE=2,,求BD的长.22.如图,在△ABC中,D点是AB的中点,OD⊥AB于D,O点在AC的垂直平分线,(1)求证:△BOC是等腰三角形;(2)若∠BAC=80°,求∠BCO的度数.23.动点问题是数学学习中常见的问题,解决此类问题的关键是动中求静,运用分类讨论及数形结合的思想灵活解决问题.如图,在等边三角形ABC中,BC=6cm,点P在线段BA上从点B出发向点A运动(点P不与点A重合),点P运动的速度为2cm/s;点Q在线段CB上从点C出发向点B运动(点Q不与点B重合),点Q运动的速度为3cm/s,设点P,Q同时运动,运动时间为ts.(1)在点P,Q运动过程中,经过几秒时△PBQ为等边三角形?(2)在点P,Q运动过程中,若某时刻△PBQ为直角三角形,请计算运动时间t.24.探究与发现:如图①,在Rt△ABC中,∠BAC=90°,AB=AC,点D在底边BC上,AE=AD,连接DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B、C除外)上运动时,试猜想并探究∠BAD与∠CDE的数量关系;(3)深入探究:若∠BAC≠90°,试就图②探究∠BAD与∠CDE的数量关系.25.如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC 边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t 秒.(1)BP=(用t的代数式表示)(2)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(3)当点Q在边CA上运动时,出发秒后,△BCQ是以BC或BQ为底边的等腰三角形?参考答案一.选择题1.解:当腰是3cm时,则另两边是3cm,9cm.而3+3<9,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是6cm,6cm.则该等腰三角形的底边为3cm.故选:B.2.解:当这个内角为顶角时,则顶角为40°,当这个内角为底角时,则两个底角都为40°,此时顶角为:180°﹣40°﹣40°=100°,故选:C.3.解:设∠C=α,∵∠A=∠B=2∠C,∴∠A=∠B=2α,∵∠A+∠B+∠C=180°,∴2α+2α+α=180°,∴α=36°,∴∠A=∠B=72°,∴该三角形是等腰三角形.故选:A.4.解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,∴BE=CE=2,∴∠B=∠DCE=30°,∵CE平分∠ACB,∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,∴∠A=180°﹣∠B﹣∠ACB=90°.在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,∴AE=CE=1.故选:B.5.解:过点P作PD⊥OB于点D,∵∠AOB=60°,PD⊥OB,OP=13,∴∠OPD=30°,∴DO==6.5,∵PM=PN,MN=2,PD⊥OB,∴MD=ND=1,∴MO=DO﹣MD=6.5﹣1=5.5.故选:D.6.解:作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=10,∴在Rt△DEG中,DG=ED=×10=5,∴DF=DG=5.故选:A.7.解:反证法证明命题:“在△ABC中,∠A≠∠B,则AC≠BC”,先假设AC=BC.8.解:①当AB=AP时,在y轴上有2点满足条件的点P,在x轴上有1点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P,在x轴上有2点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.③当AP=BP时,在x轴、y轴上各有一点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.综上所述:符合条件的点P共有6个.故选:C.9.解:如图,∵△ABC是等边三角形,∴∠A=60°,∵∠1=50°,∴∠3=∠1+∠A=50°+60°=110°,∵直线l1∥l2,∴∠2+∠3=180°,∴∠2=180°﹣∠3=70°,故选:C.10.解:∵△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CGD+∠CDG,∴∠CGD+∠CDG=60°.∵CG=CD,∴∠CGD=∠CDG=30°.∵∠CDG=∠DFE+∠E,∴∠DFE+∠E=30°.∴∠E=∠DFE=15°.故选:C.二.填空题11.解:设∠ABC=∠C=2x°,∵BD平分∠ABC,∴∠ABD=∠CBD=x°,则∠A=180°﹣4x°,①当∠ADB=84°时,在△ABD中,x+180﹣4x+84=180,解得:x=28,∴∠A=180°﹣4×28°=68°;②当∠CDB=84°时,∵∠CDB=∠A+∠ABD,∴84=180﹣4x+x,解得:x=32,∴∠A=180°﹣4×32°=52°;综上所述:∠A的度数为52°或68°,故答案为:52°或68°.12.解:∵AB=AC,∠ABC=40°,∴∠ACB=∠ABC=40°,∴∠BAC=100°,∵∠ADE=40°,△ADE是等腰三角形,分情况讨论:①AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时D点与B点重合,不符合题意;②EA=ED时,∠EAD=∠ADE=40°,∴∠BAD=100°﹣40°=60°;③DA=DE时,∠DAE=∠DEA=70°,∴∠BAD=100°﹣70°=30°,综上,∠BAD的度数为60°或30°,故答案为:60°或30°.13.解:∵AB=AC,∴∠B=∠C.同理∠ADE=∠AED,∴180°﹣∠ADE=180°﹣∠AED,即∠ADB=∠AEC,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=CE=3cm,∴CD=DE+CE=4+3=7(cm),故答案为:7.14.解:在Rt△ABC中,∠B=30°,∴∠A=60°,由作图可知AD=AC,∴△ACD是等边三角形,∴∠ACD=60°,∴∠DCB=90°﹣60°=30°.故答案为:30°.15.解:分两种情况:当高AD在△ABC内时,如图:∵AD⊥BC,∴∠ADB=90°,∵∠ABC=60°,∴∠BAD=90°﹣∠ABC=30°,∵AB=6,∴BD=AB=3,∵CD=1,∴BC=BD+CD=4;当高AD在△ABC外时,如图:∵AD⊥BC,∴∠ADB=90°,∵∠ABC=60°,∴∠BAD=90°﹣∠ABC=30°,∵AB=6,∴BD=AB=3,∵CD=1,∴BC=BD﹣CD=2;综上所述:BC的长为4或2,故答案为:4或2.16.解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°;故答案为:36;(2)设∠C=x.①当AD=AE时,∵2x+x=27°+27°,∴x=18°.②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°.所以∠C的度数是18°或42°.故答案为:18°或42°.三.解答题17.解:(1)∵AD⊥BC,BD=CD,∴AD是BC的中垂线,∴AB=AC,∴∠B=∠ACB;∵CE=CA,∴∠E=∠CAE=24°,∴∠B=∠ACB=2∠E=48°;(2)在Rt△ADB中,,∴BD=CD=3,AC=AB=CE=5,∴BE=2BD+CE=2×3+5=11,∴.18.(1)证明:∵BD平分∠ABC,∴∠1=∠2.∵AD∥BC,∴∠2=∠3.∴∠1=∠3.∴AB=AD.∵AB=AC,∴AC=AD,∴△ACD为等腰三角形;(2)解:由(1)知,∠1=∠2=∠3,∵∠BAD=140°,∠BAD+∠1+∠3=180°,∴∠1=∠2=∠3=(180°﹣∠BAD)=20°,∴∠ABC=40°,∵AB=AC,∴∠ACB=∠ABC=40°,由(1)知,AD=AC,∴∠ACD=∠ADC=∠BDC+∠3=∠BDC+20°,∵AD∥BC,∴∠ADC+∠BCD=180°,∴40°+(∠BDC+20°)+(∠BDC+20°)=180°,∴∠BDC=50°,∴∠ADC=70°,∵AC=AD,∴∠ACD=∠ADC=70°.19.(1)解:∵AB=AC,∠BAC=36°∴∠B=∠ACB=(180°﹣∠BAC)=72°,∵CD是∠ACB的平分线∴∠DCB=∠ACB=36°,∴∠ADC=∠B+∠DCB=72°+36°=108°;(2)①证明:∵AE∥BC∴∠EAB=∠B=72°,∵∠B=72°,∠DCB=36°,∴∠ADE=∠BDC=180°﹣72°﹣36°=72°,∴∠EAD=∠ADE,∴AE=DE,即△ADE是等腰三角形;②解:结论:△ACE是等腰三角形.理由:∵CD是∠ACB的平分线,∴∠BCE=∠ACE,∵AE∥BC,∴∠BCE=∠E,∴∠ACE=∠E,∴AE=AC,∴△ACE是等腰三角形.20.(1)解:设∠ABD=x°,∵BD平分∠ABC,∴∠DBC=x°,∵AB=AC,∴∠C=∠ABC=2x°,又∵BD=AD,∴∠A=x°,又∵∠BDC=∠A+∠ABD,即2x°=∠A+x°,∴∠BDC=∠C=2x°,∴BD=BC,在△ABC中,∠A+∠ABC+∠C=180°,∴x+2x+2x=180,解得x=36,∴∠A=36°,∴∠BAC的度数为36°;(2)∵E是AB的中点,BD=AD,∴EF是AB的垂直平分线,∴AF=BF,∴∠FBA=∠F AB=72°,∴∠AFB=∠F AC=36°,∴CA=CF,∴AB=AC=CF,∴AF=BF=BC+CF=AB+BC.21.(1)证明:∵BD分∠ABC,∴∠ABD=∠CBD.∵DE∥AB,∴∠EDB=∠ABD.∴∠CBD=∠EDB.∴DE=EB.(2)解:∵∠C=90°,∴DC⊥BC.又∵BD分∠ABC交AC于点D,DF⊥AB,∴CD=DF=.在Rt△CDE中,CE==1.∵DE=EB=2,∴BC=CE+EB=3.在Rt△CDB中,BD===2.22.(1)证明:∵D点是AB的中点,OD⊥AB于D,∴OD垂直平分AB,∴OA=OB,∵O点在AC的垂直平分线,∴OA=OC,∴OB=OC,∴△BOC是等腰三角形;(2)解:∵OA=OB,OA=OC,∴∠ABO=∠BAO,∠OAC=∠OCA,∴∠ABO+∠ACO=∠BAO+∠CAO=∠BAC=80°,∴∠OBC+∠OCB=180°﹣80°﹣80°=20°,∵∠OBC=∠OCB,∴∠BCO=10°.23.解:(1)∵点P运动的速度为2cm/s,点Q运动的速度为3cm/s,∴BP=2t(cm),BQ=(6﹣3t)(cm),当PB=BQ时,△PBQ是等边三角形,∴2t=6﹣3t,∴t=1.2,∴在点P,Q运动过程中,经过1.2秒时△PBQ为等边三角形.(2)①当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴PB=BQ,∴2t=(6﹣3t),∴t=,②当∠BQP=90°时,∠BPQ=30°,∴BQ=PB,∴6﹣3t=×2t,∴t=1.5,∴在点P,Q运动过程中,若△PBQ为直角三角形,t=s或t=1.5s.24.解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+,∴∠CDE=x;(3)设∠BAD=x,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=x,∴∠AED=y+x,∴x.25.解:(1)由题意可知AP=t,BQ=2t,∵AB=16cm,∴BP=AB﹣AP=(16﹣t)cm,故答案为:(16﹣t)cm;(2)当点Q在边BC上运动,△PQB为等腰三角形时,则有BP=BQ,即16﹣t=2t,解得t=,∴出发秒后,△PQB能形成等腰三角形;(3)①当△BCQ是以BC为底边的等腰三角形时:CQ=BQ,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10(cm),∴BC+CQ=22(cm),∴t=22÷2=11;②当,△BCQ是以BQ为底边的等腰三角形时:CQ=BC,如图2所示,则BC+CQ=24(cm),∴t=24÷2=12,综上所述:当t为11或12时,△BCQ是以BC或BQ为底边的等腰三角形.故答案为:11秒或12.。
(word完整版)三角形基础练习题
三角形基础练习题1、已知:如图已知△ABC求证:∠A+∠B+∠C=180°.证法一:作BC的延长线CD,过点C作CE∥BA,证法二:过点C作DE∥AB,证法三:在BC上任取一点D,作DE∥BA交AC于E,DF∥CA交AB于F,证法四:过点C作CD∥BA,2、在△ABC 中,2∠A=∠B+∠C,则∠A=度;∠A∶∠B∶∠C=1∶3∶5,则∠A= ∠B= ∠C= .3、如图,已知五角星ABCDE,求∠A+∠B+∠C+∠D+∠E的度数和为。
4、以4cm,8cm,10cm,12cm四根木条中的三根组成三角形,可以构成的三角形的个数是:;5、已知一个三角形的两边长分别是2cm和4cm,则第三边长x的取值范围是;若x是奇数,则x的值是;此三角形的周长p的取值范围是;6、一个等腰三角形的一边是2cm,另一边是9cm,则这个三角形的周长是 cm;一个等腰三角形的一边是5cm,另一边是7cm,则这个三角形的周长是 cm7、三角形的三条中线,三条角平分线,三条高_____,其中直角三角形的高线交点为直角三角形的_____,钝角三角形三条高的交点在_____.8、三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为( )。
9、如图,已知AD、AE分别是三角形ABC的中线、高,且AB=5cm,AC=3cm,则三角形ABD与三角形ACD的周长之差为,三角形ABD与三角形ACD的面积之间的关系为 .DCE BF10、如图,△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠B=46°,∠C=72°,则∠EAD=11、如图,△ABC 中BC 边上的高为12、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 13、在△ABC 中,AD 为中线,BE 为角平分线,则在以下等式中:①∠BAD=∠CAD;②∠ABE=∠CBE ;③BD=DC ;④AE=EC .正确的是_________________.14、给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的是_________________.15、如图,在△ABC 中,∠A=70°,点O 是内心,则∠BOC=_____ .16、如图,在△ABC 中,∠ACB=90°,CD ⊥AD ,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是△ABC 边AB 上的高;④线段CD 是△BCD 边BD 上的高. 正确的是_________________. 17、如图,D 、E 在线段BC 上.下列说法:①以A 为顶点的角共有6个;②图中有2对互补的角;③若∠BAE=m°,∠CAD=n°,则∠BAC+∠DAE=(m+n)°;④若BC=11,BD :CE=2:l,DE= 21BD+3,则S △ABD :S △ADE :S △ACE =4:5:2.其中说法正确的是_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是
.
2、下面四个图形中,线段BE 是△ABC 的高的图是()
A 、
B 、
C 、
D 、
3、已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是()
A .13cm
B .6cm
C .5cm
D .4cm
4、三角形一个外角小于与它相邻的内角,这个三角形是()
A .直角三角形
B .锐角三角形
C .钝角三角形
D .属于哪一类不能确定
5、如图,在直角三角形ABC 中,AC≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是个
6、下面说法正确的是有.①如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=2
1∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。
7、在△ABC 中,∠B 、∠C 的平分线相交于点P ,设∠A=x ,用x 的代数式表示∠BPC 的度数是.
第5题图第8题图第11题图第12题图第13题图
8、如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=°;
9、以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出个三角形;
10、给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有.
11、如图,一面小红旗其中∠A=60°,∠B=30°,则∠BCD=。
12、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是________________.
13、把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是度;
14、如图,∠1=10°,∠2=∠3=∠4=∠5=20°,则∠6=°;
第14题图第15题图
15、如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是________。
16、若三角形三个内角度数的比为2:3:4,则相应的外角比是.
17、如图,∠1+∠2+∠3+∠4+∠5+∠6=°
第17题图第18题图第19题图
18、如图△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度。
19、如图,△ABC中,∠A=1000,BI、CI分别平分∠ABC,∠ACB,则∠BIC=,若BM、CM 分别平分∠ABC,∠ACB的外角平分线,则∠M=°;
20、如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数分别是。
21、如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是。
22、小颖要制作一个三角形木架,现有两根长度为3m和5m的木棒。
如果要求第三根木棒的长度是整数,小颖有种选法,第三根木棒的长度可以是.
23、小华从点A出发向前走10m,向右转36°然后继续向前走10m,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回到点A时共走多少米?若不能,写出理由。
24、△ABC中,∠ABC、∠ACB的平分线相交于点O。
(1)若∠ABC=40°,∠ACB=50°,则∠BOC=。
(2)若∠ABC+∠ACB=116°,则∠BOC=。
(3)若∠A=76°,则∠BOC=。
(4)若∠BOC=120°,则∠A=。
(5)你能找出∠A与∠BOC之间的数量关系吗?
25、如图,已知在△ABC中,∠ABC的平分线与∠ACE的平分线交于D点,若∠A=80°,求∠D的度数;
26、一个零件的形状如图,按规定∠A=90º,∠C=25º,∠B=25º,检验已量得∠BCD=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。