初三数学-二次根式的概念
二次根式知识点的相关概念及对应的公式

二次根式知识点的相关概念及对应的公式一、引言二次根式作为数学中的重要概念,它涉及到了数学运算、代数式简化等方面,对于学习数学的人来说是一个基础而又重要的概念。
在学习二次根式的过程中,我们需要了解相关的概念和对应的公式,并且能够灵活运用于实际问题中。
本文将会从深度和广度的角度,全面评估二次根式的相关概念及对应的公式,并给出一个有价值的文章。
二、二次根式的概念1. 二次根式的定义二次根式是形如$\sqrt{a}$(其中$a\geq 0$)的式子,其中$a$称为被开方数。
我们称$\sqrt{a}$为二次根式,通常可以将$\sqrt{a}$理解为一个数,这个数的平方等于$a$。
$\sqrt{4}$就是一个二次根式,它的值为2,因为$2^2=4$。
2. 二次根式的简化在进行数学运算时,我们经常需要对二次根式进行简化。
当被开方数$a$为某个整数的平方时,二次根式$\sqrt{a}$可以进行化简,即$\sqrt{a}=\pm\sqrt{b}$,其中$b$为$a$的正平方根。
$\sqrt{25}=5$。
3. 二次根式的运算二次根式可以进行加减乘除运算,其中需要特别注意的是,二次根式在进行加减运算时,要求根指数相同才能进行运算。
在进行乘法和除法运算时,我们可以利用二次根式的性质进行化简。
三、二次根式的公式1. 二次根式的乘法公式当两个二次根式相乘时,可以利用乘法分配律进行化简,即$(\sqrt{a}\cdot\sqrt{b}) = \sqrt{ab}$。
这个公式在化简乘法运算时非常有用。
2. 二次根式的除法公式当两个二次根式相除时,可以通过有理化的方法,将分母有理化为整数,从而进行化简。
$\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a}}{\sqrt{b}}\cdot\frac{\sqrt{ b}}{\sqrt{b}}=\frac{\sqrt{ab}}{b}$。
3. 二次根式的加法和减法公式二次根式的加法和减法需要根指数相同才能进行运算。
初三数学知识点归纳整理

初三数学知识点归纳整理最全初三数学知识点归纳篇一一、二次根式1、二次根式:一般地,式子叫做二次根式。
注意:(1)若这个条件不成立,则不是二次根式。
(2)是一个重要的非负数,即;≥0。
2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。
3、二次根式比较大小的方法:(1)利用近似值比大小。
(2)把二次根式的系数移入二次根号内,然后比大小。
(3)分别平方,然后比大小。
4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
5、二次根式的除法法则:(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
6、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式。
①被开方数的因数是整数,因式是整式。
②被开方数中不含能开的尽的因数或因式。
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。
(4)二次根式计算的最后结果必须化为最简二次根式。
7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
8、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
二、一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。
2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。
二次根式总结归纳

二次根式总结一、引言二次根式是数学中的一个重要概念,也是初等代数中一个基础的内容。
它在解方程、求根、化简表达式等问题中起着重要作用。
本文将对二次根式进行全面、深入的总结,包括重要观点、关键发现和进一步思考。
二、基本概念1. 二次根式的定义二次根式是指形如√a的表达式,其中a为非负实数。
当a为正实数时,√a有两个实数解;当a为零时,√0=0;当a为负实数时,√a没有实数解。
2. 二次根式的性质•非负实数的平方根仍为非负实数;•平方根具有唯一性,即对于任意非负实数a,√a唯一确定。
3. 二次根式的运算•加减法:对于两个二次根式√a和√b,如果它们的被开方数相同,则可以直接相加或相减;如果被开方数不同,则需要化简后再运算。
•乘法:对于两个二次根式√a和√b,它们的乘积可以化简为√ab。
•除法:对于两个二次根式√a和√b,它们的商可以化简为√a√b =√ab,其中b不能为零。
三、重要观点1. 二次根式的化简化简二次根式是解题中常见的操作。
可以利用平方根的性质,将二次根式化简为最简形式。
√8=√4⋅√2=2√2。
2. 二次根式的应用二次根式在解方程、求根、化简表达式等问题中经常出现。
在解关于x的方程时,可能会遇到形如x2=5的方程,需要求得x=±√5。
3. 二次根式与无理数二次根式通常是无理数。
无理数是指不能表示为两个整数的比值的实数。
π和e都是无理数。
而对于正实数a来说,如果其平方不是有理数,则其平方根一定是无理数。
四、关键发现1. 二次根式的图像二次根式的图像是一个开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
图像关于x轴对称。
2. 二次根式的大小比较对于两个非负实数a和b,如果a<b,则√a<√b。
但当a<0时,√a没有实数解。
3. 二次根式的近似值可以使用计算器或牛顿迭代法等方法求得二次根式的近似值。
可以利用牛顿迭代法逼近√2的值。
九年级二次根式知识点总结

九年级二次根式知识点总结数学是一门抽象而又具有逻辑性的学科,其中二次根式也是九年级数学中一个重要的知识点。
二次根式在数学中的应用是非常广泛的,掌握它的相关知识点对于学好高中的数学课程有着重要的意义。
本文将就九年级二次根式的一些核心知识点进行总结,以供同学们参考。
1. 二次根式的概念与性质二次根式是指形如√a的表达式,其中a为一个非负实数。
当a 为一个正实数时,√a称为二次根式的正根号;当a为一个非负实数时,√a称为二次根式的非负根号。
对于一个二次根式√a,满足以下性质:- 如果a和b都是正实数,那么√(a*b) = √a * √b,即二次根式的乘法法则;- 如果a和b都是正实数,那么√(a/b) = √a / √b,即二次根式的除法法则;- 如果a和b都是非负实数,那么√(a ± b) ≠ √a ± √b,即二次根式的加减法不具有简单的运算法则。
2. 二次根式的化简化简二次根式是指将二次根式√a转化为较简单的形式。
化简的方法有多种,具体可以根据不同的情况采用不同的策略。
对于一个二次根式√a,当a的因数中存在平方数时,可以使用因式分解的方法化简。
例如,对于√24,可以将24分解为2^2 * 3,即√(2^2 * 3) = √2^2 * √3 = 2√3。
当a的因数中没有平方数时,可以考虑使用合并同类项的方法化简。
例如,对于√6 + √2,可以将其合并为(1 + √2)√3。
3. 二次根式的加减运算二次根式的加减运算是指将两个二次根式相加或相减的过程。
在进行加减运算时,需要注意二次根式加减法不满足简单的运算法则,需要根据具体情况进行变形或化简。
对于两个二次根式√a和√b,可以进行如下的加减运算:- 如果a和b均为正实数,那么√a ± √b = √a± √b,即根号内无法进行合并;- 如果a和b均为非负实数,那么√a ± √b ≠ √a ± √b,需要进行合并同类项或化简。
九年级数学二次根式的概念、二次根式的乘除法知识精讲

初三数学二次根式的概念、二次根式的乘除法【本讲主要内容】二次根式的概念、二次根式的乘除法 1. 二次根式的概念 2. 二次根式的性质 3. 二次根式的乘法 4. 二次根式的除法【知识掌握】【知识点精析】一. 二次根式的概念:1. 定义:式子a a ()≥0叫做二次根式.注意:(1)根式定义中的a ≥0是定义的一个重要组成部分,不可省略;因为负数没有平方根,所以当a <0时,a 没有意义.如-2不是二次根式,()-22是二次根式,当a ≤0时,-a 是二次根式.(2)被开方数a 可以是数,也可以是代数式. 2. 最简二次根式(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式. (2)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简. ②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上. “三化”即化去被开方数的分母.二. 二次根式的性质:1. 非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2. ()()a a a 20=≥.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()()注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a a a 20=≥的区别与联系(1)a 2表示求一个数的平方的算术根,a 的X 围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的X 围是非负数. (3)a 2和()a 2的运算结果都是非负的.三. 二次根式的乘法ab a b a b =⋅≥≥()00,积的算术平方根,等于积中各因式的算术平方根的积.注意:(1)a b ≥≥00,是公式成立的必要重要条件.如()()-⨯-≠-⋅-4949 (2)公式中的a b ,可以是数,也可以是代数式,但必须是非负的.四. 二次根式的除法1.a baba b =≥>(,)00 商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 2. 分母有理化(1)把分母中的根号化去,叫做分母有理化.(2)分母有理化的依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式. (3)有理化因式两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式.常用的互为有理化因式有如下几种类型: ①a a 与;②a b a b +-与; ③a b a b +-与; ④a b c d a b c d +-与. (4)分母有理化时分母要先化简.【解题方法指导】例1. x 为何值时下列式子有意义? (1)21x + (2)-+15x (3)x x+-13 分析:要使二次根式有意义,被开方数必须是非负数. 解:(1)根据二次根式定义,得21012x x +≥∴≥-(2)根据二次根式定义,得-+≥∴+<∴<-1505005x x x ()分母不能为 (3)根据二次根式定义,得x x+-≥130 ∴+≥->⎧⎨⎩x x 1030或x x +≤-<⎧⎨⎩1030∴≥-<⎧⎨⎩x x 13或x x ≤->⎧⎨⎩13(空集)∴-≤<13x例2. 计算: (1)()62;(2)()352;(3)()82-a 解:(1)()662=(2)()()35359545222=⨯=⨯= (3)()882-=-a a点评:此例体现了公式()a a 2=的应用.对于(3)题()82-a ,其运算是先开平方、再乘二次方,所以题目本身已隐含了80-≥a .例3. 计算: (1)44176⨯;(2)-⨯⨯-4259169() (3)23483415⨯;(4)162436a a ⨯;(1)解法一:原式=⨯⨯=⨯=⋅=⨯=44444442442442882222 解法二:原式=⨯⨯⨯=⨯⨯=⨯⨯=11411161142114288222(2)解:原式=⨯⨯=⨯⨯425916925313222() =⋅⋅=253131303222()点评:运算时,(1)被开方数的积不要计算成一个结果,应是化简成幂的积的形式,以便于开方、化简;(2)被开方数的负因子要计算成正因子,才能用公式.(3)23483415⨯=⨯⨯=⨯⨯⨯=⨯⨯=2334481512163351243565 (4)162436163246a a a a ⨯=⨯⋅=⨯⨯=⨯⨯=12646126262a a a .例4. 化简. (1)19681;(2)27424c a b ;(3)385a ;(4)12a b a b ->()解法一:(1)原式==19681149(2)原式==⨯=27493232324222c a bc ab ab c ()解法二:(1)原式==()1491492 (2)原式=⋅=()323323222ab c ab c(3)原式=⋅⋅=a a a a 42321646注意:化去分母时,被开方数的分子、分母只要同乘2即可,若同乘8就太繁了. (4)原式=⨯--=--43232()()()a b a b a b a b 点评:化去被开方数的分母时,不能忘掉分子中开得尽方的因数的化简.例5. 把x yx y --分母有理化.解法一:原式=---=---=-()()()x y x y x y x y x yx yx y 2解法二:原式=--=-()x y x yx y 2(x y -中隐含条件x y ->0,故x y x y -=-()2) 同样,55555101010101022====()(),例6. 化简:1235133552735773+++++++++()()()()分析:联想分式中逆用分式加、减法,得到分子为1而分母也很简单的式子. 解:原式=+++++++++++()()()()()()()()1335133557735773=+++++++=-+-+-+-=11313515717312315375371() 点评:如果要直接化为同分母或先有理化分母,都太繁琐,但是,注意到数学中的公式总是双向的,如果根据题目的结构特点,灵活地逆用公式,在解题时便能左右逢源,得心应手.建议只能从左到右地运用公式而不习惯逆用(即由右到左)或变用公式的同学,对这几个题目多加分析,以求从熟悉、模仿到主动在解题中运用逆向思维的方法.例7. (2001年某某省中考题)填空题: 化简a a b a a ab-+的结果是________.分析:因为分母是含字母的根式,可能使a ab -=0,所以不可将分子、分母同乘以分母的有理化因子.但是,如果注意到分子、分母可以分解为乘积的形式,也许可以解决问题. 解:由所给算式知a b >≥00, ∴原式=-+=+-+=-a a b a a b a a b a b a a b a b ()()()()()【考点突破】【考点指要】二次根式的概念及其运算在中考说明中是C 级知识点,它们常与整式、分式、综合在一起,以选择题、填空题、计算题等题型出现在中考题中,大约占有4—8分左右.解决这类问题需熟练掌握二次根式的概念和运算法则.【典型例题分析】 例1. 选择题: (1)(2006年某某省中考题)函数y x =-1中,自变量的取值X 围是() A. x ≥1 B. x >1 C. x >0 D. x ≠1 (2)(2003年某某市中考题)选择题:如果()x x -=-222,那么x 的取值X 围是()A. x ≤2B. x <0C. x ≥2D. x >2(3)选择题:若a a a a 2211-=-,则a 的取值X 围是() A. a a >≠01且 B. a ≤0 C. a a ≠≠01且D. a <0(4)(1996年某某省中考题)选择题:若ab ≠0,则等式--=-a b b ab 531成立的条件是()A. a b >>00,B. a b ><00,C. a b <>00,D. a b <<00,分析:正确运用二次根式性质的前提是被开方数的非负性(在分母上则不能为零). 解:(1)要使x -1有意义,x -≥10,∴≥x 1 答案:选A .(2)等式()x x -=-222成立的条件是x -≥20,即x ≥2 故选C .(3)由a a aa 2211-=-,得 ||()a a a a 111-=- 即-⋅-=-||a a a a 1111于是,-=||a a1∴<a 0.故选D .(4)等式--=-a b bab 531变形为--=-1133||b ab b ab , 这个等式成立的条件是 ->=-⎧⎨⎩ab b b 0||即ab b <<⎧⎨⎩0 ∴><a b 00且故选B .点评:正确运用二次根式性质的前提是掌握公式中被开方式中字母的取值X 围,而且这个X 围必须使每个二次根式都有意义,因本例的问题是找使公式能成立的条件,所以是逆向求字母的取值X 围,这种方法常归结为求不等式组的解的问题.★最简根式 例2. 选择题: (1)(2004年某某市中考题)下列二次根式中,最简二次根式是()A.12B. 8C. y 3D. a 21+ (2)(2002年某某市中考题)下列二次根式中,属于最简二次根式的是()A. 4aB. a 4C. a4D. a 4(3)下列根式中,最简二次根式是()A. 23aB. aa3 C. a b b a D. a a b 423+(4)(2001年某某省中考题)下列二次根式:2xy ,8,ab2,35xy ,x y +,12,其中最简二次根式共有()A. 2个B. 3个C. 4个D. 5个分析:紧扣最简二次根式的条件:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.解:(1)因为12中含有分母,822232=⋅=⋅和y y y 的被开方数中含开得尽方的因数或因式,它们都不是最简二次根式,只有a 21+满足最简二次根式的条件,故选D . (2)选C . (3)选B .(4)只有2xy x y 和+是最简二次根式,故选A .点评:判断一个二次根式是不是最简二次根式,必须抓住由“两条”刻画的“最简”含义,先看被开方数的因数是不是整数,因式是不是整式,再看被开方数是不是含有能开得尽方的因数或因式,如果“两条”都满足的就是最简二次根式,否则就不是最简二次根式.★对错难辨例3. (2001年某某市中考题)阅读下面的文字后,回答问题.小明和小芳解答题目“先化简下式,再求值:a a a +-+122,其中a =9”时,得到了不同的答案.小明的解答是:原式=+-=+-=a a a a ()()1112;小芳的解答是:原式=+-=+-=-=⨯-=a a a a a ()()1121291172; (1)__________的解答是错误的.(2)错误的解答错在未能正确运用二次根式的性质:________. 答案:(1)小明(2)a a 2=||点评:本例中,小明的错误是同学最容易出现的错误,如a a a a 22=-=-,(),42=±,等等.纠正办法是:①明确“a ”表示算术平方根;②明确算术平方根的非负性,即a a ≥≥00(),也就是说a 只能是正数或0,而不可能是负数;③在化简a 2时,应利用公式a a 2=||过渡,稍作停留,冷静下来,看清算术根的实质,再去掉绝对值符号(需分类讨论时再分类写出答案),即可确保万无一失.★隐含条件例4. (1)(2002年市顺义区中考题)把二次根式a a-1化简,正确的结果是() A. -aB. --aC. -aD. a(2)(2001年某某省中考题)化简二次根式a a a -+12的结果是() A. --a 1B. ---a 1C. a -1D. --a 1分析:紧紧抓住:对于a ,只有当a ≥0时,a 才表示a 的算术平方根. 解:(1)显然a ≠0,由->10a,得a <0 ∴-=-=⋅-=⋅-=--=--a a a a a a a aa a a a a a a 122||故选B .点评:①因为二次根式a 隐含条件“a ≥0”,所以本题隐含了一个条件->10a②a a a a ||()()=>-<⎧⎨⎩1010(2)显然a ≠0.由a a aa 2201010>-+≥-+≥,,得() ∴≤-∴=-+=⋅-+=⋅-+a aa a a a a a a a 111122原式()()()|| =---=---aa a a 11 故选B . 点评:在化简二次根式a 2的问题中,要把根式的性质a a 2=||与绝对值||a 的概念结合起来,形成一条“等式链”:a a a a a a 200==≥-<⎧⎨⎩||(),()在具体解题时,强调在这个“等式链”的中间一环——||a 处“暂停”,以便由||a 再考虑a 的符号,以保证最后结果为非负数. ★对错难辨例5. (1)(2002年某某省中考题)选择题:化简132+.甲、乙两位同学的解法如下:甲:13232323232+=-+-=-()()乙:132323232323232+=-+=+-+=-()()对于甲、乙两位同学的解法,正确的判断是()A. 甲、乙的解法都正确B. 甲正确、乙不正确C. 甲、乙的解法都不正确D. 甲不正确、乙正确(2)选择题:有理化分母:x yx y-+小聪和小明的解法如下:小聪的解法:原式=--+-()()()()x y x y x y x y=---=-()()x y x y x yx y小明的解法:原式=-+()()x y x y22=+-+=-()()x y x y x yx y对于小聪、小明的解法,正确的判断是()A. 小聪、小明的解法都正确B. 小聪正确、小明不正确C. 小聪、小明的解法都不正确D. 小聪不正确、小明正确分析:在作二次根式的除法时,通常把除法写成分数的形式,所得的商应是分母中不含根号的式子.如果分母中含有根号,就要把分母中的根号化去.至于怎么“化去”分母中的根号,既可以采用根式的除法运算,也可以在分子、分母上同乘以分母的有理化因式,只要能使分母变成有理式(但分母的值不能为零!) 解:(1)甲的解法是在分子、分母上同乘以分母()32+的有理化因式()32-,使分母变成了有理式1,所得的商是分母中不含根式的式子.所以,甲的解法正确.乙的解法是把分子1变成()32-后分解变形,变成()()3232+-,利用二次根式的除法运算(实际上是“约分”),也把分母变成了有理式1,所得的商也是分母中不含根式的式子,所以,乙的解法也正确. 故选A .(2)首先注意题目的隐含条件:由已知的算式可知,应该有x >0且y >0.但是,x y 、之间的大小关系,在已知算式中没有特别地表明,所以,x y 、之间的关系应该有:x y x y ≠=或.由此可见,小聪的解法不正确.错误的原因是:如果x y =,那么x y -=0,分子、分母就不能同乘以分母()x y +的有理化因式()x y -.小明的解法是正确的.因为他把分子x y -分解变形:由x y x y x y x y x y >>-=-=+-0022,,得()()()(),然后应用根式的除法运算使分母中的根号化去,符合分母有理化的标准,而且在这个过程中,保持分母不为零.所以,小明的解法正确. 故选D . 点评:本题表现的是分母有理化的两种基本方法以及应该注意的地方.在作二次根式的除法时,特别是除式的两个根式的和的情形,如本例两个小题那样,为了化简或计算上避免作除数是近似小数的除法运算,要使所得的商是分母中不含根式的式子,就要化去分母中的根号(这个过程就是分母有理化),基本方法一是分子、分母同乘以分母的有理化因式,使分母变为有理式;二是通过分子的分解变形约去分母中的根号.这是代数中的基本功,一定要熟练掌握.当然,由于所给式子结构形式的其他特点,也可以采用其他的办法进行分母有理化.★化简求值例6. (1)(2002年某某省某某市中考题)当x =-21时,求x x x x x x x +-++⋅-++13114322的值. 分析:先化简,再代入求值.解:x x x x x x x +-++⋅-++13114322 =+-++⋅+-++=+--+=+x x x x x x x x x x x x x 131111311111()()()()∴当x =-21时原式=-+==12111222(2)(2002年某某市中考题)填空题:已知x =+21,则代数式:x x x x x x x x -+--÷--++121221222的值等于______. 解:原式=-+--⋅++--x x x x x x x x 121212222 =-+-+-⋅++-=-+-=+-x x x x x x x x x x x x x 1211112111112()()()()()∴当x =+21时原式=+++-=+=+211211212212()(3)(2001年某某省某某市中考题)已知a =+123,求a a a a a a a2226221--+--+-的值. 分析:“目标”中有a a 221-+,化简时应由已知推知a -1的正负.解:由a =+=-<123231,得a -<10∴原式=+-+---()()()()a a a a a a 232112=----=-+--=+-a a a a a a a a a a31131113||()()a =-∴=-++-=23232331,原式点评:本题因化简()a -12需要将123+进行分母有理化,得到a =-<231,一方面解决了a -<10,从而()()a a -=--112,使原式顺利化简,另一方面又在最后求值计算a a +1时正好用上了,再注意到由已知即得123a=+,使计算合理、正确、迅速.这个题目设计巧妙,考查了有理式变形(因式分解、约分)和根式变形(化简()a -12、分母有理化),以及计算的灵活性、合理性,是一个多功能的好题.【综合测试】一. 选择题:1. (某某市)下列二次根式中,最简二次根式是() A. 22xB. b 21+C. 4aD.1x2. (某某省)在下列式子中,正确的是() A. -=-5533 B. -=-3606.. C. ()-=-13132D. 366=± 3. (市某某区)化简1231-的结果为()A. 231+B. 231-C.23111- D. 23111+ 4. (某某市)下列二次根式中,属于最简二次根式的是()A. 4aB. a 4C. a4 D. a 45. (某某市)化简132-的结果是()A. 32-B. 32+C. --32D. -+326. (某某市)下列二次根式中,属于最简二次根式的是()A. x2B. 8C. x 2D. x 21+7. (某某回族自治区)已知a =+132,b =-32,那么a 与b 的关系为()A. a b =B. a b +=0C. ab =1D. ab =-18. (某某市)-a 3化简的结果为()A. -a aB. a a -C. --a aD. a a 9. 在根式2823512xy ab xy x y ,,,,,+中,最简二次根式的个数是() A. 2B. 3C. 4D. 510. (2001某某)能使等式xx xx -=-22成立的x 取值X 围是()A. x ≠2B. x ≥0C. x >2D. x ≥2二. 填空题:1. (某某省)若x <5,则()x -=52_______.2. (某某市)若14<<x ,则化简()()x x -+-4122的结果是________.3. (某某市)计算⋅---+)3223(1313()3223+=_________.4. (某某市)已知x =-152,则x x -1的值等于_______. 5. (某某省)已知,实数a b ,在数轴上对应点的位置如图所示,化简:b b a --=()2_______.a 0 b6. (某某市)已知x ≤1,化简124422-+--+=x x x x _______.三. 当x 是何实数时,下列各式分别为二次根式? (1)21x +;(2)-52x ; (3)1-||x ;(4)x x 244-+四. 化简:1. ()()()x x x ---<<810810222. ()()x y x yx y ---<13. a ab ab b ab a b 2240+⋅+⋅<<()4. ()()m n mnm mn n n m 222220--+>>5. |()|||()x x x x --+-<22112五. 求代数式的值:1. (某某市)先化简,再求值:()1112+÷-x x x,其中x =22. (市东城区)已知a b =-=+152152,,求b a ab ++2的值. 3. (某某省)先化简,再求值:()()()2121212a a a +-+-,其中a =-512六. (某某市)化简352+,甲、乙两同学的解法如下:甲:3523525252+=-+-()()()=-52;乙:352525252+=+-+()()=-52对于他们的解法,正确的判断是() A. 甲、乙的解法都正确B. 甲的解法正确,乙的解法不正确C. 乙的解法正确,甲的解法不正确D. 甲、乙的解法都不正确七. 把代数式()x y x y---1根号外的因式移到根号内,并化简.某同学这样解:原式=---=--=-()()x y x yx y y x 2问:他做得对吗?如果不对,就指出错误的原因,并写出正确的解法.八. 已知a b =51,是a 的小数部分,求a b21-的值.【综合测式答案】一. 1. B 2. A 3. D 4. C5. B6. D7. B8. C9. A10. C二. 1. 5-x 2. 33. 34-4. 45. a6. -1三.解:(1)要使21x +为二次根式,必须210x +≥,即x ≥-12∴当x ≥-12时,21x +为二次根式. (2)要使-52x 为二次根式,必须-≥502x ,即x 20≤,而x 2是非负的,得x =0.∴当x =0时,-52x 为二次根式.(3)要使1-||x 为二次根式,必须10-≥||x ,得||x ≤1,即-≤≤11x .∴当-≤≤11x 时,1-||x 为二次根式.(4)要使x x 244-+为二次根式,必须04x 4x 2≥+-,而x x x 22442-+=-(),不论x 取何实数,()x -22是非负的,即()x -≥202.∴x 取任意实数时,x x 244-+都为二次根式.说明:通过本例我们应进一步明确a a ()≥0的意义.不是对任意的实数a a ,都有意义,只有当a 有意义时,它才叫做二次根式.四. 1. 原式=---=---=--+=-||||()x x x x x x x 810810810218 2. 原式=-----=--()()()x y x y x y y x3. 原式=++⋅=+=+()()()|()|a ab ab b ab a b a b ab a b 22222442=-+=--22222ab a b a b ab ()4. 原式=+--=-+()()(()m n m n n m)mn m n mn5. 原式=--+-=-++-=|()()|||x x x x x x 2212220五. 1. 原式=+⋅+-=-x x x x x x 11111()() 当x =2时,原式=-=+121212. a =-=+15252,b =+=-15252原式=+=++-+-==()()()()()a b ab 2225252525225120 3. 原式=++--4414122a a a ())1a 2(22a 41a 41a 4a 422+=+=+-++= 当a =-512时,原式52)115(2=+-=六. A七. 解:他做得不对.错误的原因是他没有考虑到原式成立的隐含条件是-->10x y,即x y -<0.因为把根号外的代数式移到根号内时,实际上是在逆用“等式链”a a a a a a 200==≥-<⎧⎨⎩||()()也就是说,应先考虑移到根号内的代数式的正、负,注意只能把正因式平方后移到根号内.正确的解法:由所给代数式知-->10x y,故x y -<0.∴原式=---()y x y x1=---=--()y x y x y x 2说明:如果你不能看出某同学解法的问题,就可以把具体的数代入算算看,例如取x y ==37,(思考:为什么不取x y ==73,呢?)那么,一方面,由题目的原式=---=-=-()371374142;另一方面,由这位同学解得的结果得原式=-=734=2.由此可见,这位同学做错了.八. 解:由495164<<,得7518<< ∴a 的小数部分b =-517 ∴-=--=-+-a b 2151215175125175149 272751251-=+-=。
初中数学 什么是二次根式

初中数学什么是二次根式二次根式是指含有二次根号的代数式,也可以理解为二次方程的根。
在初中数学中,学生会接触到二次根式的概念和运算。
接下来,我将详细介绍二次根式的定义、性质、运算规则以及解题技巧。
希望这篇文章能够帮助你更好地理解和应用二次根式。
一、二次根式的定义与性质1. 定义:二次根式是形如√a的表达式,其中a是一个非负实数。
如果a是一个非负实数的平方,那么√a是一个有理数;如果a不是一个非负实数的平方,那么√a是一个无理数。
2. 性质:a. 二次根式的值是非负的,即√a ≥ 0。
b. 二次根式的平方等于被开方数,即(√a)² = a。
c. 二次根式可以进行加减乘除运算,具体的运算规则将在下一部分介绍。
二、二次根式的运算规则1. 加减法运算:a. 同类项相加减:对于同类项的二次根式,可以直接对其系数进行加减运算。
例如,√2 + √2 = 2√2。
b. 不同类项相加减:对于不同类项的二次根式,无法直接进行加减运算,需要进行化简。
例如,√2 + √3 无法进行直接运算,但可以化简为√6(根据乘法公式√a * √b = √(ab))。
2. 乘法运算:a. 二次根式的乘法遵循乘法公式:√a * √b = √(ab)。
例如,√2 * √3 = √(2 * 3) = √6。
b. 多个二次根式相乘时,可以使用乘法交换律和结合律进行化简。
例如,√2 * √3 * √5 = √(2 * 3 * 5) = √30。
3. 除法运算:a. 二次根式的除法遵循除法公式:√a / √b = √(a / b)。
例如,√6 / √2 = √(6 / 2) = √3。
b. 多个二次根式相除时,同样可以使用除法公式进行化简。
例如,√30 / √2 = √(30 / 2) = √15。
三、二次根式的化简与合并1. 化简:将一个二次根式表示为最简形式。
例如,√8可以化简为2√2。
2. 合并:将多个二次根式合并为一个二次根式。
二次根式的概念与运算

二次根式的概念与运算二次根式是数学中的一个重要概念,它与根式和平方根密切相关。
在本文中,我们将介绍二次根式的定义、运算法则以及一些常见的例题,帮助读者更好地理解和运用二次根式。
一、二次根式的定义二次根式是指形如√a的根式,其中a是一个非负实数。
在二次根式中,√称为根号,a称为被开方数。
二次根式有以下几个基本特点:1. 当被开方数a为非负实数时,二次根式有意义,结果为一个实数;2. 当被开方数a为负实数时,二次根式无意义,即不存在实数解。
二、二次根式的运算法则1. 二次根式的相加减法则:对于两个二次根式,若它们的被开方数相同,则它们可以直接相加或相减。
例如:√2 + √2 = 2√2;5√3 - 2√3 = 3√32. 二次根式的乘法法则:对于两个二次根式,可以对它们的被开方数和根号下的数分别进行乘法运算,并将结果相乘。
例如:√2 × √3 = √(2 × 3) = √63. 二次根式的除法法则:对于两个二次根式,可以对它们的被开方数和根号下的数分别进行除法运算,并将结果相除。
例如:√6 ÷ √2 = √(6 ÷ 2) = √3三、二次根式的化简在进行二次根式的运算过程中,我们常常需要对二次根式进行化简,使得结果更简洁。
在化简二次根式时,可以利用以下的方法:1. 因式分解法:将被开方数进行因式分解,然后利用乘法法则将二次根式化简。
例如:√(8) = √(2 × 2 × 2) = 2√22. 合并同类项法:对于具有相同根号下的数的二次根式,可以合并为同一个二次根式。
例如:5√3 + 3√3 = 8√3四、二次根式的应用举例下面我们来举一些常见的二次根式的应用例题,帮助读者更好地理解和运用二次根式的概念和运算法则。
例题一:计算下列各式的值,并化简结果:√12 + 2√3解:首先对被开方数进行因式分解:√12 = √(2 × 2 × 3) = 2√3将化简后的结果代入原式:2√3 + 2√3 = 4√3例题二:化简下列各式:5√6 - √24解:对被开方数进行因式分解:√24 = √(2 × 2 × 2 × 3) = 2√6将化简后的结果代入原式:5√6 - 2√6 = 3√6总结:本文介绍了二次根式的定义、运算法则,以及二次根式的化简方法。
九年级数学二次根式知识点

九年级数学二次根式知识点二次根式是九年级数学中一个比较重要的知识点,也是进一步学习高中数学的基础。
在本文中,我们将对九年级数学中的二次根式进行详细讲解和探讨。
一、二次根式的概念九年级数学中,我们通常会遇到如√2、√3等形式的二次根式。
二次根式指的是具有根号的平方根形式的数值。
在二次根式中,根号下的数被称为被开方数,而根号则表示进行开方运算。
例如,√2即为2的平方根。
但是,√2并不能得到一个精确的有限小数,因此我们通常用无限循环小数√2≈1.414来表示。
这是因为2的平方根是一个无理数,不是可以精确表示的有理数。
二、二次根式的化简在处理二次根式时,我们经常会遇到需要将其进行化简的情况。
化简二次根式可以使其更加简洁,方便进行数学运算。
首先,我们要注意的是二次根式的化简与因式分解是有差异的。
因式分解是将一个多项式分解为多个因子的乘积,而化简二次根式是对根号下的数进行简化。
例如,当我们遇到√18时,可以将18进行因式分解并写成3×3×2的形式。
这样,我们可以得出√18=√(3×3×2)=3√2。
在最后的结果中,我们把含有完全平方数的因子移到根号外面,并用其平方根代替原来的因子。
同样地,我们还可以化简二次根式之间的运算。
例如,当我们需要计算√8 + √32时,可以将其化简为√(4×2)+√(16×2)。
再进一步化简,我们可以得到2√2+4√2=6√2。
这样,我们通过合并同类项,并进行了有理化简。
三、二次根式的运算在九年级数学中,我们经常需要对二次根式进行加减乘除等运算。
下面我们将对这些运算进行探讨。
1. 加法与减法当我们对二次根式进行加法或减法运算时,需要先化简,然后合并同类项。
例如,计算√3+√5。
我们可以化简这个算式为√3+√5,然后观察根号下的数是否相同。
由于3和5不是完全平方数,因此无法合并。
所以,最终的结果为√3+√5。
2. 乘法对于二次根式的乘法运算,我们需要注意的是,当根号外面的系数相同时,我们可以把根号下的数相乘。
二次根式知识点

二次根式知识点二次根式在数学中是一个十分重要的概念,涉及到数学中的代数、方程、函数等多个知识领域。
本文将介绍二次根式的定义、性质、运算法则以及实际问题中的应用,并且通过实例帮助读者更好地理解和应用二次根式。
一、二次根式的定义在数学中,二次根式是指形如$\\sqrt{a}$的表达式,其中a是一个实数且$a\\geq0$。
该表达式表示的是一个非负实数,使得它的平方等于a,即$(\\sqrt{a})^2 = a$。
二、二次根式的性质1.二次根式的值一定是非负实数,即$\\sqrt{a} \\geq 0$。
2.如果$a \\geq 0$且$b \\geq 0$,则$\\sqrt{a} \\cdot \\sqrt{b} =\\sqrt{ab}$。
3.如果$a \\geq 0$且$b \\geq 0$,则$\\sqrt{a} + \\sqrt{b}$不一定等于$\\sqrt{a+b}$。
三、二次根式的运算法则1.加减法:二次根式只有在被加减数相同时才能相加或相减,即$\\sqrt{a} \\pm \\sqrt{a} = 2\\sqrt{a}$。
2.乘法:二次根式的乘法可按照分配律进行展开,即$(\\sqrt{a} \\pm\\sqrt{b})(\\sqrt{a} \\pm \\sqrt{b}) = a + 2\\sqrt{ab} + b$。
3.除法:二次根式的除法需要进行有理化处理,即将分母中的二次根式消去。
四、二次根式的应用二次根式常常在实际问题中得到应用,比如在几何中计算斜边长、梯形面积等问题中经常会出现。
下面通过一个实际问题来展示二次根式的应用:例题:一个正方形的对角线长为$\\sqrt{2}$米,求正方形的边长。
解答:设正方形的边长为x米,则根据勾股定理可得:x2+x2=2。
化简得到2x2=2,解方程得x=1。
因此,正方形的边长为1米。
结语通过本文的介绍,相信读者对二次根式有了更深入的了解。
二次根式作为数学中的一个基础知识点,在代数、几何、概率等各个领域都有着重要的应用价值。
二次根式的概念和性质

基础知识
1、二次根式的定义:
我们已经知道:每一个正实数有且只有两个平方根,一个记作a,称为a的。
算术平方根;另一个是a
我们把形如a的式子叫作二次根式,根号下的数a叫作被开方数.
由于在实数围,负实数没有平方根,因此只有当被开方数是非负实数时,二次根式才在实数围有意义.
2、二次根式的性质
3、二次根式的积的算数平方根的性质
4、最后的计算结果,具有以下特点:
(1)被开方数中不含开得尽方的因数(或因式);
(2)被开方数不含分母.
我们把满足上述两个条件的二次根式,叫作最简二次根式.
注意:①化简二次根式时,最后结果要求被开方数中不含开得尽方的因数.
②化简二次根式时,最后结果要求被开方数不含分母.
③今后在化简二次根式时,可以直接把根号下的每一个平方因子去掉平
方号以后移到根号外(注意:从根号下直接移到根号外的数必须是非负数).题型一、二次根式的概念和条件
【例1】
【例2】
【例3】
【例4】
【例5】
【例6】
题型二、二次根式的性质【例7】计算
【例8】
【例9】【练一练】
4、
5、
6、7、
8、
题型三积的算数平方根的性质【例10】
【例11】
【例12】
【例13】
【例14】
题型四二次根式的化简【例题精析】
【例15】
【例16】【例17】【例18】
【练一练】
4、
5、6、6、
7、。
初中二次根式知识点总结

初中二次根式知识点总结二次根式是初中数学的一个重要内容,它涉及到实数的非负数平方根、根式的性质、根式的乘除法、根式的加减法等内容。
以下是关于二次根式的重要知识点总结:1. 二次根式的定义:形如√a(a≥0)的式子叫做二次根式。
其中,a是实数。
2. 非负数的平方根:对于任何非负数a,都有实数平方根,记作√a。
3. 根式的性质:√a² = a(a表示a的绝对值)。
√ab = √a × √b(当a≥0,b≥0时)。
√(a/b) = √a / √b(当a≥0,b>0时)。
4. 根式的乘除法:当两个根式相乘或相除时,可以直接对它们的被开方数进行乘除运算。
例如:√a × √b = √(a×b),√a / √b = √(a/b)。
5. 根式的加减法:当两个根式相加或相减时,需要先将它们化为最简二次根式,然后再对被开方数进行加减运算。
例如:√a + √b 和√a - √b 不能直接合并,除非它们有相同的被开方数。
6. 最简二次根式:满足以下三个条件的二次根式被称为最简二次根式:被开方数的因数是整数,因式没有重复;被开方数中不含有分母;根号内没有剩余的被开方数。
7. 负数的平方根:负数没有实数平方根。
在实数范围内,只有非负数有实数平方根。
8. 无理数:无法表示为两个整数的比的数被称为无理数。
常见的无理数包括π和√2等。
9. 代数运算:在二次根式的运算中,经常需要使用代数的基本运算规则,如分配律、结合律等。
以上是关于二次根式的重要知识点总结。
在学习二次根式时,需要理解并掌握这些知识点,以便能够正确地进行二次根式的运算和化简。
《二次根式的概念》二次根式

二次根式可以用于计算飞行器在空中飞行时的气动性能,例如空 气阻力系数等。
04
二次根式的注意事项
负数不能开平方
总结词
负数不能开平方是指,在二次根式中,负数不能作为被开方数。
详细描述
这是因为在实数范围内,负数没有平方根,即无法进行开方运算。例如,$-1$的 平方根是不存在的,因此$-1$不能作为二次根式的被开方数。
根号符号的解释
根号符号的起源
根号符号"√"起源于拉丁文"radix",意为"根"或"根源"。
根号符号的意义
根号符号用于表示对一个数或表达式进行开方运算,例如√a 表示a的算术平方根,√a^2表示a^2的算术平方根。
二次根式的简化方法
合并同类项
将二次根式中的同类项进行合并,例如$2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$。
05
练习与巩固
填空题
总结词
掌握基础概念
请计算
$\sqrt{25} + \sqrt{16}$
请补充下列等式中的值
$\sqrt{16} = 4$
请计算
$\sqrt{12} \div \sqrt{3}$
选择题
总结词:理解二次 根式的性质
A. $\sqrt{4}$
下列哪个等式表示 的二次根式是正确 的?
合并同类二次根式
加减运算时,可以将同类 二次根式合并成一个二次 根式。
化简二次根式
在合并同类二次根式后, 进一步化简二次根式,使 表达式更加简洁。
注意负数平方根
当二次根式中出现负数时 ,需注意负数没有平方根 ,只能开平方得到负数。
初三数学二次根式

初三数学二次根式
初三数学中,关于二次根式的主要内容包括以下几个方面:
1. 二次根式的定义和性质:二次根式指的是含有根号的形式,如√2、3√5等。
这些式子可以进行简化、合并、化简,也可以进行加减乘除等运算。
2. 二次根式的化简:一般来说,我们希望将二次根式化简
为最简形式。
这需要运用一些技巧,如分解因数、用有理
化方法去除根号等。
3. 二次根式的运算:在进行加减乘除运算时,需要注意二
次根式的可加性和可乘性。
具体来说,需要注意同类项的
合并、乘方的运算等。
4. 二次根式的应用:二次根式在几何中有广泛的应用,例
如计算线段的长度、三角形的面积等。
在实际问题中,也
常常会涉及到二次根式的计算和应用。
初三数学中的二次根式内容相对简单,主要是为后续数学学习打下基础。
在高中阶段数学中,会进一步学习二次根式的性质和运算规律。
九年级上册数学《二次根式》知识点整理(最新整理)

a a 5 x 2 + 1 - 5 -x 2 a a a a a a b二次根式一、本节学习指导学习二次根式时,我们把平方根的知识顺带巩固一下。
这就是系统性学习,这样学习的好处是把零碎的知识可以系统起来。
本节中我们要对二次根式有意义的条件要掌握。
二、知识要点1、二次根式的概念:形如 (a≥0)的式子叫做二次根式。
注意:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以 a≥0 是 为二次根式的前提条件,如 , , 等是二次根式,而 , 等都不是二次根式。
2、取值范围(1)、二次根式有意义的条件:由二次根式的意义可知,当 a≧0 时, 有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
(2)、二次根式无意义的条件:因负数没有算术平方根,所以当 a ﹤0 时, 没有意义。
3、二次根式 (a≥0)的非负性(a≥0)表示 a 的算术平方根,也就是说, (a≥0)是一个非负数,即 0(a≥0)。
注意:因为二次根式 (a≥0)表示 a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是 0,所以非负数(a ≥0)的算术平方根是非负数,即( a )2 (a ≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若 + = 0 ,则 a=0,b=0;若 + b 2 = 0 ,则 a=0,b=0;若 + b 2 = 0 ,则a=0,b=0。
4、二次根式(a )2的性质: (a )2 = a (a≥0)描述为:一个非负数的算术平方根的平方等于这个非负数。
注意:二次根式的性质公式( a )2 = a (a≥0)是逆用平方根的定义得出的结论。
上面的公a a a aa 27 ≈ 2.646 a 2 a 2a 2a 2 a 2 a 2a 2a 2a 2a 2⎨-a (a < 0) ⎩式也可以反过来应用:若 a≥0,则 a = ( a )2 ,如: 2 = ( 2)2 , 1 = ( 1)2。
二次根式的概念与计算

二次根式的概念与计算二次根式是代数学中的一个重要概念,涉及到根号和平方根的计算。
本文将介绍二次根式的基本概念、性质以及计算方法,以帮助读者更好地理解和运用二次根式。
一、二次根式的概念二次根式指的是形如√a的表达式,其中a是一个非负实数。
√a中的√符号称为根号,表示对a进行开平方运算。
当a为一个有理数时,我们可以通过简单的运算将二次根式化简为一个更简单的形式。
例如,√4可以化简为2,因为2的平方等于4。
同样地,√9可以化简为3,因为3的平方等于9。
二、二次根式的性质1. 二次根式的运算法则(1)两个二次根式的加减法:对于两个二次根式√a和√b,当a和b有相同的根指数时(即根号中的数字相同),我们可以进行加减运算,结果为根号内的数字按照加减法的规则进行运算。
例如,√3 + √3 = 2√3。
(2)两个二次根式的乘法:对于两个二次根式√a和√b,我们可以进行乘法运算,结果为根号内的数字相乘,并提取公因数。
例如,√2× √3 = √6。
(3)二次根式的除法:对于两个二次根式√a和√b,我们可以进行除法运算,结果为根号内的数字相除,并提取公因数。
例如,√8 ÷ √2 = √4 = 2。
2. 二次根式的化简当二次根式内的数可以被一个完全平方数整除时,我们可以将其化简为一个更简单的形式。
例如,√12可以化简为2√3,因为12可以被4整除,而4是一个完全平方数。
3. 二次根式的有理化有时,我们需要将一个含有二次根式的表达式转化为一个不含二次根式的有理数。
这个过程称为有理化。
常用的有理化方法是乘以含有冲突二次根式的共轭形式,使得冲突二次根式的平方项互相抵消。
例如,有理化√2 + √3的过程如下:√2 + √3 = (√2 + √3) × (√2 - √3) / (√2 - √3)= (2 - 3) / (√2 - √3)= -1 / (√2 - √3)三、二次根式的计算举例1. 根据二次根式的运算法则,计算√5 + 2√5:√5 + 2√5 = 3√52. 化简并计算2√6 × √8:2√6 × √8 = 2√(6 × 8) = 2√48 = 2 × 4√3 = 8√33. 根据二次根式的有理化方法,计算(√3 + 1) / (√3 - 1):(√3 + 1) / (√3 - 1) = [(√3 + 1) / (√3 - 1)] × [(√3 + 1) / (√3 + 1)]= (3 + 2√3 + 1) / (3 - 1)= (4 + 2√3) / 2= 2 + √3综上所述,二次根式是代数学中的重要概念,涉及到根号和平方根的计算。
二次根式的有关概念及性质

二次根式的有关概念及性质一、二次根式的有关概念:1.二次根式:式子(a≥0)叫做二次根式。
2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。
如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5,都是最简二次根式。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
如, , 就是同类二次根式,因为=2,=3,它们与的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
如与,a+与a-,-与+,互为有理化因式。
二、二次根式的性质:1.(a≥0)是一个非负数, 即≥0;2.非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0);3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·(a≥0,b≥0)。
5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=(a≥0,b>0)。
三、例题:例1.x为何值时,下列各式在实数范围内才有意义:(1)(2)(3)(4)+(5)(6)+分析:这是一组考察二次根式基本概念的问题,要弄清每一个数学表达式的含义,根据分式和根式成立的条件去解,即要考虑到分式的分母不能为0并且偶次根号下被开方数要大于或等于零。
解:(1)∵6-x≥0,∴x≤6时原式有意义。
(2)∵x2≥0, ∴x2+3>0, ∴x取任意实数原式都有意义。
(3)∵∴∴当x<3且x≠-3时,原式有意义。
(4)∵∴∴当-≤x<时,原式有意义。
(5)∴∴当x≥0且x≠1时,原式有意义。
(6)∵∴∴x=2∴当x=2时,原式有意义。
九年级数学二次根式知识点

九年级数学二次根式知识点一、二次根式1. 定义:二次根式是形如√a的表达式,其中a是非负实数。
2. 运算规则:(1) 乘法规则:√a * √b = √(a * b)(2) 除法规则:√a / √b = √(a / b),其中b不能为0(3) 幂运算规则:(√a)^n = (√a)^(n / 2),其中n为偶数,a为非负实数3. 合并同类项:(1) 如果二次根式的底数相同,则可以合并为一个根号,即√a ±√a = ±2√a(2) 如果二次根式的根次相同,则可以合并为同一个根次的根号,即√a^n ±√a^n = ±2√a^n(3) 如果二次根式的底数和根次都相同,则可以合并为同一个根号,即√a^n * √a^n = a^n,(√a^n) / (√a^n) = 1二、二次根式的化简1. 因式分解法:将二次根式的底数a分解为素数的乘积,然后利用乘法规则、除法规则和合并同类项的规则将二次根式化简为最简形式。
2. 有理化分母法:利用有理化分母公式将二次根式的分母有理化。
(1) a + √b有理化分母:a + √b = (a + √b) * (a - √b) / (a - √b)(2) a - √b有理化分母:a - √b = (a - √b) * (a + √b) / (a + √b)(3) 1 / (a + √b)有理化分母:1 / (a + √b) = (a - √b) / (a^2 - b)(4) 1 / (a - √b)有理化分母:1 / (a - √b) = (a + √b) / (a^2 - b)三、二次根式的运算1. 加减运算:将二次根式化为最简形式,然后合并同类项。
2. 乘法运算:将二次根式的底数和根次分别相乘。
3. 除法运算:将二次根式的底数和根次分别相除。
4. 化简运算:利用因式分解法或有理化分母法将二次根式化简为最简形式。
四、二次根式的应用二次根式在实际问题中具有广泛的应用,例如计算物体的体积、面积等。
初中数学知识点归纳二次根式

初中数学知识点归纳二次根式二次根式是初中数学中的一个重要知识点,它是一个数的平方根,或者可以表示成形如√a的形式,其中a是一个正整数。
在学习二次根式的过程中,我们需要掌握二次根式的化简、计算与运算等基本技巧。
下面我将详细介绍二次根式的相关知识点。
1.二次根式的定义与性质二次根式可以表示成√a的形式,其中a是一个正整数。
二次根式有以下基本性质:(1)√a=b,其中b是一个正数,那么a=b²;(2)√a=b,其中b是一个正数,那么b²=a,即b是a的一个正平方根;(3)0<√a<√b,其中a<b。
2.二次根式的化简化简二次根式是指将一个二次根式以最简形式表达出来。
(1)对于根号中的数,可以找出完全平方数因式,然后求出根号中被平方的数的平方根。
(2)对于根号外的系数,可以利用乘方运算法则进行整理。
3.二次根式的运算二次根式之间的运算包括加法、减法、乘法和除法。
(1)加减法:二次根式的加减法可以转化为同类项相加减的问题,将根号内的数进行化简和整理即可。
(2)乘法:乘法运算可以通过合并同类项、运用公式进行展开、化简来求解。
(3)除法:除法运算需要利用有理化技巧,将二次根式的被除数和除数分别乘以一个适当的有理化因子,使得分子没有根号。
4.二次根式的应用二次根式在初中数学中常常与勾股定理、平方差公式等知识点相结合,应用于解决各种几何问题。
(1)使用二次根式计算直角三角形的边长:根据勾股定理,可以利用二次根式计算直角三角形的边长。
(2)使用二次根式计算面积:利用二次根式可以计算各类面积,如矩形、正方形、圆等。
5.二次根式的估算在实际生活和解题过程中,我们常常需要对二次根式进行估算。
可以利用四舍五入和近似计算的方法对二次根式进行估算,得到一个较为接近的结果。
以上就是关于初中数学中二次根式的相关知识点的归纳。
通过学习和掌握这些知识,可以更好地理解和运用二次根式,提高数学解题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学
二次根式的概念
一、教学目标:
1、了解什么是二次根式、理解二次根式有意义的条件和基本性质
2、了解二次根式的性质,能化简二次根式
3、会进行简单二次根式的化简
二、教学重点:化简二次根式
教学难点:理解二次根式有意义的条件和基本性质
三、教学过程:
(一)复习导入
1、9的平方根是,9的算术平方根是
2、2=2=2=
(二)讲授新课
1、二次根式的概念:
若0
a>时,a的算术平方根表示为
若0
a=时,a的算术平方根表示为
若0
a<时,a的算术平方根
由此,我们可以得到:
(a 0);2=(a 0)
a≥0)的式子叫做二次根式
2、二次根式有意义
例1:当x
解:∵1
x- 0
∴x
∴当x时,二次根式
3?
=
填一填:==⎽⎽⎽⎽⎽==⎽⎽⎽⎽⎽
==⎽⎽⎽⎽⎽==⎽⎽⎽⎽⎽
==⎽⎽⎽⎽⎽==⎽⎽⎽⎽⎽……
=
做一做:1==(0
x≥)
2==
4、二次根式的化简:
=
==
(填>、<或=)
=(0
b≥)
a≥,0
化简,使被开方数不含完全平方的因数
(1
==
3
试一试:
==
==
(2
解:
(三)课堂练习
1、计算
(1)2=(2)2=
(3= (4=
(5= (6)=
(7)2=(8)2=
(9)2=(10=
(11=(12=
2、当x为何值时,下列二次根式有意义?
(1(2
解:∵1
x+ 0
∴x
∴当x时,二次根式
(3(4
3、化简:
(1=(2=
(3=(4=
(5=(6=
(7=(8=
(9=(10)= 4、当x为何值时,下列二次根式有意义?
(1(2
(3(4
5、计算下列各式,并将所得的结果化简:
(1(2
解:原式=
=
6、小明说2
x-
7、已知23
<<3
x
(四)课堂小结
这节课我们学了什么?有什么收获?还有什么疑问吗?
(五)作业(六)反思。