职高数学基础模块下册复习题6.7.8及答案
(完整版)职高数学基础模块下册复习题6.7.8及答案
![(完整版)职高数学基础模块下册复习题6.7.8及答案](https://img.taocdn.com/s3/m/4fa21bbaf01dc281e43af062.png)
1.选择题:3 .数列的通项公式为 3n =Sin ^,写出数列的前5项。
4解:sin 兀/4=艮号2/2sin 兀 /2=1sin 3兀/4=号2/2sin 兀=0sin 5 兀 /4=艮号 2/24 .在等差数列{ 3n }中,31=2 , 37=20 ,求 S 15.解:3n=31+(n-1)d31=237=31+(7-1)d 20=2+6d所以d=3sn=n31+n(n-1)/2*d所以 s15=15*2+15*14/2*3=3455 .在等比数列{ 3n }中,35= — , q= 1,求S 7.42解:35=31*qA(5-1), ,31=12S7=31(1-qA6)/(1-q)=63/8 6 .已知本金p=1000元,每期利i=2% ,期数n=5,按复利计息,求到期后的本利和 解:由于以复利计息,故到期时得到的钱为 P* (1+i)的门次(n 为年数)复习题6(1) A (2) 已知数列{3n }的通项公式为3n =2n-5 ,那么32n = ( B )。
2n-5 B 4n-5 C 等差数列-7/2, -3, -5/2, 1 1 —(n 7) B — (n 2 2 2n-10 D 4n-10 -2, •第n+1项为( A) (3)在等差数列{ a n }中,已知 A 18 B 12 (4)在等比数列{3n }中, A 10 B 12 2.填空题: C 已知 C 4) S 3=36, 9 32=2 , 18 n / C - 4 2 则 32=( 6 35=6,贝 U38= D 24 B) (1) (2)(3) 数列 0, 3, 8, 15, 24, …的一个通项公式为 an=n A 2-1.数列的通项公式为 等差数列-1,2, 等比数列10, 1, 3n = (-1) n+1?2+n,则 310=8 . 5,…的一个通项公式为 3n=3n-4. 1—,…的一个通项公式为 3n=10A(2-n)10此处n=5故本利和为1000* (1+2%)的5次方=1104.08元7.在同一根轴上安装五个滑轮,它们的直径成等差数,最小与最大的滑轮直径分别为120厘米与216厘米,求中间三个滑轮的直径.解:216-120=9696/4=24就是说差值为24所以中间3个分别是120+24*1=144120+24*2=168120+24*3=192单位厘米。
中职数学基础模块(下)期末试卷
![中职数学基础模块(下)期末试卷](https://img.taocdn.com/s3/m/37afa700192e45361066f5ae.png)
中职数学基础模块(下)期末试卷一、选择题(10⨯4=40分)1、在等差数列{}n a 中,d a a 则公差,12,462==等于 ( ) A 、1 B 、2 C 、2± D 、82、若,22,2,4==-=⋅b a b a 则向量b a,的夹角θ 是 ( ) A 、 0 B 、 90 C 、 180 D 、 270 3、经过点)3,4(-A 与)9,1(-B 的直线方程是( ) A.0112=--y x B.052=--y x C.052=-+y x D.0112=-+y x 4、直线012=+-y x 与直线6121-=x y 的位置关系是( ) A.垂直 B.重合 C.平行 D.相交而不垂直 5、等比数列1,2,4,8.....的前10项和是( )A .63B .1008C .1023D .10246、直线0102=-+y x 与圆422=+y x 的位置关系 ( )A 、相离B 、相切C 、过圆心D 、相交但不过圆心 7、已知A 、B 两点坐标为A (3,-1),B (2,1) ,且B 是线段AC 的中点则 点C 的坐标为 ( )A 、(2,6)B 、(1,3)C 、(2.5,0)D 、(-1,2) 8、经过点A(-1,4) ,且斜率是1/2 的直线方程为 ( )A 、092=+-y xB 、092=--y xC 、0102=++y xD 、0102=-+y x9、直线)1(32+-=-x y 的倾斜角和所过的定点分别是 ( ) A .)2,1(,60-- B. )2,1(,120- C.)2,1(,150- D.)2,1(,120- 10、过点)3,2(A ,且与y 轴平行的直线方程为( )A.2=xB.2=yC.3=xD.3=y 二、填空题(4⨯4=16分)1、直线0623=--y x 的斜率为 ,在y 轴上的截距为2、方程062622=-+-+y x y x 化为圆的标准方程为3、已知==-=a b a 则),2,21(),3,2( ,=⋅b a 。
职高数学基础模块测试题
![职高数学基础模块测试题](https://img.taocdn.com/s3/m/3e61d233b6360b4c2e3f5727a5e9856a56122691.png)
数学综合检测一、选择题1.下列各结论中,正确的是( )A .{}0是空集 B . {}220x x x ++=是空集C. {}1,2与{}2,1是不同的集合 D .方程 2440x x -+=的解集是{}2,22.函数x y sin 43-=的最大值是( ) A.1- B.1 C.7 D.33.设A =}{22x x -<<,}{1B x x =≥,则AUB =( )A .}{12x x ≤< B .{2x x <-或2x > C .}{2x x >-D .{2x x <-或}2x > 4.已知0cos <θ,且0tan >θ,则θ是( )A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角 5.设为,x y 实数,则22x y =的充要条件是( )A .x y =B .x y =-C .33x y =D .||||x y =6.不等式组⎪⎩⎪⎨⎧->≤223x x 的解集为( )A.⎭⎬⎫⎩⎨⎧≤23x x B.{}2->x x C.⎭⎬⎫⎩⎨⎧≤<-232x x D.∅ 7.不等式02142≤-+x x 的解集为( )A. ]()[∞+-∞-,37,B. []3,7-C. ]()[∞+-∞-,73,D. []7,3-- 8.不等式123>-x 的解集为( )A.()+∞⎪⎭⎫ ⎝⎛-∞-,131,B.⎪⎭⎫ ⎝⎛-1,31 C.()+∞⎪⎭⎫ ⎝⎛∞-,131, D.⎪⎭⎫⎝⎛1,319、已知︒>=<==45,,2||,5||b a b a ,则=⋅b a ( ) A.210 B.25 C.310 D.35 10、已知点)1,5(),2,3(---N M ,则=MN ( ) A.)1,8(- B.)1,8(- C.)8,1(- D.)8,1(-11、)1230sin(0-的值是( ) A. 21-B. 23±C. 23D. 23-12、过点)3,2(A ,且与y 轴平行的直线方程为( ) A.2=x B.2=y C.3=x D.3=y 13、已知)1,5(),6,7(=-=b a ,则=+||b a ( ) A.12 B.13 C.5 D.714、如果直线l 经过点)0,2(-和)3,5(-,则直线l 的倾斜角是( )A.︒45B.︒75C.︒135D.︒15015、下列命题中正确的是( )A. 第一象限的角都是锐角B. 002140cos 140sin 1=-C. 若4,1tan παα==则 D. 不可能成立5.2cos sin =-αα二、填空题16、当x 时,代数式223x x ++有意义 17、2246120x y x y +---=的半径=_______________18、不等式()()021>+-x x 的解集为19、已知(3,4),(5,2)A B --,则AB =_____________ 20、已知)3,1()4,2(--==b a ,,则=-b a 32三、解答题21、02322>++x x22、已知3tan =α,求.cos ,sin αα23、求直线l :0124=--y x 的斜率和在y 轴上的截距。
高职高考中职数学对口升学总复习基础模块(下册)全册重
![高职高考中职数学对口升学总复习基础模块(下册)全册重](https://img.taocdn.com/s3/m/3d0b2d17f02d2af90242a8956bec0975f565a45e.png)
——知—识—清—单—————三——. 等—差—数—列—前—n—项—和—————————
1. 等差数列前 n 项和公式:
①
sn
n(a1 an ) 2
na1
n(n
1)d
②
sn An2 Bn
,
A
d 2
,
B
a1
d 2
③ sn nan1 (n为奇数时)
2
2. 已知前 n 项和 b 90时, a 与b 垂直
夹角定义中,两个向量必须是同起点的
【注意】:
(2) 向量的内积(数量积) :
a b |a||b | cos a, b cos a, b
a b
|a||b |
读作 a 点乘 b
注意:书写向量内积时,箭头和中间的点必须写上
(3) 向量内积的性质:设 a 、 b 为两个非零向量, e 为单位向
无穷数列:项数无限的数列
3. 数列的一般形式
一般形式: a1,a2,a3,...,an,..., 其中 an 是数列的第 n 项,叫作数列的通项, n 叫作 an 的序号 整个数列记作{ an }
——知—识—清—单——————一—.—数—列—的—概—念———————————
4. 数列的通项
通项公式: an 与 n 之前的函数关系式 an=f(n). 数列的通项 an 可看成是 n 的函数(以正整数的子集为定义域)。
后) 符号记法:向量还可以用黑体小写字母来表示,如 a,b,c.....
3. 向量的模
有向线段AB 的长度叫作向量的模,也叫向量AB 的长度
记作: 向量 a 的模记作:
4. 特殊向量 ( 1 )模为 1 的向量叫作单位向量;
( 2 )模为 0 的向量叫作零向量,记作 规0 .定: 0 与任意向量平行
中职数学基础模块下册第七章简单几何体习题答案
![中职数学基础模块下册第七章简单几何体习题答案](https://img.taocdn.com/s3/m/2157d2e5ac51f01dc281e53a580216fc700a533c.png)
第七章 简 单 几 何 体7.1多面体八、习题答案 练习7.1.1 1.略.2.(1)√;(2)√;(3)√; (4)√.3.)(侧2cm 60=S , S 表=73.86(cm 2), ()3320cm V =.4. 2a 22=表S ; 36a V =. 练习7.1.21.2.3.练习7.1.3 1.略.2.()2cm 34=侧S , ()3234cm V =. 3.(1)()()2cm 41939+=表S , ()3233cm V =;(2)习题7.1 A 组1.(1)Q M N P ⊆⊆⊆;(2) 2 ;(3) 4.2. S 侧=296()cm .3. 33)4V cm =.4. S 表=212()cm , 3)V =.5. S 侧2a =.6. 31)2V cm = . B 组1.S 表=(24a + , 33V a =. 2. ()372V cm =.3.4.C 组20+,S 表=122524202⨯⨯+⨯⨯⨯=+7.2旋转体习题答案 练习7.2.11. (1)√;(2)×;(3) ×.2. S 表=228()cm π, 320()V cm π=.3. S 侧=2100()cm π,3250()V cm π=.4. 2种;表面积不相等;体积不相等. 练习7.2.2 1.略.2.(1)×;(2)×;(3)√.3.38()V cm π=.4.310()3V cm π=. 5.S 表=236()cm π,316()V cm π=.6.6()L cm =, )h cm =. 练习7.2.31.(1)√;(2)√;(3)√.2.S 表=236()cm π, 336()V cm π=.3.16倍; 64倍.提示:设原球的半径为r ,S原=24r π , V 原343r π=,则现半径为R=4r ,S 现=222441664R r r πππ=⨯=,V 现=333444(4)64333R r r πππ=⨯=⨯,S 现=16S 原,V 现=64V 原. 4.4 cm. 习题7.2 A 组1. (1)26()cm π;(2)()343cm π;(3)236()cm π , 336()cm π ;(4) 8∶27.2. 2316()V cm π=.3. S 表=264()cm π,3128()3V cm =. 4. S 表=264()cm π,3256()3V cm π=. 5. 24 cm. B 组 1. 390 g. 2. (1)75()8h cm =;(2)不会溢出. 3.约4.49 cm. C 组粮囤的容积为49π+343√372π,最多能装稻谷约103 420 kg.提示:由题知圆锥的底面半径7()2r m =,高)h m =,故粮囤的容积V=V 圆柱+V 圆锥=2271774232649ππππ⎛⎫⎛⎫⨯⨯+⨯ ⎪ ⎪⎝⎭⎝⎭=+所以所装谷物质量为4957510342072ππ⎛⎫+⨯≈ ⎪ ⎪⎝⎭kg.7.3简单几何体的三视图习题答案练习7.31.2.略.3.4.5.略.习题 7.3A 组1.俯视图,主视图,左视图.2.C.3.4.(1)(2)B 组1.2.C 组俯视图复习题7 A 组一、 1.B. 2.D. 3.C. 4.A. 5.C. 6.C.二、7. 312a .8. S 表= (236()cm +,3)V cm =. 9. 4 cm.三、10. S侧= (()2384cm +,31152()V cm =.提示:由S 底=72 cm 2得AB=BC=12cm ,AC=.S 侧= ((()22416384cm +⨯=+,372161152()V cm =⨯=.11. S 侧= S π,4SV π=.提示:设圆柱的底面半径为r ,则高为2r ,由题知S =4r 2,得2r =,S侧=222444Sr r r S ππππ⋅===,2322284S S V r r r ππππ=⋅==⋅=.12. 3288()V cm π= 或3192()V cm π=.13.14.B 组 1. C.2. 1 004.8(cm 3). 提示:223851004.8()V r h cm ππ==⨯≈.3.34 .提示:设球的半径为2r =,所以截面圆的面积)2213s r ππ==,大圆的面积:()2224s r r ππ==.所以截面圆的面积与大圆的面积之比为34.4.(1)方案一,体积31400()V m π= .提示:仓库的半径r=10m ,h=4m ,则2311400()V r h m ππ==.方案二,体积 32288()V m π= .提示:仓库的半径r=6m ,h=8m ,则2322288()V r h m ππ==.(2)方案一,墙面建造成本80πa 元.提示:墙面建造成本112210480y r ha a πππ==⨯⨯=(元).方案二,墙面建造成本96πa 元.提示:墙面建造成本22226896y r ha a πππ==⨯⨯=(元).(3)方案一更经济.提示:由(1)(2)知1212,V V y y ><,即方案一体积大,可以储藏的粮食多、墙面建造面积小,用材少、成本低,所以选择方案一更经济.。
中职数学高教版基础模块下册练习册答案
![中职数学高教版基础模块下册练习册答案](https://img.taocdn.com/s3/m/2518e9c9e43a580216fc700abb68a98271feac1f.png)
第五章指数函数与对数函数5.1实数指数幂习题答案练习5.1.11.(1);(21(31(412.(1)1410;(2)1272⎛⎫⎪⎝⎭;(3)545.6;(4)45a-.3.(1)2.280; (2)0.488; (3)0.577.练习5.1.21.(1)52a;(2)25a.2.(1)23125; (2)433.3.(1)16a; (2)2969ab.4.(1)0.033; (2)21.702.习题5.1A组1.(1) 1; (2)18-;(3)4181x;(4)3x.2.(1)12310⎛⎫⎪⎝⎭; (2)431.5;(3;(4.3.(1)0.5; (2)116332;(3)433;(4)6.4.(1)3122a b-;(2)21343a b-.5.(1)0.354; (2)2.359; (3)39.905; (4)64.000. B组1.(1)4325;(2)109100.2.(1)0.212; (2)8.825.C 组约48.4%.提示:P=(12)6 0005 730≈0.484.5.2指数函数习题答案练习5.21.(1)2.531.8 1.8< ; (2)470.50.5-<.2.(1) ()(),00,-∞+∞; (2)R .习题5.2A 组1.(1) > ; (2)> ; (3)>.2.(1) ()(),11,-∞+∞ ;(2)R .3.(1)2.531.9 1.9<;(2)0.10.20.80.8--<.4.略.5.a=3.B 组1.()1,11,2⎛⎫+∞ ⎪⎝⎭.2.19 . 提示:由()1327f =得13a =,()211239f ⎛⎫== ⎪⎝⎭. 3.(1)(,3⎤-∞⎦ ; (2))()1,22,⎡+∞⎣.4.256.提示:15分钟1次,2小时分裂8次,则82256y ==(个).C 组1.约161 km 2. 提示:()5100110%161+≈(km 2).2.约512元. 提示:()31000120%512-≈(元).5.3对数习题答案练习5.3.11.(1)2log 164=; (2)0.5log 0.1253=; (3)log 518=x.2.(1)0.1-1=10; (2)348127=; (3)415625-= . 3.(1)4; (2)1; (3)0; (4)1.4.(1)0.653; (2)2.485; (3)-0.106.练习5.3.21.(1)1lg 3x ;(2)lg lg lg x y z ++; (3)111lg lg lg 243x y z +-.2.(1)19. 提示:7522log 4log 272519+=⨯+=; (2)2. 提示:2ln 2e =111lg lg lg 243x y z +-. 3.32a b + .提示:()2311133ln 108ln 232ln 23ln 3ln 2ln 322222a b =⨯=+=+=+.习题5.3A 组1.(1)2log 7x = ; (2)116 ; (3)22.2.(1)13lg lg 2x y +; (2)3lg 3lg 3lg x y z +-; (3)4lg 2lg y x - . 3.(1)-3 ; (2)-4 ; (3)13.4.0.805.B 组1.(1)7. 提示:3434333log 33log 3log 3347⨯=+=+=.(2)12 ;(3)2. 2. 5. 提示:()lg 31a a -=,(3)10a a -=,2a =-(舍)或5a =. 3.(1)a+b. 提示:lg 23lg 2lg 3a b ⨯=+=+.(2)b-a. 提示:lg 3lg 2b a -=-.4.0. 提示:()2lg 5lg 210+-=.C 组约2 100多年前.提示:125730log 0.7672193t =≈,所以马王堆古墓约是2 100多年前的遗址.5.4对数函数习题答案练习5.41.(1) (),2-∞;(2)()0,1(1,)+∞ ; (3)2,3⎛⎫-∞ ⎪⎝⎭ ; (4))1,⎡+∞⎣. 2.(1)lg7<lg7.1; (2)0.1lg 5<0.1lg 3; (3)23log 0.5>23log 0.6 ; (4)ln 0.1<ln 0.2.习题5.4A 组1.(1) 1,2⎛⎫-∞ ⎪⎝⎭ ; (2)()0,1;(3)(1,2⎤⎦; (4)()1,+∞. 2. 1. 提示:()99lg 1001f =-=2-1=1.3.()(),03,-∞+∞ .4.(1)22log 5log 9< ; (2)1133log 0.4log 0.7>;(3)56log 6log 5> ; (4)0.55log 0.6log 0.7>.5.()2,+∞.6.()4,+∞.B 组1.(1)()(),11,-∞-+∞ ; (2)(1,2⎤⎦; (3)()()2,33,+∞.2.b>a>c.3.a<b.C 组正常. 提示:()8lg 4.010lg 48lg 108lg 480.6027.398pH -=-⨯=--=-≈-=.5.5指数函数与对数函数的应用习题答案练习5.51.约1 697.11万吨.提示:()515001 2.5%1697.11+≈.2.约18.87万元.提示:()2010018%18.87-≈.3.约5年.提示:()100110%60x-=.4.2059年.提示:()7510.7%100x+=.习题5.5A 组1.13年.提示:()1000120%10000x+≥.2.()()3001 2.5%xy xN +=+∈ .3.171.91.提示:2023年GDP 为()390017%1102.54+≈.B 组1.2030年 .提示:设第n 年年底该企业的产值可以达到260万元,则()202013017.5%260n -+=.2.300只. 提示:由题知当x=1时y=100,得a=100;当x=7时82100log 300y ==.3.约147万件.C 组略.复习题5A 组一、1.C . 2. B. 3.D. 4.A. 5.C. 6.C. 7.D. 8. D.9.B. 10.B. 11.C. 12.B. 13.A. 14.A. 15.B.二、16.347-.17.-3.18. 4.5.19.-4.20.51log 2<125-<125.三、21. 19.22. 略.23.(1)1; (2)-2.24.(1)23-; (2). 25.(1)(),1-∞; (2)R . 26. 34.87万元.B 组1. (1)()(),01,-∞+∞ ; (2)()0,100.2. )4,⎡+∞⎣ .3.1,2⎛⎤-∞ ⎥⎝⎦ . 4.13,44⎡⎤⎢⎥⎣⎦.5.(1)()()*1xy a r xN =+∈;(2)1 117.68元.提示:()510001 2.25%1117.68+≈.6.0,120⎡⎤⎣⎦.提示:因1211010lg IL -=,令1I =得12110lg 10120L ==,令1210I -=得110lg 10L ==.所以人听觉的声强级范围为0,120⎡⎤⎣⎦.第六章 直线和圆的方程6.1两点间的距离公式和线段的中点坐标公式习题答案练习6.11.M (-2,4);N(1,1); P(2,-2); Q(-1,-2).2.(1)AB =线段AB 的中点坐标(11,122);(2)5CD =,线段CD 的中点坐标(15,12);(3)5PQ =,线段PQ 的中点坐标(0,12).3.(1)中点D 的坐标(1,1);(2)中线AD .4.AB b =-,线段AB 的中点坐标(3333,22a b a b++). 习题6.1A 组1.(1)AB =(2)5AB =,BC =AC =;(3)线段AB 的中点坐标(1,-1);(4)AB =线段AB 的中点坐标(111,122-).2.点P (2+)或P (2-).3.2PQ a=,线段PQ 的中点坐标(0,b ).4.点P 2的坐标为(6,1).5.2,AB AC BC ==,根据直角三角形判定定理,可知三角形是直角三角形.B 组1. m=4,n=1.2.点B 的坐标(-4,5).3.顶点C 的坐标(0,0,.4.顶点A (6,5),顶点B (-2,3),顶点C (-4,-1).C 组略.6.2直线的方程习题答案练习6.2.11.2.(1)斜率为-1,倾斜角为4;(2)斜率为3;(3)斜率为56π.3.实数a =4.实数m=-1.练习6.2.21.(1)1,4π;(23π;(3)2,3. 2.点A (2,3)在直线122y x =+上,点B (4,2)不在直线122y x =+上.3.(1)34(1)y x -=-;(2)55(2)y x +=-;(3)y x -=.4.(1)24y x =-+;(2)3y =+;(3)112y x =+;(4)1y x =-.5.4y -=;4y =+.练习6.2.31.132y x =--.2.(1)2,230x y -+=;(2)23-,2340x y ++=.3.(1)A=0,B ≠0,C ≠0; (2)B=0,A ≠0,C ≠0.4.(1)37130x y +-=;(2)30y +=.5.30x y -+=,X 轴上的截距为-3,Y 轴上的截距为3.习题6.2A 组1.(1)3-;(2)1,4π. 2.(1)210x y -+=;(2)3y =-;(3)430x y -+=. 3.(1)23,43;(2)1,3;(3)5,-12. 4.(1)A ≠0,B ≠0,C=0;(2)A=0,B ≠0,C=0;(3)A ≠0,B=0,C=0. 5.420x y +-=或420x y ++=.B 组1.实数52m =-.2.实数m=3,n=-8.3.(1)330x y +-=;(2)770x y -+=.4.(1)AB 边斜率为14,AC 边所在直线的斜率为1,BC 边所在直线的斜率为12-,AB 边所在直线的方程为470x y -+=;AC 边所在直线的方程为10x y -+=;BC 边所在直线的方程为2100x y +-=.(2)BC 边中线所在直线的斜率为12,AB 边中线所在直线的斜率不存在,AC 边中线所在直线的斜率为0,BC 边中线所在直线的方程为230x y -+=;AB 边中线所在直线的方程为3x =;AC 边中线所在直线的方程为3y =.C 组略.6.3两条直线的位置关系习题答案练习6.3.11. (1)平行;(2)重合;(3)重合;(4)平行.2.(1)12-;(2)20x y -+=;(3)360x y --=.3.x =1.练习6.3.21.(1)相交,交点坐标(194,3-);(2)相交,交点坐标(4,-5);(3)不相交. 2.(1)不垂直;(2)垂直;(3)不垂直;(4)垂直.3.20x y +-=.4.32120x y +-=.练习6.3.31.(1;(2)0;(3)5.2.m=-3或m=7.3.习题6.3A 组1.(1)相交;(2)平行,重合;(3)垂直.2.(1)平行;(2)垂直;(3)相交;(4)垂直.3.(1)相交,交点坐标(18,58);(2)不相交,平行;(3)相交,交点坐标(14,14); (4)相交,交点坐标(315-,435). 4.10x y -+=.390y ++-=.6.(1)95;(2)0;(3)25. 7.2.B 组1.实数32a =. 2.实数m=-2或m=12.3.实数m=4,n=2.6.4 圆习题答案练习6.4.11.(1)221x y +=;(2)22(1)9x y +-=;(3)22(3)4x y -+=;(4)22(2)(1)45x y -++=.2.(1)圆心坐标为(0,0)半径为4;(2)圆心坐标为(1,0)半径为2;(3)圆心坐标为(0,-3)半径为3;(4)圆心坐标为(2,1;(5)圆心坐标为(-1,3)半径为5.3.22(1)(3)25x y ++-=.练习6.4.21.(1)圆心坐标为(2,0)半径为2;(2)圆心坐标为(0,-2)半径为3;(3)圆心坐标为(3,-1)半径为4;(4)圆心坐标为(-1,32.2284160x y x y +-++=.3.是圆的方程,圆心坐标为(2,-1),.习题6.41.(1)22(3)(1)16x y -++=,226260x y x y +-+-=;(2)(-1,3.2.(1)(-3,2;(2)(2,0),2.3.22(3)(9x y -+-=.4.226670x y x y +-+-=.5.是圆的方程,圆心坐标为(4,-1),半径为1.B 组1.2220x y x y +--=.2.0a =或8a =.3.K <34,圆心坐标为(8,2),半径为√68−2k .C 组略.6.5直线与圆的位置关系习题答案练习6.51.(1)2;(2)1.2.(1)1,不存在;(2)2,不存在,0;(3)1,0.3.(1)相切;(2)相离;(3)相交.4.y =2,x =3.5.8.习题6.5A 组1.1,2,0.2.224640x y x y +-++=.3.(1)相切;(2)相交;(3)相交.4.当1b =时,直线与圆相切;当11b <当1b >或1b <-.5.4x -3y -25=0,34250x y +-=.B 组1.22(3)(4)8x y -+-=.2.当6k =±时,直线与圆相切;当6k <-6k >+时,直线与圆相交;当66k -<<+时,直线与圆相离.切线方程为(620x y +-+=和(620x y --+=.4.k <1或k >13.C 组略.6.6直线与圆的方程应用举例习题答案练习6.61.(12,03-). 2.x 2+(y -20.19)2=12.992.3.建立直角坐标系,A (-10,0),B (10,0)D (-5,0),E (5,0).设圆的方程为222()()x a y b r -+-=,得a =0,b =-10.5,r =14.5,将D 点横坐标-5代入方程得3.1y =,因为3 m<3.1 m ,因此船可以通过.习题6.6A 组1.M (4,0).2.3240x y ++=.3. 第二根支柱的长度约为4.49 m.B 组1.10x y --=.2.入射光线所在的直线方程为12510x y +-=,反射光线所在的直线方程为12510x y --=.3.(1)会有触礁可能;(2)可以避免触礁.C 组略.复习题6A 组一、1.B. 2.D. 3.B. 4.C. 5.B. 6.B. 7.D. 8.B.二、9.5.10.-1.11.(0,0).12.0.13.2.三、14(1)(-2,-1);(210y -+=.15.(1)20x y +-=;(2)22(2)2x y -+=.16.x 2+(y -1)2=1.17.(1)(1,2),2;(2)34y x =,0x =. 18.2. 19.是圆的方程,圆心坐标为(2.5,2),圆的半径为1.5.B 组1.(1)20x y +-=;(2)1.2.(1)m=4;(2)x 2+(y -4)2=16.3.(1)点A 的坐标(7,1),点B 的坐标(-5,-5);(2)15.4.解:我们以港口中心为原点O ,东西方向为x 轴,建立平面直角坐标系,圆的方程为22230x y +=,轮船航线所在的直线方程为472800x y +-=;如果圆O 与直线有公共点,则轮船有触礁危险,需要改变航向;如果圆O 与直线无公共点,则轮船没有触礁危险,无需改变航向.由于圆心O (0,0)到直线的距离为30d =>,所以直线与圆O 没有公共点,轮船没有触礁危险,不用改变航向.第七章 简 单 几 何 体7.1多面体八、习题答案练习7.1.11.略.2.(1)√;(2)√;(3)√; (4)√.3.)(侧2cm 60=S , S 表=73.86(cm 2), ()3320cm V =.4. 2a 22=表S ; 36a V =.练习7.1.21.2.3.练习7.1.31.略.2.()2cm 34=侧S , ()3234cm V =. 3.(1)()()2cm 41939+=表S , ()3233cm V =; (2)习题7.1A 组1.(1)Q M N P ⊆⊆⊆;(2) 2 ;(3) 4.2. S 侧=296()cm .3. 33)4V cm =.4. S 表=212()cm , 3)V =.5. S 侧23a =.6. 31)2V cm =. B 组1.S 表=(24a + , 3V a =. 2. ()372V cm =. 3.4.C 组20+,S 表=122524202⨯⨯+⨯⨯⨯=+7.2旋转体习题答案练习7.2.11. (1)√;(2)×;(3) ×.2. S 表=228()cm π, 320()V cm π=.3. S 侧=2100()cm π,3250()V cm π=.4. 2种;表面积不相等;体积不相等. 练习7.2.21.略.2.(1)×;(2)×;(3)√.3.38()V cm π=.4.310()3V cm π=. 5.S 表=236()cm π,316()V cm π=.6.6()L cm =, )h cm =. 练习7.2.31.(1)√;(2)√;(3)√.2.S 表=236()cm π, 336()V cm π=.3.16倍; 64倍.提示:设原球的半径为r ,S 原=24r π , V 原343r π= ,则现半径为R=4r ,S 现=222441664R r r πππ=⨯=,V 现=333444(4)64333R r r πππ=⨯=⨯,S 现=16S 原,V 现=64V 原. 4.4 cm.习题7.2A 组1. (1)26()cm π;(2)()343cm π;(3)236()cm π , 336()cm π ;(4) 8∶27.2. 2316()V cm π=.3. S 表=264()cm π,3128()3V cm =. 4. S 表=264()cm π,3256()3V cm π=. 5. 24 cm. B 组1. 390 g.2. (1)75()8h cm =;(2)不会溢出. 3.约4.49 cm.C 组粮囤的容积为49π+343√372π,最多能装稻谷约103 420 kg.提示:由题知圆锥的底面半径7()2r m =,高)h m =,故粮囤的容积V=V 圆柱+V 圆锥=227177423264972ππππ⎛⎫⎛⎫⨯⨯+⨯ ⎪ ⎪⎝⎭⎝⎭=+所以所装谷物质量为4957510342072ππ⎛⎫+⨯≈ ⎪ ⎪⎝⎭kg.7.3简单几何体的三视图习题答案 练习7.31.2.略.3.4.5.略.习题 7.3A 组1.俯视图,主视图,左视图.2.C.3.4.(1)(2)B 组1.2.C 组俯视图复习题7A 组一、 1.B. 2.D. 3.C. 4.A. 5.C. 6.C.二、7. 312a .8. S 表= (236()cm +,3)V cm =.9. 4 cm.三、10. S侧= (()2384cm +,31152()V cm =.提示:由S 底=72 cm 2得AB=BC=12cm ,AC=.S 侧= ((()22416384cm +⨯=+,372161152()V cm =⨯=.11. S 侧= S π,4SV π=.提示:设圆柱的底面半径为r ,则高为2r ,由题知S =4r 2,得2r =,S侧=222444Sr r r S ππππ⋅===,23222V r r r πππ=⋅==⋅=12. 3288()V cm π= 或3192()V cm π=.13.14.B 组1. C.2. 1 004.8(cm 3). 提示:223851004.8()V r h cm ππ==⨯≈.3.34 .提示:设球的半径为2r =,所以截面圆的面积)2213s r ππ==,大圆的面积:()2224s r r ππ==.所以截面圆的面积与大圆的面积之比为34.4.(1)方案一,体积31400()V m π= .提示:仓库的半径r=10m ,h=4m ,则2311400()V r h m ππ==.方案二,体积 32288()V m π= .提示:仓库的半径r=6m ,h=8m ,则2322288()V r h m ππ==.(2)方案一,墙面建造成本80πa 元.提示:墙面建造成本112210480y r ha a πππ==⨯⨯=(元).方案二,墙面建造成本96πa 元.提示:墙面建造成本22226896y r ha a πππ==⨯⨯=(元).(3)方案一更经济.提示:由(1)(2)知1212,V V y y ><,即方案一体积大,可以储藏的粮食多、墙面建造面积小,用材少、成本低,所以选择方案一更经济.第八章 概率与统计初步8.1随机事件习题答案练习8.1.11.必然事件:(1); 不可能事件:(2)(5);随机事件:(3)(4).2. Ω={0,1,2},随机事件:(1)(2);不可能事件:(3);必然事件:(4).3. Ω={(书法,计算机),(计算机,陶艺),(书法,陶艺)},3个样本点.4.略.练习8.1.21.0.125.2.(1)(2)0.55.3.不是必然事件.习题8.1A组1. 不可能事件:(1); 随机事件:(3); 必然事件:(2)(4).2.(1)Ω={0,1,2};(2)A包含样本点为“没有硬币正面向上”和“只有一枚硬币正面向上”.3.0.7.4.5.(1)(2)0.949.B组1.(1)正确;(2)错误;(3)错误.2.(1)随机事件;(2)不可能事件;(3)必然事件.3.(1)(2)0.080.C组第二种解释是正确的.8.2古典概型习题答案练习8.21.0.22.(1)(2)是古典概型,(3)不是古典概型.3.1 2 .习题8.2A组1.不是古典概型.2.1 3 .3.1 2 .4.1 13.5.1 2 .6.(1)15;(2)35.B组1.1 5 .2.(1)310;(2)12;(3)710.3.(1)12;(2)16;(3)56.C组略.8.3概率的简单性质习题答案练习8.31.(1)是互斥事件;(2)(3)不是互斥事件.2.0.762.3.2 3 .习题8.3 A组1.3 10.2.0.35.3.0.25.4.(1)(2)(3)不是互斥事件;(4)是互斥事件.5.0.8.6.2 3 .B组1.0.3.2.0.93.3.(1)136;(2)16;(3)518.C组略.8.4抽样方法习题答案练习8.4.11.总体是300件产品;样本是50件产品;样本容量是50。
中职数学基础模块上、下册各章节单元练习题
![中职数学基础模块上、下册各章节单元练习题](https://img.taocdn.com/s3/m/9170d304a22d7375a417866fb84ae45c3b35c2d2.png)
中职数学基础模块上、下册各章节单元练习题1.下列元素中属于集合{x|x=2k,k∈N}的是()。
A。
2.B。
3.C。
π。
D。
102.下列正确的是().A。
-2.B。
3.C。
π。
D。
10答案:B3.集合A={x|1<x<9},B={2,3,4},那么A与B的关系是().A。
A∪B。
B。
B⊆A。
C。
A∩B。
D。
A⊆B答案:B4.设全集U={a,b,c,d,e,f},A={a,c,e},那么C_U(A)=().A。
{a,c,e}。
B。
{b,d,f}。
C。
∅。
D。
{a,b,c,d,e,f}答案:B5.设A={x|x>1},B={x|x²≥5},那么A∪B=().A。
{x|x>5}。
B。
{x|x>1}。
C。
{x|x≥5}。
D。
{x|x≥1}答案:C6.设p是q的充分不必要条件,q是r的充要条件,则p 是r的()。
A。
充分不必要条件。
B。
必要不充分条件。
C。
充要条件。
D。
既不充分也不必要条件答案:B7.下列对象不能组成集合的是().A。
不等式x+2>0的解的全体。
B。
本班数学成绩较好的同学。
C。
直线y=2x-1上所有的点。
D。
不小于的所有偶数答案:D二、填空题:(7*5分=35分)9.已知U=R,A={x|x>1},则C_U(A)=(-∞。
1]。
10.{x|x>1}∪{x|x>2}={x|x>1},{x|x>1}∩{x|x>2}=∅,{0}∈{x|x>1}。
11.{3.5}∪{5}={3.5},2∈{x|x<1},{3.5}∩{5}={5},{x|x<1}∩{3.5}=∅。
12.{1.2.3.4}。
13.1/24.14.{-1}。
三、解答题:(3*10分=30分)15.1) {-2.-1.0.1.2}2) {-1.3}16.真子集有:{1},{2},{-1},{1.2},{1.-1},{2.-1}。
17.A∩B={3.5},A∪B={1.3.4.5.6},C_U(A)={0.2.4.6},C_U(A∩B)={0.1.2.4.6}。
中职数学基础模块(下册)《数列与平面向量》习题
![中职数学基础模块(下册)《数列与平面向量》习题](https://img.taocdn.com/s3/m/7f9b07ef690203d8ce2f0066f5335a8102d266b3.png)
2024-2025学年度第一学期《数学》期中考试试卷(本卷满分120分,时间90分钟) 班级: 姓名: 分数:一、选择题(本大题共15小题,每小题4分,共60分) 1.设点O 是正方形ABCD 的中心,则下列结论错误的是( ) A.B. C.共线 D.2.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图).则第7个三角形数是( )A.27B.28C.29D.303.化简OP→+PQ →+PS →+SP →的结果等于( ) A .QP → B .OQ→ C .SP → D .SQ→ 4.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .65.若A (3,1),B (2,-1),则BA →的坐标是( )A.(-2,-1)B.(2,1)C.(1,2)D.(-1,-2)6.已知数列3,9,15,…,3(2n -1),…那么81是它的第几项( )A .12B .13C .14D .157.等比数列{a n }中,a 1=4,a 2=8,则公比等于( )A .1B .2C .4D .88.已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角θ为( )A .π6B .π4C .π3D .π29.在等比数列{a n }中,a 2 016=8a 2 015,则公比q 的值为( )A .2B .3C .4D .810.已知向量a =(2,4),b =(-1,1),则2a -b =( )A .(5,7)B .(5,9)C .(3,7)D .(3,9)11.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27 12.下列数列为等比数列的是( ). A .2,22,222,… B.1a ,1a 2,1a3,… C .s -1,(s -1)2,(s -1)3,… D .0,0,0,…13.已知向量a =(1,2),b =(2,x ),且a·b =-1,则x 的值等于( )。
中等职业学校基础模块数学单元复习测试卷习题.doc
![中等职业学校基础模块数学单元复习测试卷习题.doc](https://img.taocdn.com/s3/m/6829db6fb14e852459fb57b2.png)
实用标准中等职业学校基础模块数学单元测试卷第一章单元测试一、选择题:( 7*5 分 =35 分)1. 下列元素中属于集合 { x |=2 , k N}的是()。
x kA . -2 B. 3 C .D .102.下列正确的是( ).A . {0}B.{0} C . 0 D . {0}= 3. 集合 ={ x |1<x <9}, ={2 , 3, 4} ,那么 A 与 B 的关系是().ABA .B A B . =C . AB D.A BB A4.设全集 U ={ a , b , c , d , e , f } , A ={ a , c , e } ,那么 C U A =( ).A . { , , e } B. { b , , }C.D. { , , , , ,a cd fa b c d ef }5.设 ={ x | x >1} , {xx5} ,那么 ∪ =( ).AB=A BA . { x | x >5}B. { x | x >1}C. { x | x 5} D . { x | x 1} 6. 设 p 是 q 的充分不必要条件, q 是 r 的充要条件,则 p 是 r 的()。
A .充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件7 下列对象不能组成集合的是().A .不等式 x +2>0 的解的全体B .本班数学成绩较好的同学C .直线 y =2x- 1 上所有的点D.不小于 0 的所有偶数二、填空题:( 7*5 分 =35 分)7.: a 是整数; q : a 是自然数。
则 p 是 q 的 。
p8.已知 = , ={x x >1} ,则 C U A = 。
U R A9. { | >1}{|x >2} ; {0}。
( , , ,, =)x xx10.{3,5} {5}; 2{x | x <1} 。
( , , , , =)11. 小于 5 的自然数组成的集合用列举法表示为.12.1 Q; ( 8) 3.14Q。
中职数学基础模块上、下册章节练习题(围绕考纲)
![中职数学基础模块上、下册章节练习题(围绕考纲)](https://img.taocdn.com/s3/m/513f5c4fc5da50e2524d7fbf.png)
第一章 集合与充要条件一、考纲要求1.了解集合与元素的概念,能判断所给的对象能否构成集合。
2.理解符号∈、 ,会用符号∈、 表示元素与集合之间的关系。
3.掌握常用数集的符号表示,识记空集及常用数集:∅、N 、*N 、Z 、Q 、R 。
4.掌握集合的两种表示法,会用列举法和描述法表示简单的集合,能利用集合表示方程(组)及不等式(组)的解集。
5.了解子集、真子集、集合相等的定义,理解并识记符号⊆、⊇、≠⊂、≠⊃、=;能写出包含不超过三个元素的集合的全部子集、真子集,会用适当的符号(⊆、⊇、≠⊂、≠⊃、=)表示集合与集合之间的关系。
6.理解交集、并集、全集和补集的定义,识记符号⋂、⋃、U C A ,会求简单集合的交集、并集、补集。
7.了解“充分条件”、“必要条件”及“充要条件”,能判断已知条件和结论的关系。
二、章节练习1.下列对象不能组成集合的是( ).A .不等式x +2>0的解的全体B .本班数学成绩较好的同学C .直线y =2x-1上所有的点D .不小于0的所有偶数2.{}M a =设,则下列写法正确的是( )A a M =B a M ∈C a M ⊆D a M ∉3.已知集合{}3,2,1=A ,集合{}7,5,3,1=B ,则=B A ( )A .{}5,3,1 B.{}3,2,1 C.{}3,1 D. ∅4.已知集合{}20<<=x x A ,集合{}31≤<=x x B ,则=B A ( )A .{}30<<=x x A B. {}30≤<=x x BC. {}21<<=x x BD. {}21≤<=x x B5.用符号(∈,∉,⊂≠,⊃≠,=)填空:(1){0}_____∅; (2){ x|x< 6}_____{ x| x< 0}(3)R_____Q ;(4)2 ___{x|x +=240};(5){1,3,5,… }__ _{ x| x=2k+1,k ∈N }6.集合{}b a N ,=子集有 个,真子集有 个。
中职数学基础模块上、下册各章节单元练习题
![中职数学基础模块上、下册各章节单元练习题](https://img.taocdn.com/s3/m/645dfa576f1aff00bed51ede.png)
中职数学基础模块上、下册各章节单元练习题第一章单元练习题一、选择题:(7*5分=35分)1. 下列元素中属于集合{x | x =2k ,k ∈N}的是( )。
A .-2B .3C .πD .102.下列正确的是( ).A .∅∈{0}B .∅{0} C .0∈∅ D . {0}=∅3. 集合A ={x |1<x <9},B ={2,3,4},那么A 与B 的关系是( ).A .BA B . B =A C . AB D . A ⊆B4.设全集U ={a ,b ,c ,d ,e ,f },A ={a ,c ,e },那么U C A =( ).A .{a ,c ,e }B .{b ,d ,f }C . ∅D . {a ,b ,c ,d ,e ,f } 5.设A ={x | x >1},B={ xx ≥5},那么A ∪B =( ).A .{x | x >5}B .{x | x >1}C .{ x | x ≥5}D . { x | x ≥1} 6. 设p 是q 的充分不必要条件,q 是r 的充要条件,则p 是r 的( )。
A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7. 下列对象不能组成集合的是( ).A .不等式x +2>0的解的全体B .本班数学成绩较好的同学C .直线y =2x-1上所有的点D .不小于0的所有偶数 二、填空题:(7*5分=35分)8.p :a 是整数;q :a 是自然数。
则p 是q 的 。
9. 已知U =R ,A ={x x >1} ,则UC A = 。
10. {x |x >1} {x |x >2}; ∅ {0}。
(∈,∉,,,=)11. {3,5} {5};2 {x | x <1}。
(∈,∉,,,=)12.小于5的自然数组成的集合用列举法表示为 .13. 31 Q ; (8)3.14 Q 。
中职数学(基础模块)下册第六章数列单元考试卷(含答案)
![中职数学(基础模块)下册第六章数列单元考试卷(含答案)](https://img.taocdn.com/s3/m/22f231d5844769eae009edff.png)
中职数学(基础模块)下册第六章数列单元考试卷含答案一、选择题1.数列}{n a 的通项公式n a n n 311+-=)(,则2a =( ) A. 9- B. 9 C. -6 D. 62.下列数列是等差数列的是( )A. 2,6,10,14,18B. 2,4,8,16,32C. 1,4, 9, 16, 25D.514131211,,,,3.已知等差数列}{n a 中,31-=a ,d=2,则5a =( ).A .3B .5C .7D .94.已知等差数列{n a }中,5a =9,d =2,则n a =( )A. 2-2nB. 3-2nC. 2n -lD. 2n -35.已知等差数列{n a }中,31-=a ,d=3,则8S =( ).A . 60B .-24C .-84D .906.已知等差数列}{n a 中,1674=+a a ,则=10S ( )A . 60 B. 80 C. 120 D .1607.已知等比数列{n a }中,21=a ,3-=q ,则=3a ( ).A .-18B .54C .18D .-548.已知等比数列{n a }中,81-=a ,14=a ,则=q ( ).A .2B .-2C .21D .21-9.已知等比数列{n a }中,21=a ,3-=q ,则=5S ( ).A .244B .122C .-244D .-12210.已知2,a ,8成等差数列,则=a ( )A .2B .4C .5D .611.已知21,a ,8成等比数列,则=a ( )A .2B .4C .2±D .-412.“a+c=2b ”是“a ,b ,c 组成等差数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题13.己知等差数列-1,4,9,14,……,则该数列的公差d= ,=n a 。
14.已知数列{n a }中,11=a , 21+=+n n a a ,则此数列的通项公式=n a 。
中职数学 人教版基础模块下册《6.3 等比数列》2023年单元测试卷
![中职数学 人教版基础模块下册《6.3 等比数列》2023年单元测试卷](https://img.taocdn.com/s3/m/dd860c44cd1755270722192e453610661ed95aea.png)
人教版基础模块下册《6.3 等比数列》2023年单元测试卷一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题2分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂、多涂或未涂均不得分。
A .0个B .1个C .2个D .3个1.(2分)已知集合A ={1,2,3,4},B ={2,4,6},则A ∩B 的元素个数是( )A .∅B .0C .[-1,1]D .{-1,1}2.(2分)不等式|x |+1≤0的解集为( )A .(-∞,1)B .(-1,+∞)C .(-∞,-2]D .[4,+∞)3.(2分)函数f (x )=2|x |-2在下列哪个区间内单调递增( )A .若b <0,则a >bB .若b >0,则a <bC .若a >b ,则a >0D .若b >a ,则b >04.(2分)已知a ,b ∈R ,且a 2>b 2,下列正确的是( )A .(-2,-1)B .(-2,1)C .(0,1)D .(-1,2)5.(2分)已知平面向量a =(1,1),b =(1,−1),则12a −12b =( )→→→→A .12B .14C .18D .1166.(2分)体育场有东南西北四个门,某学生要从体育场穿过,则他从南门进南门出的概率为( )A .1B .4C .1或3D .1或47.(2分)如果经过两点P (-2,m )和Q (m ,4)的直线的斜率等于1,那么m 的值是( )A .sinπB .tan 108°C .tan 2cos 2D .sin 2cos 28.(2分)下列各式结果为正值的是( )9.(2分)双曲线x 220−y 25=1的焦距为( )A .15B .215C .5D .10√√A .12B .22C .2D .210.(2分)在平面直角坐标系xOy 中,已知直线l 的方程为y =x +2,则原点O 到直线l 的距离为( )√√A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度11.(3分)为了得到函数y =sin (2x +1)的图象,只需要把函数y =sin 2x 的图象( )A .(x -2)2+(y +3)2=5B .(x +2)2+(y -3)2=25C .(x +2)2+(y -3)2=5D .(x -2)2+(y +3)2=2512.(3分)已知圆C 与圆x 2+y 2-4x +6y -3=0的圆心相同,半径为5,则圆C 的方程是( )A .70B .60C .50D .4013.(3分)某校组织1位数学教师带5名学生参加数学建模比赛,需要两辆出租车,且每辆车最多坐4人,则不同的乘车方案数为( )A .第一象限B .第二象限C .第三象限D .第四象限14.(3分)若α是第二象限角,则点(sinα,cosα)在( )A .(2,4)B .(2,±4)C .(1,22)D .(1,±22)15.(3分)抛物线上一点P 到顶点的距离等于它到准线的距离,则点P 的坐标为y 2=8x ( )√√A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.(3分)“x 2+y 2=0”是“x +y =0”的( )A .x +2y -1=0B .x +2y -5=0C .x +2y -3=0D .2x +y -5=017.(3分)已知点A (1,2),则过点A 与直线x +2y -2=0平行的直线方程为( )二、填空题(本大题共7小题,每小题4分,共28分)三、解答题(本大题共8小题,共72分)解答应写出文字说明及演算步骤。
《中职数学基础模块》考试试卷及参考答案
![《中职数学基础模块》考试试卷及参考答案](https://img.taocdn.com/s3/m/3663fea54b35eefdc9d33337.png)
《中职数学基础模块》期末考试试卷及答案一、选择题(每小题3分,共30分):1.与300角终边相同的角的集合是()A.{x|x=300+k·1800,k∈Z} B. {x|x=300+k·3600,k∈Z}C.{x|x=600+k·1800,k∈Z}D. {x|x=600+k·3600,k∈Z}2.若sinx=3/5,且cosx=-4/5,则角x是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3. 与-900终边相同的角是()A.900 B.1800 C.2700 D.36004.已知角x的终边过点(-3,4),则cosx等于()A.-3/5 B.-4/5 C.3/5 D.4/55.若-1为方程mx2+2nx+p=0(m,p不为0)的一个根,则()A.m=2n B.m=pC.m,n,p成等比数列D.m,n,p成等差数列6.等差数列{a}中,已知a2+a3+a10+a11=48,则a6+a7=()nA.12 B.16 C.20 D.24}是等比数列,则下列等式中成立的是()7.已知数列{anA.a82=a2a4 B.a42=a2a4 C.a42=a1a7 D.a22=a1a48.过点(1,2),且倾斜角为450的直线方程为()A.y-2=2(x-1) B.y-1=x-2C.y-2=x-1D.y-1=2(x-2)9.与直线y=2x+3平行,且过点P(-1,-3)的直线方程是()A.y=2x+1B.y=-2x+1C.y=0.5x-1D.y=2x-110.直线2x+y+a=0和x+2y-1=0的位置关系是()A.垂直 B.相交,但不垂直 C.平行 D.重合二、填空题(每小题4分,共32分):11.若sinx=-3/5,且x为第四象限角,则cosx= .12.(1)sin1200= ;(2)cos(-11400)= .13.已知等差数列a1=3,d=-2,n=15,则a n= .14.数列2,1,1/2,1/4,…的通项公式是.15.7+35与7-35的等比中项是.16.已知A(2,-1),B(-1,5),则|AB|= ,直线AB的斜率k= .17.直线x-5y-2=0的斜率等于,在y轴上的截距等于 .18.与直线2x-3y-5=0垂直,且通过坐标原点的直线方程是.三、解答题(六小题,共38分):19.已知sinx=3/5,且x是第二象限角求cosx,tanx的值.(6分)20.已知tanx=-2,求cos2x-sin2x的值.(7分)21.求数列1/2,1/4,1/8,1/16,…的前10项的和.(6分)22.已知等差数列的第3项是-4,第6项是2,求它的第10项.(6分)23.已知等差数列中,d=2,a n=1,S n=-8,求a1和n.(7分)24.若直线(a+1)x-3y-12=0与直线4x-6y+1=0平行,求a的值.(6分)参考答案:一、选择题1、B2、B3、C4、A5、D6、D7、C8、C9、D10、B二、填空题:11、4/512、13、-2514、a n=22-n15、±216、35;-217、1/5;-2/518、2y+3x=0三、解答题:(过程略)19、cosx=-4/5;tanx=-3/420、cos2x-sin2x=-3/521、S10=1023/102422、a10=1023、a1=-5,n=424、a=1。
高教版中职数学《数学基础模块下册》章节复习题5指数函数与对数函数
![高教版中职数学《数学基础模块下册》章节复习题5指数函数与对数函数](https://img.taocdn.com/s3/m/1dc15774ae45b307e87101f69e3143323968f5af.png)
《数学基础模块下册》复习题5:指数函数与对数函数【知识巩固】1.下列式子计算正确的是( ). A.(−1)2=−1 B.(−1)0=−1 C.(a 12)2=a (a >0)D.()1 0a a a -=≠ 2.下列描述正确的是( ).A.√−273=3B.16的四次方根是±2C.√−325=±2D.√81=−93.若指数函数() 1)xfx a =-是R 上的减函数,则a 的取值范围是( ). A.a >2 B.a <2 C.0<a <1 D.1<a <24.下列各指数函数中,在区间(−∞,+∞)上为增函数的是( ). A.y =1.5xB.y =(π5)xC.y =0.2xD.y =(13)x5.不在指数函数y =5x 的图像上的点是( ). A.(0,1)B.(1,5)C.(−1.−5)D.(−1,−15)6.函数y =lg x ( ).A.在区间(−∞,+∞)上是增函数B.在区间(−∞,+∞)上是减函数C.在区间(0,+∞)上是增函数D.在区间(−∞,0)上是减函数7.函数y =log 12(1−2x )的定义域是( ).A.(−∞,+∞)B.(−∞,12)∪(12,+∞)C.[12,+∞)D.(−∞,12)8.已知3x−1=19,则x =( ). A.2 B.-2 C. 1 D.-19.若log 4x =−3,则x =( ). A.12B.164C.-12D.−3410.若1<x <y ,则下列式子正确的是( ). A.3y <3xB.3x <3yC.log 4y <log 4xD.log 14y <log 14x11.若a 12<a −12,则a 的取值范围是( ). A.a ≥0 B.a >0C.0<a <1D.0≤a ≤112.已知a =(23)−12,b =(23)13,c =1,则它们的大小关系是( ).A.b >c >aB.a >b >cC.b >a >cD.c >a >b 13.(1g5)3+lg2×lg5+lg2=( ). A.1 B.-1C.2D.-214.下列不等式成立的是( ). A.log 32<log 23<log 25 B.log 32<log 25<log 23C.log 23<log 32<log 25D.log 23<log 25<log 3215.已知函数f (x )={3x , x <1−x, x >1,则f (12)=( ).A.3B.√3C.12D.−1216.√734写成分数指数幂为_______________. 17.(25)−3=1258的对数式为______________.18.0.2512+(181)−14+(π−3)0______________.19.log 28+2lg 1100−log 327______________.20.将三个数5−12、1512、log 512按照从小到大的顺序排列为___________________.21.已知指数函数y =a x (a >0且a ≠1)的图像经过点P(2,9),求x =−2时y 的值.22.作出下列各函数的图像. (1)y =4x ;(2)y =log 12x .23.计算下列各式的值. (1)2log 242+12log 2436;(2)lg2+2lg3−lg60−lg30.24.计算下列各式的值.(1).√(−4)24+27−13⋅(π−√2)0+log 1327 ;(2).(√273×√54)÷√2.25.求下列函数的定义域.(1)y =log 0.5(1−x); (2)y =2−x+lg 3.26.某工厂的机器设备的初始价值为100万元,由于磨损,每一年比上一年的价值降低10%, 使用10年后,该机器设备的价值多少万元(保留到小数点后第2位)?【能力提升】1.求下列函数的定义域. (1)y =ln (x 2−x );(2)y =√2−lg x.2求函数()2454x x f x -+=的值域.3.若√4a 2−4a +1=1−2a ,求实数a 的取值范围.4.若0≤x ≤2,求函数0.53x y =+的最大值和最小值.5.按复利计算利息的一种储蓄产品,设本利和为y,存期为x,若本金为a 元,每期利率为r. (1)试写出本利和y 随存期x 变化的函数关系式.(2)如果本金a=1000元,每期利率r=2.25%,试计算5期后本利和是多少(保留到小数点后第2位).6.声强级L I (单位:d B)由公式L I =10lg (I 10−12)给出,其中I 为声强(单位:W/m 2),一般正常人听觉能忍受的最高声强为1W/m 2,能听到的最低声强为10−12W/m 2,那么,人听觉的声强级范围是多少?。
中职数学(基础模块)下册课后练习
![中职数学(基础模块)下册课后练习](https://img.taocdn.com/s3/m/998a26e4760bf78a6529647d27284b73f242369c.png)
中职数学(基础模块)下册课后练习练习6.1.11.说出生活中的一个数列实例.2.数列“1,2,3,4,5”与数列“5 ,4, 3,2,1 ”是否为同一个数列?3.设数列{}n a 为“-5,-3,-1,1,3, 5,…” ,指出其中3a 、6a 各是什么数? 练习6.1.21. 根据下列各数列的通项公式,写出数列的前4项:(1)23-=n n a ; (2)n a n n ⋅-=)1(.2. 根据下列各无穷数列的前4项,写出数列的一个通项公式:(1)−1,1,3,5,…; (2) 13-, 16, 19-, 112,…; (3) 12,34,56,78,…. 3. 判断12和56是否为数列2{}n n -中的项,如果是,请指出是第几项.练习6.2.11.已知{}n a 为等差数列,58a =-,公差2d =,试写出这个数列的第8项8a .2.写出等差数列11,8,5,2,…的第10项.练习6.2.21.求等差数列25,1, 85,…的通项公式与第15项. 2.在等差数列{}n a 中,50a =,1010a =,求1a 与公差d .3.在等差数列{}n a 中,53a =-,915a =-,判断-48是否为数列中的项,如果是,请指出是第几项.4.已知三个数的和为18,且这三个数组成公差为3的等差数列.求这三个数. 练习 6.2.31. 求等差数列1,4,7,10,…的前100项的和.2. 在等差数列{}n a 中,15a =-,1013a =。
3. 求10S 。
在等差数列{n a }中,4a =6,269=a ,求20S .练习6.2.41.如图一个堆放钢管的V 形架的最下面一层放一根钢管,往上每一层都比他下面一层多放一个,最上面一层放30根钢管,求这个V 形架上共放着多少根钢管.2.张新采用零存整取方式在农行存款.从元月份开始,每月第1天存入银行200元,银行以年利率1.71%计息,试问年终结算时本利和总额是多少(精确到0.01元)?练习6.3.11.在等比数列{}n a 中,63-=a , 2=q ,试写出4a 、6a .2.写出等比数列,24,12,6,3--……的第5项与第6项.练习6.3.21.求等比数列 ,6,2,32.的通项公式与第7项. 2.在等比数列{}n a 中,2125a =-,55a =-, 判断125-是否为数列中的项,如果是,请指出是第几项.3. 已知三个数的积为27,且这三个数组成公比为3的等比数列.求这三个数.练习6.3.31.求等比数列91,92,94,98,…的前10项的和. 2.已知等比数列{n a }的公比为2,4S =1,求8S .3.已知等比数列{}n a 的公比为13-,4203S =,求1a . 练习6.3.4张明计划贷款购买一部家用汽车,贷款15万元,贷款期为5年,年利率为5.76%.(1)5年后若一次性还款,应偿还银行多少钱?(2)若按照每年为一期等额本息还款,每年需要还银行多少钱.练习7.1.11. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出(1)与EF 相等的向量;(2)与AD 共线的向量.第1题图第1题图第2题图2.如图,O点是正六边形ABCDEF的中心,试写出(1)与OC相等的向量;(2)OC的负向量;(3)与OC共线的向量.3.上题中若正六边形的边长是1,求OC.练习7.1.21.如图,已知a,b,求a+b.第1题图2.填空(向量如图所示):(1)a+b =_____________ ,(2)b+c =_____________ ,(3)a+b+c =_____________ .3.计算:(1)AB+BC+CD;(2)OB+BC+CA.练习7.1.31.填空:(1)AB AD-=____________,(3)OD OA-=____________,(2)BC BA-=____________.2.如图,在平行四边形ABCD中,设AB= a,AD= b,试用a, b表示向量AC、BD、DB.练习7.1.41. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).2.设a , b 不共线,求作有向线段OA ,使OA =12(a +b ). 3. 在正方形ABCD 中,AB =a ,BC =b 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习题61. 选择题:(1) 已知数列{a n }的通项公式为a n =2n-5,那么a 2n =( B )。
A 2n-5B 4n-5C 2n-10D 4n-10(2)等差数列-7/2,-3,-5/2,-2,··第n+1项为( A )A )7(21-nB )4(21-nC 42-nD 72-n (3)在等差数列{ a n }中,已知S 3=36,则a 2=( B )A 18B 12C 9D 6(4)在等比数列{a n }中,已知a 2=2,a 5=6,则a 8=( C )A 10B 12C 18D 242.填空题:(1)数列0,3,8,15,24,…的一个通项公式为an=n^2-1.(2)数列的通项公式为a n =(-1)n+1•2+n,则a 10=8.(3)等差数列-1,2,5,…的一个通项公式为an=3n-4.(4)等比数列10,1,101,…的一个通项公式为an=10^(2-n) 3.数列的通项公式为a n =sin ,4πn 写出数列的前5项。
解:sin π/4=根号2/2sin π/2=1sin 3π/4=根号2/2sin π =0sin 5π/4=-根号2/24.在等差数列{ a n }中,a 1=2,a 7=20,求S 15.解:an=a1+(n-1)da1=2a7=a1+(7-1)d20=2+6d 所以d=3sn=na1+n(n-1)/2*d 所以s15=15*2+15*14/2*3=3455.在等比数列{ a n }中,a 5=43,q=21-,求S 7. 解:a5=a1*q^(5-1),∴a1=12S7=a1(1-q^6)/(1-q)=63/86. 已知本金p=1000元,每期利i=2%,期数n=5,按复利计息,求到期后的本利和 解:由于以复利计息,故到期时得到的钱为P*(1+i )的n 次(n 为年数)此处n=5故本利和为1000*(1+2%)的5次方=1104.08元7.在同一根轴上安装五个滑轮,它们的直径成等差数,最小与最大的滑轮直径分别为120厘米与216厘米,求中间三个滑轮的直径.解:216-120=9696/4=24就是说差值为24所以中间3个分别是120+24*1=144120+24*2=168120+24*3=192单位厘米。
B组1.等差数列{an}中,已知d=3,且a1+a3+a5+....+a99=80,求前100项和解:a1+a3+a5+....+a99=80,a2+a4+a6+....+a100=a1+a3+a5+....+a99+50d=80+50*3=230s100=a1+a2+a3+...+a100=80+230=3102.已知等比数列{an}的前3项的和事-3/5前6项的和事21/5求他的前10项的和解:设它的首项为a1,公比为q前3项和是-3/5则a1(1-q^3)/(1-q)=-3/5 (1)前6项的和是21/5则a1(1-q^6)/(1-q)=21/5 (2)(2)/(1) 1+q^3=-7 q^3=-8 q=-2代入(1) a1=-1/5它的前10项的和S10=a1(1-q^10)/(1-q)=(-1/5)*[1-(-2)^10]/(1+2)=(1/15)(2^10-1)=(2^10-1)/15=1023/15=341/5复习题71. 选择题:(1)平面向量定义的要素是( C )A 大小和起点B 方向和起点C 大小和方向D 大小、方向和起点(2)BC AC AB --等于( B )A 2BCB 2CBC 0D 0(3)下列说法不正确的是( D ).A 零向量和任何向量平行B 平面上任意三点A 、B 、C ,一定有=+C 若)(R m CD m AB ∈=,则CD AB //D 若2211,e x b e x a ==,当21x x =时,=(4)设点A (a 1,a 2 )及点B (b 1,b 2),则AB 的坐标是( C )A (2211,b a b a --)B (2121,b b a a --)C (2211,a b a b --)D (1212,b b a a --)(5)若b a •=-4,|a |=2,|b |=22,则<b a ,>是( C )A ο0B ο90C ο180D ο270 (6)下列各对向量中互相垂直的是( B )A )5,3(),2,4(-==b aB )3,4(),4,3(=-=b aC )5,2(),2,5(--==b aD )2,3(),3,2(-=-=b a2. 填空题:(1)++=向量AD .(2)已知2(x a +)=3(x b -),则x =(3a-2b)/5. (3)向量b a ,的坐标分别为(2,-1),(-1,3),则b a +的坐标(1,2),2b a 3+的坐标为(1,7).(4)已知A (-3,6),B (3,-6),则AB =(6,-12),|BA |=6倍根号5.(5)已知三点A (3+1,1),B (1,1),C (1,2),则<CA ,CB >=60度.(6)若非零向量),(),,(2121b b b a a a ==,则a1b1+a2b2=0是b a ⊥的充要条件.3.在平行四边形ABCD 中,O 为对角线交点,试用BA 、BC 表示BO .解:因为BD=BA+ADAD=BCBO=1/2BD所以BO=1/2(BA+BC)4.任意作一个向量a ,请画出向量b a c a b -=-=,2.解:5.已知点B (3,-2),=(-2,4),求点A 的坐标.解:设A 点坐标为(X,Y ) 则AB 向量=OB 向量-OA 向量=(3,-2)-(X,Y )=(3-X,-2-Y )=(-2,4)所以解得X=5,Y=-6A (5,-6)6.已知点A (2,3),=(-1,5), 求点B 的坐标.解:设点B 的坐标是(x,y)向量AB=(x-2,y-3)=(-1,5)所以x-2=-1,y-3=5x=1,y=8所以点B 的坐标是(1,8)7. 已知)5,1(),4,3(),2,2(=-=-=c b a ,求:(1)c b a 32+-; (2) c b a +-)(3解:(1)c b a 32+-=2*(-2,2)-(3,4)+(3,15)=(-4,4)-(3,-4)+(3,15)=(-4,23)(2) c b a +-)(3=3*(-5,6)+(1,5)=(-15,18)+(1,5)=(-14,23)8. 已知点A (1,2),B (5,-2),且21=,求向量的坐标. 解:∵A(1,2),B(5,-2)a=1/2AB=1/2(5-1,-2-2)=1/2(4,-4)=(2,-2) B 组1. 已知点A (-2,3),B (4,6),向量OA1=2分之一向量OA ,向量OB1=2分之一向量OB ,求向量A1B1的坐标解:向量OA1=2分之一向量OA=(-1,3/2)向量OB1=2分之一向量OB=(2,3)所以向量A1B1的坐标=(2+1,3-3/2)=(3,3/2)2.已知向量a=(2,-1),b=(-3,4),且(ma+b)与(a-b)垂直,求实数m解;(ma+b)=(2m-3,-m+4)(a-b )=(5,-5)若(a-b(ma+b)与(a-b)垂直则5*(2m-3)+(-m+4)*(-5)=0解之得m=7/3复习题81. 选择题:(1)直线1l :2x+y+1=0和2l :x+2y-1=0的位置关系是( B )A 垂直B 相交但不垂直C 平行D 重合(2)直线ax+2y-3=0与直线x+y+1=0相互垂直,则a 等于( D )A 1B 31-C 32-D -2 (3)圆01022=-+y y x 的圆心到直线l:3x+4y-5=0的距离等于( B ) A 52 B 3 C 75 D 15 (4)以点A (1,3)、B (-5,1)为端点的线段的垂直平分线的方程为( C )A 3x-y+8=0B 2x-y-6=0C 3x+y+4=0D 12x+y+2=0(5)半径为3,且与y 轴相切于原点的圆的方程为( D )A 9)3(22=+-y xB 9)3(22=++y xC 9)3(22=++y xD 9)3(22=+-y x 或9)3(22=++y x(6)直线y=x 3-与圆4)4(22=+-y x 的位置关系是( B ) A 相切 B 相离 C 相交且过圆心 D 相交不过圆心2. 填空题:(1)点(a+1,2a-1)在直线x-2y=0上,则a 的值为1.(2)过点A (-1,m ),B (m,6)的直线与直线l:x-2y+1=0垂直,则m=-8.(3)直线过点M (-3,2),N (4,-5),则直线MN 的斜率为k=-1.(4)若点P (3,4)是线段AB 的中点,点A 的坐标为(-1,2),则点B 的坐标为(7,-6).3.设直线l 平行于直线l 1:6x-2y+5=0,并且经过直线3x+2y+1=0与2x+3y+4=0的交点,求直线l 的方程。
解:解方程组3x+2y+1=02x+3y+4=0x=1,y=-2交点(1,-2)平行于直线6x-2y+5=06x-2y+a=0x=1,y=-2所以6+4+a=0a=-10所以是6x-2y-10=0即3x-y-5=04.设点P到直线3x-4y+6=0的距离为6,且点P在x轴上。
求点P的坐标。
解:设P点坐标为(0,y0){y轴上的点横坐标为0}利用点到直线的距离公式得到:|-4y0+6|/根下3^2+4^2=6解得y0=-6或9所以p(-6,0)或(9,0)5.求圆心为C(1,3)且与直线3x-4y-7=0相切的圆的方程。
解:已知圆心是C(1,3)因为圆C和直线3x-4y-7=0相切所以半径r等于圆心C到这条直线的距离根据点到直线的距离公式,得B组1.已知圆x^2+y^2+Dx+Ey-6=0的圆心为点C(3,4),求圆的半径r 解:圆x²+y²+Dx+Ey+F=0的圆心是(-D/2,-E/2),则:-D/2=3,-E/2=4,得:D=-6,E=-8,代入,得:x²+y²-6x-8y-6=0(x-3)²+(y-4)²=31则圆的半径是R=√312.设与直线x-y-1=0相切的圆经过点(2,-1)且圆心在直线2x+y=0求这个圆的方程解:设圆心为(a,-2a)、圆方程为(x-a)²+(y+2a)²=r²、圆心到直线的距离d为(a+2a-1)/√2=r ∴(3a-1)²=2r²、又(2,-1)在圆上、∴(2-a)²+(-1+2a)²=r²解得a=1或a=9∴圆方程为(x-1)²+(y+2)²=2或(x-9)²+(y+18)²=3383.求经过直线x+2y+1=0与直线2x+y-1=0的交点,圆心为C(4,3)的圆方程。