(完整word版)职高数学基础模块下册复习题
中职数学基础模块(下)期末试卷
中职数学基础模块(下)期末试卷一、选择题(10⨯4=40分)1、在等差数列{}n a 中,d a a 则公差,12,462==等于 ( ) A 、1 B 、2 C 、2± D 、82、若,22,2,4==-=⋅b a b a 则向量b a,的夹角θ 是 ( ) A 、 0 B 、 90 C 、 180 D 、 270 3、经过点)3,4(-A 与)9,1(-B 的直线方程是( ) A.0112=--y x B.052=--y x C.052=-+y x D.0112=-+y x 4、直线012=+-y x 与直线6121-=x y 的位置关系是( ) A.垂直 B.重合 C.平行 D.相交而不垂直 5、等比数列1,2,4,8.....的前10项和是( )A .63B .1008C .1023D .10246、直线0102=-+y x 与圆422=+y x 的位置关系 ( )A 、相离B 、相切C 、过圆心D 、相交但不过圆心 7、已知A 、B 两点坐标为A (3,-1),B (2,1) ,且B 是线段AC 的中点则 点C 的坐标为 ( )A 、(2,6)B 、(1,3)C 、(2.5,0)D 、(-1,2) 8、经过点A(-1,4) ,且斜率是1/2 的直线方程为 ( )A 、092=+-y xB 、092=--y xC 、0102=++y xD 、0102=-+y x9、直线)1(32+-=-x y 的倾斜角和所过的定点分别是 ( ) A .)2,1(,60-- B. )2,1(,120- C.)2,1(,150- D.)2,1(,120- 10、过点)3,2(A ,且与y 轴平行的直线方程为( )A.2=xB.2=yC.3=xD.3=y 二、填空题(4⨯4=16分)1、直线0623=--y x 的斜率为 ,在y 轴上的截距为2、方程062622=-+-+y x y x 化为圆的标准方程为3、已知==-=a b a 则),2,21(),3,2( ,=⋅b a 。
最新中职数学基础模块(下)期末试卷
中职数学基础模块(下)期末试卷一、选择题(10⨯4=40分)1、在等差数列{}n a 中,d a a 则公差,12,462==等于 ( ) A 、1 B 、2 C 、2± D 、82、若,22,2,4==-=⋅b a b a则向量b a ,的夹角θ 是 ( ) A 、 0 B 、 90 C 、 180 D 、 270 3、经过点)3,4(-A 与)9,1(-B 的直线方程是( ) A.0112=--y x B.052=--y x C.052=-+y x D.0112=-+y x 4、直线012=+-y x 与直线6121-=x y 的位置关系是( ) A.垂直 B.重合 C.平行 D.相交而不垂直 5、等比数列1,2,4,8.....的前10项和是( ) A .63 B .1008 C .1023 D .10246、直线0102=-+y x 与圆422=+y x 的位置关系 ( )A 、相离B 、相切C 、过圆心D 、相交但不过圆心 7、已知A 、B 两点坐标为A (3,-1),B (2,1) ,且B 是线段AC 的中点则 点C 的坐标为 ( )A 、(2,6)B 、(1,3)C 、(2.5,0)D 、(-1,2) 8、经过点A(-1,4) ,且斜率是1/2 的直线方程为 ( )A 、092=+-y xB 、092=--y xC 、0102=++y xD 、0102=-+y x9、直线)1(32+-=-x y 的倾斜角和所过的定点分别是 ( ) A .)2,1(,60-- B. )2,1(,120- C.)2,1(,150- D.)2,1(,120- 10、过点)3,2(A ,且与y 轴平行的直线方程为( )A.2=xB.2=yC.3=xD.3=y 二、填空题(4⨯4=16分)1、直线0623=--y x 的斜率为 ,在y 轴上的截距为2、方程062622=-+-+y x y x 化为圆的标准方程为3、已知==-=a b a 则),2,21(),3,2( ,=⋅b a 。
中职数学(基础模块)下册第六章数列单元考试卷(含答案)
中职数学(基础模块)下册第六章数列单元考试卷(含答案)中职数学(基础模块)下册第六章数列单元考试卷含答案一、选择题1.数列{an}的通项公式an=(-1)^3*(n+1)*9,因此a2=9,选B。
2.选A,因为2,6,10,14,18是公差为4的等差数列。
3.已知a1=-3,d=2,所以a5=-3+4*2=5,选B。
4.已知a5=9,d=2,所以a(n)=a5+(n-5)*d=9+(n-5)*2=2n-1,选D。
5.已知a1=-3,d=3,所以S8=(a1+a8)*4/2=(-3+a1+7d)*4/2=(-3+21)*4/2=36,选A。
6.已知a4+a7=16,又a4=a1+3d,a7=a1+6d,所以a1+9d=16,又S10=(a1+a10)*10/2=(a1+a1+9d)*10/2=5(a1+9d)=5*16=80,选B。
7.已知a1=2,q=-3,所以a3=a1*q^2=-18,选A。
8.已知a1=-8,a4=1,所以q=(a4/a1)^(1/3)=2,选A。
9.已知a1=2,q=-3,所以S5=(a1*(1-q^5))/(1-q)=(2*(1-(-3)^5))/(1-(-3))=122,选B。
10.已知2,a,8成等差数列,所以a=5,选C。
11.已知,a,8成等比数列,所以a=-2,选D。
12.“a+c=2b”是“a,b,c组成等差数列”的必要不充分条件,选B。
二、填空题13.公差d=5,an=-1+(n-1)*5=5n-6.14.通项公式an=n+1.15.设a2=x,所以a6=x^3,代入等比数列的通项公式an=a1*q^(n-1),得到a1*x^5=16,即a1=16/x^5.16.公差d=3.三、解答题17.(1)已知a1=-5,d=6,所以an=-5+(n-1)*6=6n-11.2)S5=(a1+a5)*5/2=(-5+19)*5/2=35.18.设三个数为a-d,a,a+d,根据题意得到以下两个方程:a-d+a+a+d=12,解得a=4;a-d)*a*(a+d)=28,代入a=4,解得d=2;因此三个数为2,4,6.19.题目:已知成等比数列的三个数和为13,积为27,求这三个数。
中职学业水平考试数学(基础模块)下册第5章指数函数与对数函数单元测试卷
中职学业水平考试数学(基础模块)下册 第5章指数函数与对数函数单元测试卷班级_______姓名__________座号_____成绩________ 一、选择题(每小题3分,共45分) 1.下列哪个函数是对数函数( )A. 3xy = B.2y x -=C. 10x y =D. log a y x =(a>0且a ≠1) 2.指数函数图像经过定点( )A.(0,0)B.(0,1)C.(1,0)D.(1,1) 3.对数log a a =( )A.0B.1C.aD.2a4.将416x =化成对数式可表示为()A. x =16log 4B. 4log 16x =C.16log 4x =D.4log 164=5. 下列各函数中,为指数函数的是( ) A.32y x= B. 3log yx =C. 2x y =D. y x =6.下列运算中,正确的是( ) A.3443222⋅= B. 3443222÷=C. 3443(2)2= D. 3344220-⋅=7.已知a>0且a ≠0,下列式子中,错误的是( )A.32a = B.2log 2aa =C.351a-=D. 1x yy xaa --=8.下列各指数函数中,在区间(-∞,+∞)内为减函数的是( )A. 3xy = B. ()4x yπ= C. 10x y = D. 5x y = 9.若函数log a y x =的图像经过点(2,-1),则底a =( ) A.2 B.-2 C. 12D. -1210.下列各函数中,在区间(0,+∞)内为增函数的是( )A. 2y x -= B.2log y x =C. 2x y -=D.23xy ⎛⎫= ⎪⎝⎭11. 下列各角中,与330°角终边相同的角是( ) A. 510° B. 150° C. -150° D. -30° 12.已知函数1()1x f x x +=-,则(2)f -=( )A.13- B. 13C.1D.313. 下列各式中正确的是( )A 、7ln 2ln )72ln(+=+B 、7ln 2ln )72ln(•=•C 、7ln 2ln )72ln(+=•D 、7ln 2ln 72ln =14. 若4log 3-=x ,则=x ( ) A 、34- B 、-12 C 、81 D 、81115.已知x y a log =(0>a 且1≠a )的图像经过定点P ,则点P 的坐标可能是( )A 、(0,1)B 、(1,0)C 、(1,1)D 、(0,0) 二、填空题(每小题3分,共15分) 16. -34=________ (-3)4=_____ 17.212>x ,求x 的取值范围是__________18.把根式写成分数指数幂的形式:=___________19.指数式131273-=写成对数式为___________________ 20.函数lg(1)yx =-的定义域为__________________三、解答题(每题8分,共40分)21. 求值:(1) lg4+lg25 (2)lg500-lg5 22. 已知一段公路的弯道半径是30m, 转过的圆心角是120度,求该弯道的长度。
中职数学基础模块下册《等差数列》word练习题1
得分
评卷人列-3,3,-3,3,…的一个通项公式是( )
A.an=3(-1)n+1B.an=3(-1)n
C.an=3-(-1)nD.an=3+(-1)n
2.等差数列1, 5, 9,…前10项的和是( )
得分
评卷人
三、简答题(共30分)
1、已知一个等差数列的第5项是5,第8项是14,求该数列的通项公式及第20项.(7分)
2、已知等差数列{an},a6=5,a3+a8=5,求a9(7分)
3、在8和200之间插入3个数,使5个数成等比数列,
求这三个数。(8分)
4、在等差数列中已知a =10,a =31,求首项a 和公差d,并求该数列第21项
A. 1001 B. 1000 C. 999 D. 998
三、判断题(每题2分,共10分)
1.常数列既是等差数列又是等比数列( )
2.等比数列的公比可以为零. ( )
3.任意两个数均有等比中项存在. ( )
4.等差数列{an}中a3=5,则a1+a5等于10. ( )
5.数列1×2,2×3,3×4,4×5,…n(n + 1)的第10项为110. ( )
安居职业高级中学校2012年上期半期考试
数 学
(适用于2011级春招班)
(总分100分,考试时间90分钟)
题目
一
二
三
四
总分
得分
得分
评卷人
一、填空题:(每空4分,共40分)
1.已知数列an= n2- n,则a5=.
2.已知数列a1=1, an+1= 2an-3,则a3=.
高教版中职数学《数学基础模块下册》章节复习题7简单几何体
《数学基础模块下册》复习题7:简单几何体【知识巩固】1.图7-56所示选项中,可以表示直立摆放的圆柱所对应的主视图的是( ).图7-562.在太阳光的照射下,正方形在地面上的投影不可能是( ).A .正方形 B.菱形 C.线段 D.梯形3.已知正方形的直观图是平行四边形,若平行四边形某一边的边长为4cm,则正方形的边长是( )cm.A.4B.8C.4或8D.124.已知球的直径为6cm,则其体积为( )cm 3.A.36πB.72πC.144πD.288π5.正六棱锥的底面周长是12cm,高是、13cm,则它的侧面积是( )cm 3.A.15√3B.6C.24D.156.图7-57中,三视图所对应的直观图是( ).图7-577.已知正方体ABCD −A 1B 1C 1D 1,的棱长为a ,则三棱柱1111A DD B CC 的体积______________.8.已知正三棱锥的底面边长为6cm,斜高为4cm,则三棱锥的表面积为______________,体积 为______________.9.把一个高12cm 的圆锥形容器装满水,倒进一个与它底面积相等、高度相等的圆柱形容器中,此时水的高度是______________.10.已知侧棱长为16cm,底面面积为72cm 2的直三棱柱ABC −A 1B 1C 1,中,AB =BC,∠ABC =90°,求三棱柱的侧面积和体积.11.已知圆柱的轴截面是正方形,面积为S,求圆柱的侧面积和体积.12.已知圆柱的侧面展开图是一个长为12cm、宽为8cm的矩形,求圆柱的体积.【能力提升】1.圆柱形水槽的底面半径是8cm,一个铁块完全浸没在水中,当铁块取出时,水面下降了5cm,求铁块的体积.2.过球半径的中点作一个垂直于半径的截面,该截面的面积与球的大圆面积之比是多少?3.某粮库现有一个用于储藏粮食的圆柱形仓库,仓库的底面直径为12m,高为4m,为存放更多粮食,拟建一个更大的圆柱形仓库.现有两种方案:一是新建仓库的底面半径比原来大4m,高不变;二是高度增加4m,底面半径不变.(1)分别计算这两种方案所建仓库的体积;(2)仅就仓库墙面(即仓库的侧面)而言,若每平方米成本为α元,分别计算这两种方案的墙面建造成本;(3)从建造成本和容量大小角度比较,哪一个方案效益更好?。
全国中等职业教育数学基础模块下册数学练习题
全国中等职业教育数学基础模块下册数学练习题 一、填空题 1. 如果直线l 经过点(2,0),(5,3)--,那么直线l 的倾斜角是_______________2. 已知(3,4),(5,2)A B --,则AB =_____________3.2246120x y x y +---=的半径=_______________4.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是_______________5.方程220x y -=表示的图像是_______________6.(1,2)C -为圆心,且与直线3490x y -+=相切的圆的方程为_______________ {7.若直线0x y a ++=(其中a 是常数)经过圆222460x y x y +-+-=的圆心,则a =________8.设直线过点(0,)a ,其斜率为1,且与圆222x y +=相切,则a 的值为_______________9. 若直线x -y =2被圆(x -a )2+y 2=4所截得的弦长为22,则实数a 的值为_______________10. 在正方体ABCD A B C D ''''-中,,M N 分别是AB ,DD '的中点,则异面直线B M '与CN 所成的角为_______________11. 三条直线10,280x y x y ++=-+=x 和350ax y +-=只有两个不同的交点,则a =____________12. 已知直线3420x y ++=与圆2240x y y ++=交于,A B 两点,则线段AB 的垂直平分线方程是_______________13. 一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是 .14. 已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为 .%15. 直线3410x y --=与圆22(1)(2)9x y -++=的位置关系是_______________16. 若方程220x y x y k +-++=表示圆,则k 的取值范围是_______________17.设圆2220x y ax ++-=的圆心是(1,0),则圆的半径等于________18.过原点且倾斜角为60︒的直线被圆 2240x y y +-=所截得的弦长为19.过点(2,3)且平行于直线250x y +-=的直线方程为_______________二、计算题1.求以直线34120x y -+=在坐标轴间所截的线段为直径的圆的方程.2.已知(3,5),(1,2),(0,0)A B O ---,求(1)直线AB 的方程;(2)求ABO ∆的面积. ~3.过原点O 作圆C :22(1)(2)1x y -+-=的切线,求原点与切线切点之间的距离.4.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上。
职高数学一年级下册复习题
加满油! 跑得更远!数学基础模块下册复习题第一章 数列1.数列112,223,334,445,…的一个通项公式是 ( ) (A )21n n a n =+ (B )221n n n a n +=+ (C )211n n n a n ++=+ (D )221n n n a n +=+ 2.数列通项是n n a n ++=11,当其前n 项和为9时,项数n 是 ( )(A )9 (B )99 (C )10 (D )1003.在数列2,5,9,14,20,x ,…中,x 的值应当是 ( )(A )24 (B )25 (C )26 (D )274.数列{a n }通项公式a n =log n+1(n+2),则它的前30项之积是 ( )(A )51 (B )5 (C )6 (D )231log 3log 3215+ 5.已知数列{a n }满足a 1=1,且121(2)n n a a n -=+≥,则数列的第五项a 5= 6.已知数列{a n }前n 项之和S n =1n n +,则a n= 7.一数列的通项公式为a n = 30 + n -n 2.①问-60是否为这个数列中的一项.②当n 分别为何值时,a n = 0, a n >0, a n <08.等差数列8,5,2…的第20项为9.数列{a n }的通项公式为25n a n =+,则此数列的公差为10.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于 ( )(A )40 (B )42 (C )43 (D )4511.若等差数列共有10项,其奇数项之和为15,偶数项之和为30,则d= ( )(A )5 (B )4 (C )3 (D )212.方程lgx+lgx 3+lgx 5+….+lgx 2n-1=2n 2的解是13.等差数列{ a n },a 1=1, a 1+a 2+…+a 10 =100,则此数列的通项a n = .14.在等差数列{ a n }中,(1)已知a 3+a 11=20,则a 7=(2)已知3a +4a +5a +6a +7a =450, 求2a +8a 及前9项和9S .15.等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50. (1)求通项a n ; (2)若S n =242,求n .16.在等差数列{}n a 中,已知.,63,6,994n S a a n 求=-==17.在等比数列{a n }中a 2=2, a 5=54,则q = ;18.在等比数列{a n }中a 5=1, a n =256,q =2,则n = .19.公差不为0的等差数列第二、三、六项成等比数列,则公比等于20.等比数列的前三项和等于首项的3倍,则该等比数列的公比为 ( )(A )-2 (B )1 (C )-2或1 (D )2或-121.11的等比中项是 .22.lgx+lgx 2+lgx 3+…+lgx 10=110,则lgx+lg 2x+…+lg 10x=23.在2与32之间插入三个实数,使这5个数成等比数列,则插入的3个数为24.在数列{a n }中,a 3、a 10是方程 x 2- 3x -5 = 0的两个根,则 a 6.a 7= .25.数列{a n }中,若a n+1=2a n(1)n ≥,且a 1=2,则S 5= 第二章 向量1.______OA OB CO BO +++=,______CE AC DE AD +--=。
高教版职高数学基础模块下期末测试题
高教版职高数学基础模块下期末测试题一、选择题(36分)1、数列-1,1,-1,1,…的一个通项公式是( ).(A )n n a )1(-= (B )1)1(+-=n n a (C )n n a )1(--= (D )2sin πn a n =2.一个等比数列的第3项是45,第4项是-135,它的公比是( ).(A )3 (B )5 (C ) -3 (D )-53 .如果圆的方程为034222=++-+y x y x ,则该圆的圆心坐标和半径分别是 ( )A .(1,-2),2B .(1,-2),2 C .(-1,2),2 D .(-1,2),24.10y -+=的倾斜角为 A .0150 B .0120 C .060 D .0305.以A (1,3)和B(-5,1)为端点的线段AB 的中垂线方程是A .380x y -+=B .340x y ++=C .260x y --=D .380x y ++=6、已知线段AB 的端点A (3,4)及中点0(0,3),则点B 的坐标为( )A 、(27,23)B 、(-3,2)C 、(3,2)D 、(3,10)7、已知a =(3,1),b=(32-,5),则a 与b 的夹角等于( )A 、30oB 、60oC 、120oD 、60o 或120o8、已知a (3,-2)b (-3,-4),则a?b=( )A 、0B 、1C 、-1D 、29.如果空间两条直线互相垂直,那么它们( )A.一定相交B.异面直线C.共面直线D.一定不平行10.下面图形中不一定是平面图形的是( )A.三角形B.平行四边形C.四条线段首尾连接成的四边形D.梯形11、如果平面外一条直线上有两点到这个平面的距离相等,那么这条直线与平面的位置关系是( )。
A 、平行B 、相交C 、垂直D 、平行或相交12、如图,是一个正方体,则? B1AC= ( )A 、30oB 、45oC 、60oD 、75o二、填空题(16分)13.数列{}n a 是等比数列, ,3,11==q a 则=5a _________ .14. 已知三个数13,,13-+A 成等差数列,则A =_________15、 若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于_________16.已知:a = ( 3, 2) , b = ( - 4 , x ) ,若a ⊥b , 则x=_________三、解答题(48分)17.等差数列{}n a 中,64=a ,484=S ,求1a .(6分)18、求以直线x+y-2=0与直线x-2y+1=0的交点为圆心,且半径为4的圆的方程(6分)19、如图、直线AB 、BC 、CA 两两相交,交点分别为A 、B 、C ,判断这三条直线是否共面,并说明理由. (7分)20.已知三点A (1,-1),B (3,3),C (4,5)。
(完整word版)中职数学基础模块(下)期末试卷
中职数学基础模块(下)期末试卷一、选择题(10⨯4=40分)1、在等差数列{}n a 中,d a a 则公差,12,462==等于 ( ) A 、1 B 、2 C 、2± D 、82、若,22,2,4==-=⋅b a b a则向量b a ,的夹角θ 是 ( )A 、 0B 、 90C 、 180D 、 270 3、经过点)3,4(-A 与)9,1(-B 的直线方程是( ) A.0112=--y x B 。
052=--y x C 。
052=-+y x D 。
0112=-+y x4、直线012=+-y x 与直线6121-=x y 的位置关系是( )A 。
垂直 B.重合 C.平行 D 。
相交而不垂直 5、等比数列1,2,4,8。
.。
..的前10项和是( ) A 。
63B 。
1008C 。
1023 D.1024 6、直线0102=-+y x 与圆422=+y x 的位置关系 ( ) A 、相离 B 、相切 C 、过圆心D 、相交但不过圆心7、已知A 、B 两点坐标为A(3,—1),B(2,1) ,且B 是线段AC 的中点则点C 的坐标为 ( ) A 、(2,6) B 、(1,3) C 、(2.5,0) D 、(-1,2)8、经过点A(—1,4) ,且斜率是1/2 的直线方程为 ( )A 、092=+-y xB 、092=--y xC 、0102=++y xD 、0102=-+y x9、直线)1(32+-=-x y 的倾斜角和所过的定点分别是 ( ) A .)2,1(,60-- B 。
)2,1(,120- C.)2,1(,150- D 。
)2,1(,120-10、过点)3,2(A ,且与y 轴平行的直线方程为( ) A.2=x B.2=y C.3=x D 。
3=y二、填空题(4⨯4=16分)1、直线0623=--y x 的斜率为 ,在y 轴上的截距为2、方程062622=-+-+y x y x 化为圆的标准方程为3、已知==-=a b a 则),2,21(),3,2( ,=⋅b a。
中职数学(基础模块)下册第六章数列单元考试卷(含答案)
中职数学(基础模块)下册第六章数列单元考试卷含答案一、选择题1.数列}{n a 的通项公式n a n n 311+-=)(,则2a =( ) A. 9- B. 9 C. -6 D. 62.下列数列是等差数列的是( )A. 2,6,10,14,18B. 2,4,8,16,32C. 1,4, 9, 16, 25D.514131211,,,,3.已知等差数列}{n a 中,31-=a ,d=2,则5a =( ).A .3B .5C .7D .94.已知等差数列{n a }中,5a =9,d =2,则n a =( )A. 2-2nB. 3-2nC. 2n -lD. 2n -35.已知等差数列{n a }中,31-=a ,d=3,则8S =( ).A . 60B .-24C .-84D .906.已知等差数列}{n a 中,1674=+a a ,则=10S ( )A . 60 B. 80 C. 120 D .1607.已知等比数列{n a }中,21=a ,3-=q ,则=3a ( ).A .-18B .54C .18D .-548.已知等比数列{n a }中,81-=a ,14=a ,则=q ( ).A .2B .-2C .21D .21-9.已知等比数列{n a }中,21=a ,3-=q ,则=5S ( ).A .244B .122C .-244D .-12210.已知2,a ,8成等差数列,则=a ( )A .2B .4C .5D .611.已知21,a ,8成等比数列,则=a ( )A .2B .4C .2±D .-412.“a+c=2b ”是“a ,b ,c 组成等差数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题13.己知等差数列-1,4,9,14,……,则该数列的公差d= ,=n a 。
14.已知数列{n a }中,11=a , 21+=+n n a a ,则此数列的通项公式=n a 。
职高基础模块下数学期末试卷
高一下学期数学期末测试卷姓名: 得分:一、 选择题1、下列命题中正确的是( )A 、三个点确定一个平面B 、经过一条直线和一个点可以确定一个平面C 、三条互相平行的直线可以确定一个平面D 、平行四边形可以确定一个平面2、已知{}n a 是首项为2,公差为4的等差数列,如果2006,n a n ==则( )A 、500B 、501C 、502D 、5033、已知等差数列{a n }的前三项依次为-1, 1, 3,则数列的通项公式是( ) A 、a n =2n -5B 、a n =2n+1C 、a n =2n -1D 、a n =2n -34、等差数列{a n }中, a 1=4,a 3=3,则当n 为何值时,n S 最大?( )A 、7B 、8C 、9D 、8或95、已知线段AB 的端点A (3,4)及中点0(0,3),则点B 的坐标为( )A 、(27,23) B 、(-3,2) C 、(3,2) D 、(3,10) 6、如果a <b ,下列不等式正确的是( )A 、a -3>b -3B 、3a >3bC 、-2a >-2bD 、5a >5b 7、如图,四边形ABCD 中,AB →=DC →,则相等的向量是( )A. AD →与CB →B. OB →与OD →C. AC →与BD →D. AO →与OC →8、已知平行四边形ABCD 中,A (-4,-2),B (2,-4),C (5,-1),则点D 的坐标为( )A 、(1,-1)B 、(-1,1)C 、(11,-3)D 、(-11,3)9、已知点M,N (,则直线MN 的倾斜角为( ) A 、045 B 、0135 C 、060 D 、012010、直线340x y +-=与直线340x y -+=的位置关系为( )A 、垂直B 、相交但不垂直C 、平行D 、重合选择题答案:1~5 ,6~10 .二、填空题1、直线260x y -+=在x 轴与y 轴上的截距分别是 ;2、点(2,1)到直线3470x y -+=的距离为 ;3、已知点A(5,3)、B (6,-2),则以AB 为直径的圆的方程为 ;4、已知点A (-4,6)、B (0,2),则AB uu u r = ,||BA uu r = ;5、设直线a 与b 是异面直线,直线c//a ,则b 与c 的位置关系是 ;三、解答题1、在8和200之间插入3个数,使5个数成等比数列,求这三个数。
中职数学基础模块下册第七单元《平面向量》word练习题
第七章 平面向量(A )一、选择题:1.四边形ABCD 中,→=→→+0CD AB ,则它一定是A .矩形B .平行四边形C .菱形D .正方形2.=→+→-→→+CE AE BC ABA .→0B .→AEC .→CED .→AC3.设向量)2,1(-=→a ,)1,3(-=→b ,则=-→→a b 2A .)4,7(--B .)4,7(-C .)4,7(D .)4,7(-4.满足向量等式→→→→→→+=---a b x b a x )(2)(3的向量=→xA .→→+b x 34B .→→+-b x 34C .→→-b x 34D .→→--b x 345.已知向量)2,1(=→a ,),6(y b -=→,且→a 与→b 共线,则=yA .12B .12-C .3D .3-6.已知向量)3,2(-=→a ,)4,(x b =→,且→a ⊥→b ,则=xA .6B .6-C .38 D .38- 7.已知向量)1,2(-=→a ,)6,3(=→b ,则>=<→→b a ,A .︒45B .︒60C .︒90D .︒1208.若1=→a ,2=→b ,︒→→>=<60,b a ,则=+⋅-→→→→)2()2(b a b a A .0 B .2 C .2- D .3-9.已知点A )1,2(-和B )2,3(-,且→=→PB AP 4,则点P 的坐标为A .)57,2(B .)2,57(C .)57,2(-D .)2,57(- 10.点A )2,1(经过向量)3,2(-=→a 平移后坐标为A .)1,3(-B .)5,1(-C .)1,3(-D .)1,5(-11.函数)632cos(π+=x y 的图像平移向量)0,4(π=→a 后的新图像对应的函数为A .x y 32sin =B .x y 32sin -=C .x y 32cos =D .x y 32cos -= 12.某函数的图像经过向量)1,6(π=→a 后与1)32sin(+-=πx y 的图像重合,则此函数为A .x y 2sin =B .x y 2sin -=C .x y 2cos =D .x y 2cos -=13.点A )2,1(,B )4,3(,则A 关于B 的对称点C 的坐标为A .)6,4(B .)6,5(C .)4,6(D .)5,6(14.→→→→⋅=⋅b a b a 是→a 、→b 平行的A .必要非充分条件B .充分非必要条件C .充要条件D .非充分非必要条件15.点A )2,1(,B ),4(y ,若5=→AB ,则=yA .2-B .6C .2D .2-或6二、填空题:16.已知向量)4,2(-=→a ,)2,5(=→b ,则=-→→b a 2317.=+--+→→→→→a b a b a )2(3)(218.已知点)2,2(-M ,)5,1(N ,则MN 中点坐标为19.向量)2,3(=→a 向量)4,3(-=→b 方向的射影的数量为20.已知向量)3,4(=→a ,)4,2(=→b ,则>=<→→b a ,cos三、解答题: 21.已知ABC ∆,→=→AB AM 31,→=→AC AN 31,用向量运算证明M N ∥BC ,且MN=31BC 。
中职数学基础模块下册计数原理word练习题
第十编计数原理§两个基本计数原理1.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法有__________种.2.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法有种.3.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有种不同的选法.4.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有种.5.有一项活动需在3名老师,8名男同学和5名女同学中选人参加,(1)若只需一人参加,有多少种不同的选法?(2)若需一名老师,一名学生参加,有多少种不同的选法?(3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法?例1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?例2已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?例3现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?基础自测1.从1到20这20个整数中,任取两个相加,使其和大于20,共有几种取法?2.某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把这种要求的号全买下,至少要花多少元钱?3.某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)任选1个班的学生参加社会实践,有多少种不同的选法?(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?一、填空题位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有种. 2.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位中带有数字“4”或“7”的一律作为优惠卡,则这组号码中“优惠卡”共有个.3.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列共有 __个.4.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.5.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有种.6.(2008·全国Ⅰ文)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有种.7.在2008年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1、2、3、4、5、6、7、8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有种.8.若一个m,n均为非负整数的有序数对(m,n),在做m+n的加法时各位均不会进位,则称(m,n)为“简单的”有序数对,m+n称为有序数对(m,n)的值,那么值为1 942的“简单的”有序数对的个数是 .二、解答题9.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?10.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?11.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的元素,又点P到原点的距离|OP|≥5.求这样的点P的个数.12.将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?§排列与组合1.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有个.2.(2008·福建理)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案共有种.3.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有种.(用式子表示)4.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法种数是(用式子表示).5.(2007·天津理)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).例1六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.例2男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.例3 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?基础自测1.用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于3 125的数.2.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?3.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.一、填空题1.用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有个.2.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法共有种.3.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有种.4.在图中,“构建和谐社会,创美好未来”,从上往下读(不能跳读),共有种不同的读法.5.(2008·天津理)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有种.6.(2008·安徽理)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是(用式子表示).7.平面α内有四个点,平面β内有五个点,从这九个点中任取三个,最多可确定个平面,任取四点,最多可确定个四面体.(用数字作答)8.(2008·浙江理,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是 .(用数字作答)二、解答题9.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?10.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.11.已知平面α∥β,在α内有4个点,在β内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法?§二项式定理1.在(1+x)n(n∈N*)的二项展开式中,若只有x5的系数最大,则n= .2.在(a2-2a31)n的展开式中,则下列说法错误的有个.①没有常数项②当且仅当n=2时,展开式中有常数项③当且仅当n=5时,展开式中有常数项④当n=5k (k∈N*)时,展开式中有常数项3.若多项式0C n(x+1)n-C1n(x+1)n-1+…+(-1)r C r n(x+1)n-r+…+(-1)n C n n=a0x n+a1x n-1+…+a n-1x+a n,则a0+a1+…+a n-1+a n= .4.(2008·山东理)(x-31x)12展开式中的常数项为 .5.(2008·福建理,13)若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5= .(用数字作答)例1在二项式(x+421x)n的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.基础自测例2已知(1-2x)7=a0+a1x+a2x2+…+a7x7.求:(1)a1+a2+…+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6;(4)|a0|+|a1|+|a2|+…+|a7|.例3(1)已知n∈N*,求证:1+2+22+23+…+25n-1能被31整除;(2)求的近似值,使误差小于.1.在(3x-2y)20的展开式中,求:(1)二项式系数最大的项;(2)系数绝对值最大的项;(3)系数最大的项.2.求x(1-x)4+x2(1+2x)5+x3(1-3x)7展开式中各项系数的和.3.求证:3n>(n +2)·2n -1(n ∈N *,n >2).一、填空题1.(1-2x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则|a 0|+|a 1|+|a 2|+…+|a 6|的值为 .2.(2008·安徽理)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1,…,a 8中奇数的个数为 . 3.(2008·全国Ⅱ理)(1-x )6(1+x )4的展开式中x 的系数是 . 4.已知(x -xa )8展开式中常数项为1 120,其中实数a 为常数,则展开式中各项系数的和为 . 5.若(1+5x 2)n的展开式中各项系数之和是a n ,(2x 3+5)n的展开式中各项的二项式系数之和为b n ,则nn n b a 13+的值为 .6.设m ∈N *,n ∈N *,若f (x )=(1+2x )m +(1+3x )n 的展开式中x 的系数为13,则x 2的系数为 . 7.(1+x )6(1-x )4展开式中x 3的系数是 .8.(2008·天津理,11)52⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中x 2的系数是 .(用数字作答) 二、解答题 9.已知(x +22x )n (n ∈N *)的展开式中第5项的系数与第3项的系数之比为10∶1.求展开式中系数最大的是第几项?10.已知(32x +3x 2)n展开式中各项的系数和比各项的二项式系数和大992.求展开式中系数最大的项.11.(1)求(x 2-x21)9的展开式中的常数项; (2)已知(x a -2x )9的展开式中x 3的系数为49,求常数a 的值;(3)求(x 2+3x +2)5的展开式中含x 的项.12.在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.单元检测十一、填空题(本大题共14小题,每小题5分,共70分)1.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁不能排在一起,则不同的排法共有 种.2.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有 个.3.二项式(a +2b )n中的第二项系数是8,则它的第三项的二项式系数为 . 4.已知(x +1)15=a 0+a 1x +a 2x 2+…+a 15x 15,则a 0+a 1+a 2+…+a 7= .5.(2008·四川理)从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有 种.6.(2009·常州模拟)在(1-x 3)(1+x )10的展开式中,x 5的系数为 .7.(1+3x )6(1+41x)10的展开式中的常数项为 .8.(2008·辽宁理)一生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有 种.9.甲、乙、丙三名同学在课余时间负责一个计算机房的周一至周六值班工作,每天一人值班,每人值班两天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 种.10.若(1+x )n +1的展开式中含x n -1的系数为a n ,则11a +21a +…+n a 1的值为 . 11.在(x -x21)9的展开式中,x 3的系数为 (用数字作答). 12.已知(1+x )+(1+x )2+(1+x )3+…+(1+x )8=a 0+a 1x +…+a 8x 8,则a 1+a 2+a 3+…+a 8= .13.(2008·陕西理,16)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成,如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答) 14.(ax -x 1)8的展开式中x 2的系数是70,则实数a 的值为 . 二、解答题(本大题共6小题,共90分)15.(14分)二次函数y =ax 2+bx +c 的系数a 、b 、c ,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?16.(14分)五位老师和五名学生站成一排:(1)五名学生必须排在一起共有多少种排法?(2)五名学生不能相邻共有多少种排法?(3)老师和学生相间隔共有多少种排法?17.(14分)已知在n x x ⎪⎪⎭⎫ ⎝⎛-3321的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.18.(16分)4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球.(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法?(2)取出一个红球记2分,取出一个白球记1分,若取出4个球总分不少于5分,则有多少种不同的取法?19.(16分)已知(a 2+1)n 展开式中的各项系数之和等于(516x 2+x1)5的展开式的常数项,而(a 2+1)n 的展开式的系数最大的项等于54,求a 的值(a ∈R ).20.(16分)设(2-3x )100=a 0+a 1x +a 2x 2+…+a 100x 100,求下列各式的值:(1)a 0;(2)a 1+a 2+…+a 100;(3)a 1+a 3+a 5+…+a 99;(4)(a 0+a 2+…+a 100)2-(a 1+a 3+…+a 99)2.。
高教版《数学》基础模块(下册)章复习题(word版直接使用,无需编辑)
高教版《数学》基础模块(下册)章复习题(word版直接使用,无需编辑)《第5章指数函数与对数函数》复习题 5A 知识巩固一、选择题.1. 下列式子计算正确的是 ( ).A. (−1)2=−1B. (−1)0=−1C. (a12)2=a(a>0) D. a−1=a(a≠0)2. 下列描述正确的是 ( ).A. √−273=3 B. 16 的四次方根是±2C. √−325=±2 D. √81=−93. 若指数函数f(x)=(a−1)x是R上的减函数,则a的取值范围是( ).A. a>2B. a<2C. 0<a<1D. 1<a<24. 下列各指数函数中,在(−∞,+∞)上为增函数的是( ).A. y=1.5xB. y=(π5) xC. y =0.2xD. y =(13)x5. 不在指数函数 y =5x 的图像上的点是 ( ).A.(0,1)B.(1,5)C.(-1, - 5)D. (−1,15)6. 函数 y =lgx ( ).A. 在 (−∞,+∞) 上是增函数B. 在 (−∞,+∞) 上是减函数C. 在 (0,+∞) 上是增函数D. 在 (−∞,0) 上是减函数7. 函数 y =log 12(1−2x ) 的定义域是( ). A. (−∞,+∞) B. (−∞,12)∪(12,+∞)C. [12,+∞)D. (−∞,12)8. 已知 3x−1=19 ,则 x = ( ).A. 2B. -2C. 1D. -19. 若 log 4x =−3 ,则 x = ( ).A. 12B. 164C. -12D. −3410. 若 1<x <y ,则下列式子正确的是 ( ).A. 3y <3xB. 3x <3yC. log 4y <log 4xD. log 14x <log 14y11. 若 a 2<a −12,则 a 的取值范围是( ).A. a ≥0B. a >0C. 0<a <1D. 0≤a ≤112. 已知 a =(23)−12,b =(23)−13,c =1 ,则它们的大小关系是( ).A. b >c >aB. a >b >cC. b >a >cD. c >a >b13. (lg5)2+lg2×lg5+lg2= ( ).A 1 B. -1C. 2D. -214. 下列不等式成立的是 ( ).A. log 32<log 23<log 25B. log 32<log 25<log 23C. log 23<log 32<log 25D. log 23<log 25<log 3215. 已知函数 f (x )={3x ,x <1,−x,x >1,则 f (12)= ( ). A. 3 B. √3C. 12D. −12 二、填空题. 16. √734 写成分数指数幂为____ .17. (25)−3=1258 的对数式为____ .18. 0.2512+(181)−14+(π−3)0= ____ . 19. log 28+2lg 1100−log 327= ____ .20. 将三个数 5−12 、 512 、 log 512 按照从小到大的顺序排列为____ . 三、解答题.21. 已知指数函数 y =a x (a >0 且 a ≠1) 的图像经过点 P (2,9) ,求 x =−2 时 y 的值.22. 作出下列各函数的图像.(1) y =4x ; (2) y =log 12x . 23. 计算下列各式的值.(1) 2log 242+12log 2436 ; (2) lg2+2lg3−lg60−lg30 .24. 计算下列各式的值.(1) √(−4)24+27−13⋅(π−√2)0+log 1327 ; (2) (√273×√54)÷√2 .25. 求下列函数的定义域.(1) y =log 0.5(1−x ) ; (2) y =2−x+lg3 .26. 某工厂机器设备的初始价值为 100 万元,由于磨损,每一年比上一年的价值降低 10% ,使用 10 年后, 该机器设备的价值为多少万元 (保留到小数点后第 2 位)?B 能力提升1. 求下列函数的定义域.(1) y =ln (x 2−x ) ; (2) y =√2−lgx . 2. 求函数 f (x )=4x 2−4x+5 的值域.3. 若 √4a 2−4a +1=1−2a ,求实数 a 的取值范围.4. 若 0≤x ≤2 ,求函数 y =(12)x+3 的最大值和最小值.5. 按复利计算利息的一种储蓄产品,设本利和为 y ,存期为 x ,若本金为 a 元,每期利率为 r .(1)试写出本利和 y 随存期 x 变化的函数关系式.(2)如果本金 a =1000 元,每期利率 r =2.25% ,试计算 5 期后本利和是多少 (保留到小数点后第 2 位).6. 声强级 L I (单位: dB ) 由公式 L I =10lg (I 10−12) 给出,其中 I 为声强 (单位: W/m 2 ),一般正常人听觉能忍受的最高声强为 1 W/m 2 ,能听到的最低声强为 10−12 W/m 2 ,那么,人听觉的声强级范围是多少?7. 我国是世界上鸟类种数较多的国家之一, 现有鸟类 1000 多种, 其中具有迁徙习性的鸟类有 800 多种. 燕子每年秋天要从北方飞往南方过冬, 研究发现, 燕子的飞行速度可以表示为函数 v =5log 2Q 10 ,单位是 m/s ,其中 Q 表示燕子耗氧量的单位数.(1) 计算: 燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是 80 个单位时, 它的飞行速度是多少? C 学以致用1. 为推动实施扩大内需战略, 促进居住消费健康发展, 满足人民对美好生活向往的现实需要,某地开发商新建住宅单价为 1000元/m 2 ,金融机构可以提供 4 年期短期融资服务,年利率为 4.5% ,采取复利方式支付利息. 若某人购买一套 120 m 2 的房屋,选择融资服务, 总付款多少元?2. 为预防某种病毒, 某职业学校用中药熏雾消毒法对教室进行消毒. 已知药物释放完毕后, 室内每立方米空气中药物的含量 y 与时间 t 的函数关系式为 y =(116)t−a ( a 为常数),假设 0.1 h 时,室内每立方米空气中药物的含量为 1mg ,据测定,当空气中每立方米的含药量降低到 0.25mg 以下时,学生可以进入教室. 请写出从药物释放开始,每立方米空气中药物的含量 y 与时间 t 之间的函数关系式; 从药物释放开始,学生至少需要经过多少小时后才能进入教室? 复习题 6 É《第6章直线与圆的方程》复习题 6A 知识巩固一、选择题.1. 已知两点 A (1,0) 和 B (3,3) ,则直线 AB 的斜率为( ).A. 23B. 32C. 2D. 32. 经过点(1,2)且倾斜角为 π4 的直线方程为( ).A. x +y −1=0B. x +y +1=0C. x −y −1=0D. x −y +1=03. 若直线 l 1:2x +ay −1=0 与直线 l 2:x +3y =0 平行,则实数 a = ( ).A. 4B. 6C. -4D. -64. 已知直线 l 过点(0,1)且与直线 y =x 平行,则直线 l 的方程为( ).A. x −y −1=0B. x +y −1=0C. x −y +1=0D. x +y +1=05. 若第一象限的点A(2,m)到直线3x−4y+2=0的距离为 4,则实数m的值为( ).A. -3B. 7C. -3 或 7D. 3 或 76. 圆x2+y2+4x−10y+20=0的圆心坐标为( ).A.(2, - 5)B.(-2,5)C.(2,5)D.(-2, - 5)7. 过圆x2+y2=5上一点A(1,2) ,与该圆相切的直线方程为( ).A. 2x+y+5=0B. 2x+y−5=0C. x+2y+5=0D. x+2y−5=08. 直线3x+4y=0与圆(x−2)2+(y−1)2=4的位置关系为( ).A. 相离B. 相切C. 相交且过圆心D. 相交但不过圆心二、填空题.9. 已知点A(1,0)和B(4,4) ,则点A与点B之间的距离为____ .10. 直线x+y+1=0的倾斜角是____ .11. 已知直线y=x与圆x2+y2=1交于P和Q两点,则线段PQ的中点坐标为____ .12. 如果直线6x−7y+m=0过原点,则m= _____.13. 已知直线kx−y−2=0与直线x+2y−1=0垂直,则k=____ .三、解答题.14. 已知直线x+y+3=0与直线x−y+1=0相交, A为交点,求:(1) 交点A的坐标; (2)过点A且倾斜角为π的直线的方程.315. 已知直线与两坐标轴的交点为A(2,0)和B(0,2) ,求:(1) 该直线的方程; 呈; (2) 以点A为圆心、以线段AB为半径的圆的方程.16. 求经过点A(0,0)和B(1,1)且圆心在y轴上的圆的方程.17. 已知圆C的方程为x2+y2−2x−4y+4=0 .(1) 求圆心坐标和圆的直径; (2)过原点作圆的切线, 求切线方程.18. 已知直线y=x与圆x2+y2=1相交于P和Q两点,求两点间的距离|PQ| .19. 方程x2+y2−5x−4y+8=0是否为圆的方程? 若是,求出圆心坐标和圆的半径; 若不是,说明理由.B 能力提升1. 已知△OAB的三个顶点分别为O(0,0)、A(1,1)、B(0,2) ,求:(1) 直线AB的方程; (2) △OAB的面积.2. 直线y=−3x+m与y轴交于点A(0,4) ,求:(1) m的值; (2) 以A为圆心,且过原点的圆的方程.3. 已知直线x−2y−5=0与圆x2+y2=50相交于两点A、B ,点O为坐标原点,求:(1) 交点A、B的坐标; (2) △AOB的面积.C 学以致用1. 求过点P(0,2)且与点A(1,1)、B(−3,1)等距离的直线l的方程.2. 已知圆C:(x−2)2+(y−1)2=25 ,直线l:(k−1)x+2y+5−3k=0 . 求直线l被圆C截得的最短弦长.3. 某小岛的周围有环岛暗礁,暗礁分布在以小岛的中心为圆心、半径为30 km的圆形区域内. 已知小岛中心位于轮船正西70 km处,港口位于小岛中心正北40 km处,如果轮船沿直线返港, 那么轮船是否会有触礁的危险?《第7章简单几何体》复习题 7A 知识巩固一、选择题.1. 图 7-69 所示选项中, 可以表示直立摆放的圆柱所对应的主视图的是 ( ).图 7-692. 在太阳光的照射下, 正方形在地面上的投影不可能是 ( ).A. 正方形B. 菱形C. 线段D. 梯形3. 已知正方形的直观图是平行四边形,若平行四边形某一边的边长为4 cm ,则正方形的边长是( )cm .A. 4B. 8C. 4 或 8D. 124. 已知球的直径为6 cm ,则其体积为( )cm3 .A. 36πB. 72πC. 144πD. 288π5. 正六棱锥的底面周长是12 cm ,高是√13 cm ,则它的侧面积是( )cm2 .A. 15√3B. 6C. 24D. 156. 图 7-70 中, 三视图所对应的直观图是 ( ).图 7-70二、填空题.7. 已知正方体ABCD−A1B1C1D1的棱长为a ,则三棱柱A1DD1−B1CC1的体积为____ .8. 已知正三棱锥的底面边长为6 cm ,斜高为4 cm ,则三棱锥的表面积为体积为____ .9. 把一个高12 cm的圆锥形容器装满水,倒进一个与它底面积相等、高度相等的圆柱形容器中,此时水的高度是____ .三、解答题.10. 已知侧棱长为16 cm、底面面积为72 cm2的直三棱柱ABC−A1B1C1中, AB= BC,∠ABC=90∘ , 求三棱柱的侧面积和体积.11. 已知圆柱的轴截面是正方形,面积为S ,求圆柱的侧面积和体积.12. 已知圆柱的侧面展开图是一个长为12 cm、宽为8 cm的矩形,求圆柱的体积.13. 画出图 7-71 所示组合体的三视图.图 7-7114. 根据图 7-72 所示的三视图, 画出物体的直观图.图 7-72B 能力提升1. 如图 7-73 所示的空心圆柱, 以下哪一选项是其在指定方向上的主视图( ).图 7-732. 圆柱形水槽的底面半径是8 cm ,一个铁块完全浸没在水中,当铁块取出时,水面下降了5 cm ,求铁块的体积.3. 过球半径的中点作一个垂直于半径的截面, 该截面的面积与球的大圆面积之比是多少?4. 某粮库现有一个用于储藏粮食的圆柱形仓库,仓库的底面直径为12 m ,高为4 m ,为存放更多粮食, 拟建一个更大的圆柱形仓库. 现有两种方案: 一是新建仓库的底面半径比原来大4 m ,高不变;二是高度增加4 m ,底面半径不变.(1)分别计算这两种方案所建仓库的体积;(2) 仅就仓库墙面 (即仓库的侧面) 而言,若每平方米的成本为a元,分别计算这两种方案的墙面建造成本;(3) 从建造成本和容量大小角度比较, 哪一个方案效益更好?C 学以致用1. 已知一个几何体的三视图如图 7-74 所示.图 7-74(1) 求此几何体的表面积S ;(2) 画出此几何体的直观图.2. 阿基米德的墓碑上刻了一个如图 7-75 所示的图案, 图案中球的直径、圆柱底面的直径和圆柱的高均相等, 圆锥的顶点为圆柱上底面的圆心, 圆锥的底面是圆柱的下底面. 试计算图案中圆锥、球、圆柱的体积比.图 7-75《第8章概率与统计初步》复习题 8A 知识巩固一、选择题.1. 下列说法中, 正确的是 ( ).A. 不可能事件的概率是 0 , 必然事件的概率是 1=0.2B. 进行 100 次随机试验,事件A发生了 20 次,则事件A的概率是20100C. 同时抛掷两颗质地均匀的骰子, 向上一面的点数和一定是 6D. 若某种疾病的治愈率为 0.7 , 则 10 个病人进行治疗, 一定有 7 人被治愈2. 下列试验中, 是古典概型的是 ( ).A. 测量某校任意一名学生的身高B. 了解某个学生每周去图书馆的次数C. 抛掷一颗质地均匀的骰子, 观察向上的点数D. 评估灯的使用寿命3. 下列选项中,两个事件为互斥事件的是( ).A. 运动员射击一次,事件A={命中环数大于8}与事件B={命中环数小于 6 }B. 某班统计数学考试成绩,事件A={成绩不低于 90 分}与事件B={成绩不高于 90 分}C. 抛掷一颗质地均匀的骰子,事件A={向上的一面出现奇数点}与事件B={向上的一面出现 5 点}D. 从数字1,2,3中抽取两个数字,事件A={抽取到1,2}与事件B={抽取的数字中有1}4. 电视台从已经确认编号的 10000 名观众中随机抽取 10 名幸运观众, 采用系统抽样的方法进行抽取, 分段间隔为 ( ).A. 10B. 100C. 1 000D. 10000[(x1−18)2+(x2−18)2+⋯+(x10−18)2]中,数5. 在样本标准差的计算公式s=√19字 10 和 18 分别表示样本的( ).A. 容量、方差B. 均值、容量C. 容量、均值D. 标准差、均值二、填空题.6. 事件A={367个人中至少有两个人生日相同}是____ 事件.7. 已知事件A与事件B是互斥事件, P(A∪B)=1,P(A)=0.3 ,则P(B)= _____.8. 从甲、乙、丙三名学生中任选两名参加比赛, 丙被选中的概率是_____.9. 某学校要了解实习学生情况, 从 500 名实习学生中用系统抽样的方法抽取 50 名学生, 则分段间隔为_____10. 将样本容量为 100 的数据分成 8 组, 见表 8-18 :表 8-18则第 3 组的频率是_____.三、解答题.11. 某中职学校为丰富学生课余生活, 开设了合唱社团、舞蹈社团、摄影社团和礼仪社团, 如果某学生要选报其中的两个社团, 请列出所有的基本事件.12. 某单选题有四个选项, 如果学生从中随机选择一个答案, 求学生选对的概率.13. 已知样本数据是12,11,9,15,12,13,求样本标准差.14. 为了解职业院校一年级男生的身体素质情况, 对某职业院校的 24 名一年级男生进行1 min脉搏检查. 结果记录如下:71,72,66,74,83,75,62,58,85,74,67,62,71,90,73,64,80,78,67,56,86,59,105,65 .(1)列出频率分布表 (保留到小数点后第 3 位);(2) 绘出频率分布直方图.B 能力提升1. 连续 2 次抛掷一颗质地均匀的骰子, 计算向上的点数之和是 7 的概率.2. 甲、乙两人做猜拳游戏 (锤子、剪刀、布) ,求:(1) 两人平局的概率;(2) 甲获胜的概率;(3) 乙获胜的概率.3. 某学校举办文明风采比赛,评委有两组, A组由 12 名老师组成; B组由 12 名学生组成. 两组同时给一名选手打分, 成绩如下:A 组:44,45,48,46,52,47,49,55,47,51,47,45;B 组:55,36,70,66,75,49,46,68,40,62,58,47. 哪组的打分更有参考价值? 说明理由 (保留到小数点第 3 位).4. 在一个不透明的袋子里装有 3 个白色乒乓球和若干个黄色乒乓球, 若从这个袋子里,求袋子里共有多少个乒乓球?随机摸出一个乒乓球,恰好是黄球的概率为7105. 端午节是我国传统佳节, 小芳同学带了 4 个粽子 (除粽馅不同外, 其他均相同) 到学校, 其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子, 准备从中任意拿出两个送给她的好朋友小丽.(1)列出小丽收到两个粽子的所有可能结果;(2) 请你计算小丽收到的两个粽子都是肉馅的概率.C 学以致用蒙提霍尔问题, 又称三门问题, 是博弈论中的数学游戏问题. 有三扇关闭的门, 其中一扇门的后面有一辆汽车, 选中该门可赢得汽车, 另外两扇门后面各有一只山羊. 如果参赛者选定了一扇门, 在未开启它时, 主持人开启了另外两扇门中的一扇, 露出的是山羊, 此时主持人允许参赛者重新选择. 问参赛者是坚持已选, 还是重新选另一扇门, 赢得汽车的概率更大? 概率各是多少?。
(word版,可编辑)基础模块下册综合试卷(二)(后附答案)
中职基础模块下册综合测试题(二)第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题 1.已知()f x ()f x 的定义域是( ) A .(),0∞- B .()(],00,1-∞⋃ C .()(),00,1-∞⋃D .()1,+∞2.已知()f x 是偶函数,()f x 在[]1,3上是增函数,则()1f ,()2f -,()3f -的大小关系为:( ) A .()()()123f f f >->- B .()()()231f f f ->-> C .()()()312f f f ->>-D .()()()321f f f ->->3.在同一直角坐标系中的函数log a y x =与y x a =-+的图象可能是( )A .B .C .D .4.给出下列命题:①两个具有公共终点的向量,一定是平行向量; ①两个向量不能比较大小,但它们的模能比较大小; ①0a λ=(λ为实数),则λ必为零; ①,λμ为实数,若a b λμ=,则a 与b 共线; ①向量的大小与方向有关. 其中正确的命题的个数为( ) A .1B .2C .3D .45.已知角θ的终边经过点(),3P x ,且4cos 5θ=-,则x =( )A .4-B .4C .154-D .1546.已知函数()()cos 2f x x ϕ=+,则“π2ϕ=”是“()f x 是奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.为研究病毒的变异情况,某实验室成功分离出贝塔毒株、德尔塔毒株、奥密克戎毒株共130株,其数量之比为7:2:4,现采用按比例分配的分层抽样的方法从中抽取一个容量为26的样本,则奥密克戎毒株应抽取( )株 A .4B .6C .8D .148.2023年春节影市火爆依旧,《无名》、《满江红》、《交换人生》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《无名》或《满江红》的学生共有80位,看过《满江红》的学生共有60位,看过《满江红》且看过《无名》的学生共有50位,则该校高三年级看过《无名》的学生人数的估计值为( ) A .1150B .1380C .1610D .18609.“1x >”是“()ln 210x ->”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.下列函数中,既是奇函数又是增函数的为( ) A .()ln f x x =B .()22x x f x -=-C .3()f x x =-D .()sin f x x =11.()2log (2)f x x =-的定义域为( ) A .(),2-∞B .(],2-∞C .()2,+∞D .[)2,+∞12.若函数()log 1(0a f x x a =+>,且1)a ≠的图象过定点(),A m n ,则m n +=( ) A .1-B .1C .2D .313.函数()12x f x a -=-(0a >且1a ≠)的图象过定点( )A .(0,-2)B .(0,-1)C .(1,-2)D .(1,-1)14.边长为1的正四面体内切球的体积为( )ABC .π6D15.若直线1l :430x y --=与直线2l :310x my -+=(m ∈R )互相垂直,则m =( )A .34B .34-C .12D .12-16.已知三角形三个顶点的坐标分别为()4,2A ,()1,2B -,()2,4C -,则BC 边上的高的斜率为( ) A .2B .2-C .12D .12-17.直线21y x =-与圆222440x y x y ++--=交于A ,B 两点,则AB =( ) A .2BC .4D.18.六名同学排成一排照相,则其中甲、乙、丙三人两两不相邻,且甲和丁相邻的概率为( ) A .25B .15C .215D .11019.2022年11月30日,我国神舟十五号载人飞船圆满发射,并成功对接空间站组合体,据中国载人航天工程办公室消息,神舟十六号等更多的载人飞船正在测试准备中,第**号载人飞船将从四名男航天员A ,B ,C ,D 与两名女航天员E ,F 中选择3人执行飞天任务(假设每位航天员被选中的可能性相同),则其中有且仅有一名女航天员的概率为( ) A .13B .25C .35D .45第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题20.设集合{}1,2,3,4,5M =,集合{}2,4,6N =,集合{}4,5,6T =,则()M T N ⋂⋃=___________. 21.实数232log 321272log lg 42lg58--++=___________.22.若直线1:20l ax y +=与直线()2:140l x a y +++=垂直,则a =______.23.若点()3,0M 是圆2284100x y x y +--+=内一点,则过点()3,0M 的最长的弦所在的直线方程是__________.24.如图是一个几何体的三视图及其尺寸,则该几何体的体积为 __________________.25.由数字0,1,2,3,4,5,6,7组成没有重复数字的三位数,则能被5整除的三位数共有__________个.三、解答题 26.求解下列问题:(1)2433641)27--⎛⎫++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100--⋅. 27.已知函数()log a f x x =(0a >且1a ≠)的图像过点(4,2). (1)求a 的值;(2)求不等式(1)(1)f x f x +<-的解集.28.已知正实数a 满足14a a -+=,求下列各式的值; (1)1122a a -+(2)22a a -+29.已知直线l 经过两条直线250x y +-=和310x y --=的交点. (1)若直线l 与直线210x y --=平行,求直线l 的方程; (2)若直线l 与直线210x y --=垂直,求直线l 的方程.30.已知圆C 与y 轴正半轴相切,圆心C 在直线30x y -=上,且直线x y =被圆C所截得的弦长为C 的方程.参考答案:1.B 2.D 3.A 4.A 5.A 6.A 7.C 8.C 9.C 10.B 11.A 12.C 13.D 14.D 15.B 16.C 17.C 18.D 19.C 20.{}2,4,5,6 21.11 22.23-23.260x y --= 24.12π 25.78 26.(1)2916(2)74-27.(1)2a = (2)(1,0)-28.(1)1122a a -+= (2)2214a a -+=29.(1)230x y -+=; (2)240x y +-=.30.22(3)(1)9x y -+-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章:数列
1. 选择题:
(1) 已知数列{a n }的通项公式为a n =2n-5,那么a 2n =( )。
A 2n-5
B 4n-5
C 2n-10
D 4n-10
(2)等差数列-7/2,-3,-5/2,-2,··第n+1项为( )
A )7(21-n
B )4(21-n
C 42-n
D 72
-n (3)在等差数列{ a n }中,已知S 3=36,则a 2=( )
A 18
B 12
C 9
D 6
(4)在等比数列{a n }中,已知a 2=2,a 5=6,则a 8=( )
A 10
B 12
C 18
D 24
2.填空题:
(1)数列0,3,8,15,24,…的一个通项公式为_________________.
(2)数列的通项公式为a n =(-1)n+1•2+n,则a 10=_________________.
(3)等差数列-1,2,5,…的一个通项公式为________________.
(4)等比数列10,1,
10
1,…的一个通项公式为______________. 3.数列的通项公式为a n =sin ,4πn 写出数列的前5项。
4.在等差数列{ a n }中,a 1=2,a 7=20,求S 1
5.
5.在等比数列{ a n }中,a 5=43,q=2
1-,求S 7.
6. 已知本金p=1000元,每期利i=2%,期数n=5,按复利计息,求到期后的本利和
7. 在同一根轴上安装五个滑轮,它们的直径成等差数,最小与最大的滑轮直径分别为 120厘米与216厘米,求中间三个滑轮的直径.
第七章:向量
1. 选择题:
(1)平面向量定义的要素是( )
A 大小和起点
B 方向和起点
C 大小和方向
D 大小、方向和起点
(2)--等于( )
A 2
B 2
C
D 0
(3)下列说法不正确的是( ).
A 零向量和任何向量平行
B 平面上任意三点A 、B 、
C ,一定有AC BC AB =+
C 若)(R m m ∈=,则//
D 若2211,e x e x ==,当21x x =时,=
(4)设点A (a 1,a 2 )及点B (b 1,b 2),则的坐标是( )
A (2211,b a b a --)
B (2121,b b a a --)
C (2211,a b a b --)
D (1212,b b a a --)
(5)若•=-4,||=2,||=22,则<,>是( )
A 0
B 90
C 180 D
270 (6)下列各对向量中互相垂直的是( )
A )5,3(),2,4(-==
B )3,4(),4,3(=-=
C )5,2(),2,5(--==
D )2,3(),3,2(-=-=
2. 填空题:
(1)BC CD AB ++=______________.
(2)已知2(+)=3(-),则=_____________.
(3)向量,的坐标分别为(2,-1),(-1,3),则b a +的坐标_______, 23+的坐标为__________.
(4)已知A (-3,6),B (3,-6),则=__________,||=____________.
(5)已知三点A (3+1,1),B (1,1),C (1,2),则<,>=_________.
(6)若非零向量),(),,(2121b b a a ==,则_____________=0是⊥的充要条件.
3.在平行四边形ABCD 中,O 为对角线交点,试用、表示.
4.任意作一个向量,请画出向量b a c a b -=-=,2.
5.已知点B (3,-2),=(-2,4),求点A 的坐标.
6.已知点A (2,3),AB =(-1,5), 求点B 的坐标.
7. 已知)5,1(),4,3(),2,2(=-=-=,求:
(1)c b a 32+-; (2) +-)(3
8. 已知点A (1,2),B (5,-2),且AB a 21
=,求向量的坐标.
第八章:直线和圆的方程
1. 选择题:
(1)直线1l :2x+y+1=0和2l :x+2y-1=0的位置关系是( )
A 垂直
B 相交但不垂直
C 平行
D 重合
(2)直线ax+2y-3=0与直线x+y+1=0相互垂直,则a 等于( )
A 1
B 31
- C 32
- D -2
(3)圆01022=-+y y x 的圆心到直线l:3x+4y-5=0的距离等于( )
A 52
B 3
C 75
D 15
(4)以点A (1,3)、B (-5,1)为端点的线段的垂直平分线的方程为(
)
A 3x-y+8=0
B 2x-y-6=0
C 3x+y+4=0
D 12x+y+2=0
(5)半径为3,且与y 轴相切于原点的圆的方程为( )
A 9)3(22=+-y x
B 9)3(22=++y x
C 9)3(22=++y x
D 9)3(22=+-y x 或9)3(2
2=++y x
(6)直线y=x 3-与圆4)4(22=+-y x 的位置关系是( ) A 相切 B 相离 C 相交且过圆心 D 相交不过圆心
2. 填空题:
(1)点(a+1,2a-1)在直线x-2y=0上,则a 的值为___________.
(2)过点A (-1,m ),B (m,6)的直线与直线l:x-2y+1=0垂直,则m=_________.
(3)直线过点M (-3,2),N (4,-5),则直线MN 的斜率为_________.
(4)若点P (3,4)是线段AB 的中点,点A 的坐标为(-1,2),则点B 的坐标为_______.
3.设直线l 平行于直线l 1:6x-2y+5=0,并且经过直线3x+2y+1=0与2x+3y+4=0的交点,求直线l 的方程。
4.设点P 到直线3x-4y+6=0的距离为6,且点P 在x 轴上。
求点P 的坐标。
5.求圆心为C(1,3)且与直线3x-4y-7=0相切的圆的方程。
第九章:立体几何
1.判断题:
(1)与两条异面直线都分别相交的两条直线一定是异面直线.( )
(2)平行于同一条直线的两条直线必平行.( )
(3)平行于同一个平面的两条直线必平行.( )
(4)垂直于同一条直线的两条直线必平行.( )
(5)垂直于同一个平面的两条直线平行.( )
(6)平行于同一个平面的两平面必平行.( )
(7)垂直于同一个平面的两平面平行.( )
(8)如果一个平面内的两条直线和另一个平面平行,那么这两个平面平行.( )
2.选择题:
(1)设直线m //平面α,直线n 在α内,则( ).
A.mn
B.m 与n 相交
C.m 与n 异面
D.m 与n 平行或异面
(2)如果a 、b 是异面直线,那么与a 、b 都平行的平面( ).
A.有且只有一个
B.有两个
C.有无数个
D.不一定存在
(3)过空间一点,与已知直线平行的平面有( ).
A.1个
B.2个
C.3个
D.无数个
(4)下列结论中,错误的是().
A.在空间内,与定点的距离等于定长的点的集合是球面
B.球面上的三个不同的点,不可能在一条直线上
C.过球面上的两个不同的点,只能做一个大圆
D.球的体积是这个球的表面积与球半径乘积的1/3
3.填空题
(1)如图所示,正方体ABCD-A1B1C1D1中,B1C与AD1所成的角度数为___。
(2)设直线α与b是异面直线,直线c∥α,则b与c的位置关系是______。
(3)如果直线l1∥l2,l1∥平面a ,那么l2____平面a。
(4)正四棱锥底面边长是α,侧面积是底面积的2倍则他的体积是____。
4.如平面的斜线段长4cm ,则它的射影长2√3cm ,求这条斜线段所在的直线与平面所成的角的大小。
5.一个圆锥的母线长12cm ,母线和轴的夹角是30°,求这个圆锥的侧面积和全面积。
6.高是6cm ,底面边长是5cm的正方四棱柱形工件,以它的两个底面中心的连线为轴,钻出一个直径是4cm的圆柱形孔。
求剩余部分几何体的体积。
B组
1.平面α∥平面β,点A、C在平面α内,点B、D在平面β内,直线AB与直线CD相交于点S,设AS=18 ,BS=9 ,CD=24 。
求CS的长。
2.一个平面斜坡与水平面成30°的二面角,斜坡上有一条直线小路与斜坡底线成60°角,眼这条小路前进,要上升10m ,求所走的路程是多少。