用多种正多边形拼地板2
(华师版)妙解教材七年级数学下册9.3.2用多种正多边形拼地板作业
9.3 用正多边形拼地板第2课时用多种正多边形拼地板学习目标:1.探索用多种正多边形铺满平面的条件,体会其中的道理。
2.能选用多种不同的正多边形拼地板。
学习重点、难点1.重点:通过用两种以上正多边形拼地板,提高观察、分析、概括、抽象等能力。
2.难点:寻找用哪几种正多边形能铺满地板。
学习过程一、学前准备1.在正三角形、正方形、正五边形、正六边形、正八边形中,有哪几种可以用它们铺满地板?2.用正多边形瓷砖能不留空隙,不重叠地铺满地板的关键是什么?二、探究活动独立思考,解决问题(1)、用两种正多边形拼地板昨天我们已经学习了用一种正多边形拼地板,关键是看哪种正多边形的内角的度数是360°的约数昨天已尝试了用正三角形和正六边形两种瓷砖拼地板,见教科书图9.3.3为什么能用正三角形,正因为正六边形的每个内角为,正三角形的内角为,这样用块正六边形和能不能用其他两种正多边形铺地板呢?大家看教科书图9.3.4,9.3.6,它是用哪几种正多边形铺成的呢?为什么能拼成既没有空隙也没有(2)、用三种正多边形拼地板大家看教科书图9.3.5,9.3.7,它是用哪几种正多边形铺成的呢?为什么能拼成既没有空隙也没有三、学习体会1、本节课你有哪些收获?你还有哪些疑惑?2、你认为老师上课过程中还有哪些需要注意或改进的地方?3、预习时的疑难解决了吗?四、自我测验:1.参照课本第73页的图完成下列填空:(1).图9.3.3围绕一点有个正边形和个正边形。
(2).图9.3.4围绕一点有个正边形和个正边形。
(3).图9.3.5围绕一点有个正边形、有个正边形和个正边形。
(4).图9.3.6围绕一点有个正边形和个正边形。
2.一幅美丽的图案,在某个顶点处由三个相等的正多边形密铺而成,其中有两个正八边形,那么另3.下列正多边形中,与正三角形同时使用,能进行密铺的是()A. 正十二边形B. 正十边形C. 正八边形D. 正五边形4.小樱希望在装修新房时铺上有正八边形的地砖,那么要密铺她的房间地面还应选择以下哪种形状A . 正三角形 B. 正方形 C. 正五边形 D. 正六边形5.现有边长相等的正三角形、正方形、正五边形、正六边形、正八边形形状的地砖,如果选择其中A. 正三角形和正方形B. 正三角形和正六边形C. 正方形和正六边形D. 正方形和正八边形课堂小结:1、当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就可以拼成一个平面图形.2、用两种正多边形拼地板正三角形正方形(正四边形)正三角形正六边形正方形(正四边形)正八边形正三角形正十二边形3、用三种正多边形拼地板正三角形正方形(正四边形)正六边形正方形(正四边形)正六边形正十二边形当堂训练1.用多种正多边形铺地板,围绕一点的几个正多边形的内角和必须为。
用多种正多边形铺设地面教学设计
多边形的情况:
验、合作、创
从准备的材料中任
造力]
取三种正多边形进
这是在前面
行组合,探讨有哪
的实践---认
些组合能铺满地面,
识的基础上,
铺满地面的关键是
再实践---再
什么,并用数学知
认识的过程,
识给予论证
是一个不断
探究的学习
过程,在这样
的活动中鼓
3.能否用数学知识验证你的结论?
励学生大胆
4.总结:
创新,同时亦
种地砖铺满地面,在每个顶点的周围,正方形,正三角形地砖的块数可以分
别是( )
A.2,2 B.2,3 C.1,2
D.2,16、如图①,②,③,
用一种大小相等的正多边形密铺成一个“环”,我们称之为环形密铺.但图
④,⑤不是我们所说的环形密铺.请你再写出一种可以进行环形密铺的正多
边形:_____________
(五)布置作业,检验真知 《同步练习册》P58-59
4
C.正三角形和正十二边形 D.正方形和正六边形
4.某中学新科技馆铺设地面,已有正三角形状的地砖,现打算购买另 通 过 练 习 加
一种不同形状的正多边形地砖,则该学校不应该购买的地砖形状是( ) 深理解记忆,
A.正方形 B.正六边形 C.正八边形 D.正十二边形
巩固新知。
5.某中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两
形的情况:
边形,它们的内角和:
60º+90º+108º+120º=378º>360º
故四种以上正多边形不能拼地板。
(三)总结概括、巩固新知
教学过程
学生活动
设计意图
9.3 用正多边形铺设地面 课件 2020-2021学年华东师大版数学 七年级下册
解:猜想 2:能.设围绕某一个点有 x 个正三角形和 y 个正六边形的
内角可以拼成一个周角.根据题意可得方程 60x+(6-2)6 ×180 y=360, 整理得 x+2y=6,方程的正整数解为xy==22, 或xy==14,, 即 2 个正三角形 和 2 个正六边形,或 4 个正三角形和 1 个正六边形可以铺满地面
解:设在一个顶点周围有m个正三角形的内角,n个正
方形的内角,则有m·60°+n·90°=360°,即2m
+3n=12,正整数解为
m 3, n 2.
所以用正三角形和正方形铺地面,能铺满的可行方
案只有一种,即在每个顶点周围有三个正三角形和
两个正方形.(图案 如图所示)
归纳小结
多边形能密铺必须满足绕一个点拼在一起的几个 角的和是360°.
8.(4分)用一批相同的正多边形地砖辅地,要求顶点聚在一起,且砖 与砖之间不留空隙,这样的地砖是( D )
A.正五边形 B.正三角形,正方形 C.正三角形,正五边形,正六边形 D.正三角形,正方形,正六边形
9.(4分)用三种正多边形铺设地面,其中的两种是正方形和正五边形, 则第三种正多边形的边数是( D )
解:此题答案不唯一,以下三种铺设方法供参考. (1)用m个正三角形,n个正六边形,则60m+120n =360,即m+2n=6.因为m,n为正整数,所以 m=2,n=2或m=4,n=1,即用2个正三角形, 2个正六边形或4个正三角形,1个正六边形可铺 满地面,如图①②.
(2)用m个正三角形,n个正十二边形,则有60m+ 150n=360,即2m+5n=12.因为m,n为正整数, 所以m=1,n=2,即用1个正三角形,2个正十 二边形可铺满地面,如图③.
9.3 用正多边形铺设地面复习 练习题 含答案 2020-2021学年华东师大版数学七下册
第9章多边形 9.3 用正多边形铺设地面1.下列正多边形中,不能铺满地面的是( )A.正三角形 B.正四边形C.正五边形 D.正六边形2.学校科技馆的地面准备铺设一些边长相同的正六边形地砖,那么在每一个顶点处,应铺设( )A.2块 B.3块 C.4块 D.5块3.用两种正多边形地砖镶嵌地面,不能与正三角形匹配的是( )A.正方形 B.正六边形 C.正十二边形 D.正十八边形4.现有正三角形、正方形、正六边形、正八边形形状的地砖,如果选择其中的两种铺满平整的地面,那么选择的两种地砖的形状不能是( )A.正三角形与正方形B.正三角形与正六边形C.正方形与正六边形D.正方形与正八边形5.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是( )A.3 B.4 C.5 D.66.某同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是( )A.①②④ B.②③④ C.①③④ D.①②③7.小芳家房屋装修时,选中了一种漂亮的正八边形地砖.建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖.你认为要使地面密铺,小芳应选择另一种形状的地砖是( )8.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等,同时选择其中两种地面砖密铺地面,选择的方式有( )A.2种 B.3种 C.4种 D.5种9. 现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能铺满地面成一个平面图案的是( )A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形10.正八边形不能铺满地面的原因是 .11.用完全相同的任意三角形、任意四边形、任意五边形,选一种一定能铺满地面的是.12.设在一个顶点周围有a个正三角形、b个正十二边形铺满地面,则a+b = .13.如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1= .14.一个正m边形恰好被正n边形围住(无重叠、无间隙,如图所示的是m=4,n=8的情况),若m=10,则n= .15.铺设一间长6m,宽3.5m的客厅地面需要同样规格的正方形地板砖,现有“40cm ×40cm”“30cm×30cm”“50cm×50cm”和“60cm×60cm”的地板砖,请你设计一下,要想全部铺满,不锯破且不留一点空隙,选哪一种规格?为什么?需要多少块?16.已知2个正多边形A 和3个正多边形B 可绕一点周围镶嵌(密铺),A 的一个内角的度数是B 的一个内角的度数的32. (1)试分别确定A 、B 是什么正多边形?(2)画出这5个正多边形在平面镶嵌(密铺)的图形(画一种即可).17.用边长相等的正三角形、正方形、正五边形、正六边形的两种正多边形拼地板,哪两种能铺满地面?说明理由,并设计出符合条件的图案.答案:1-9 CBDCA ACBA10. 它的内角不能整除360°11. 任意三角形和任意四边形12. 313. 67.5°14. 515. 解:选“50cm ×50cm ”的地砖.理由如下:因为地砖不可能是半个,所以选的规格要同时是长6m ,宽3.5m 的公约数.因为6m =600cm,3.5m =350cm ,60050=12,35050=7,所以需选“50cm ×50cm ”规格的地板砖,总共需要12×7=84(块)地板砖.16. 解:(1)设B 的一个内角是x °,则A 的一个内角是1.5x °,根据题意得方程:2×1.5x +3×x =360,所以x =60,所以1.5x =90,所以A 为正方形,B 为正三角形;(2)共有两种情形(正方形相邻;正方形不相邻).17. 解:因为正三角形、正方形、正五边形、正六边形的每个内角分别是60°、90°、108°、120°,所以(1)正三角形和正方形能铺满平面.因为3×60°+2×90°=360°,所以用三个正三角形和两个正方形能覆盖平面,图案如图①所示;(2)正三角形和正六边形能铺满平面.因为2×60°+2×120°=360°,所以用两个正三角形和两个正六边形能覆盖平面,图案如图②所示.因为4×60°+120°=360°,所以用四个正三角形和一个正六边形也能覆盖平面,图案如图③所示.。
用正多边形铺设地面—知识讲解
用正多边形铺设地面 知识讲解【学习目标】1. 通过用相同的正多边形拼地板活动,巩固多边形的内角和与外角和公式;2. 联系一种正多边形拼地板,探索用多种正多边形拼地板的过程和原理,体会用多种正多边形拼地板与一种正多边形拼地板的相互关系;3. 通过“拼地板”和有关计算,使学生从中发现能拼成一个不留空隙,又不重叠的平面图形的关键是几个多边形在一个顶点处的内角相加要等于 360°;4.提高观察、分析、概括、抽象等能力,进一步认识图形在日常生活中的应用.【要点梳理】要点一、正多边形的有关概念1.正多边形定义:在平面内各个角相等、各条边相等的多边形叫做正多边形.2. 正多边形的内角:正多边形的每个内角都相等,都等于(2)180n n-g °;正多边形的内角和与一般n 边形的内角和公式相同为(n-2)·180°(n ≥3).3. 正多边形的外角和:正n 边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;正多边形的外角和与一般多边形的外角和一样都为360°. 4.正多边形的对角线:连接正多边形不相邻的两个顶点的线段,叫做正多边形的对角线. 要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)已知正多边形的边数,可求其内角和以及每个内角;已知多边形内角和就可以求其边数;(3)已知正多边形一个内角可以求其外角,从而用外角和求正多边形边数;(4)从正n 边形一个顶点可以引(n -3)条对角线,将正多边形分成(n -2)个三角形;共有 (3)2n n - 条对角线. 要点二、平面铺设的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.2.用一种正多边形铺设地面只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,这种正多边形可以铺设地面.事实上,在正多边形中,能用一种正多边形铺满地面的只有正三角形、正方形、正六边形的地砖可以用.要点诠释:正多边形能用于铺设地面的前提条件是:这个正多边形一个内角的度数是360°的约数.正三角形的一个内角度数为180÷3=60°,是360°的约数;正方形的一个内角度数为360÷4=90°,是360°的约数;正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,所以它们都可以用于铺设地面,而其他正多边形内角不能满足这个条件,所以不能用于铺设平面.3.用多种正多边形铺设地面正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个正多边形的内角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.(1)用两种正多边形铺设地面的组合有:①正三角形与正方形;②正三角形与正六边形;③正三角形与正十二边形;④正方形与正八边形.(2)用三种正多边形铺设地面的组合有:①正三角形、正方形与正六边形;②正方形、正六边形与正十二边形③正三角形、正十边形与正十五边形④正方形、正五边形与正二十边形.要点诠释:(1)用两种正多边形铺设地面满足方程:内角度数×m + 另一种内角度数×n=360°有正整数解(即m、n均为正整数).(2)用三种正多边形铺设地面满足方程:内角度数×m + 另一种内角度数×n+第三种内角度数×k =360°有正整数解(即m、n、k均为正整数).(3)有时几种正多边形的组合能围绕一点拼成周角,但不能扩展到整个平面,即不能铺满平面.如:正五边形与正十边形的组合.4.任意多边形平面铺设:形状、大小完全相同的任意三角形能镶嵌成平面图形;形状、大小相同的任意四边形(凸四边形)能镶嵌成平面图形.要点诠释:任意三角形、四边形(形状、大小相同)能镶嵌平面是因为:三角形内角和为180°,是360°的约数;四边形(凸四边形)的内角和是360°,也是360°的约数.所以大小形状相同任意三角形、四边形围绕一点拼在一起的几个内角加在一起恰好组成一个周角( 360°)时,就能铺满地面.【典型例题】类型一、正多边形的相关概念1.过正十二边形的一个顶点有条对角线,它共有条对角线;它的每一个内角是度;它的内角和是度.【思路点拨】根据正多边形的相关概念,代入公式中进行计算即可得到答案.【答案与解析】9,54,150,1800.【总结升华】从正n多边形一个顶点出发,可以连的对角线的条数(n-3)条,共有(3)2n n条对角线;正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°,先求出外角,进而再求出内角;内角和可以用每个内角与边数乘积求解也可以把边数代入内角和公式中进行求解.举一反三:【变式1】已知正多边形的内角和为540°,则该正多边形的边数为;这个正多边形一共有条对角线;它的一个外角为度.【答案】5 ,5,72;【变式2】(2015•鱼峰区二模)一个多边形每个内角都为108°,这个多边形是边形.【答案】五.解:∵多边形每个内角都为108°,∴多边形每个外角都为180°﹣108°=72°,∴边数=360°÷72°=5.故答案为:五.类型二、用一种正多边形铺设地面2. 下列图形中,单独选用一种图形不能进行平面镶嵌的是()A .正三角形 B.正六边形 C.正方形 D.正五边形【思路点拨】围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.【答案与解析】D;解:A、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;C、正方形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意;D、正五边形的一个内角度数为180﹣360÷5=108°,不是360°的约数,不能镶嵌平面,符合题意.故选:D.【总结升华】本题考查了平面密铺的知识,注意掌握只用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.举一反三:【变式】用一种正多边形能进行平面图形铺设的条件是()A. 内角都是整数度数B. 边数是3的整数倍C. 内角整除360oD. 内角整除180o【答案】C;类型三、用多种正多边形铺设地面3. 现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【答案与解析】A;解:A、正方形和正六边形内角分别为90°、120°,由于90m+120n=360,得m=4﹣n,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正三角形和正方形内角分别为60°、90°,由于60°×3+90°×2=360°,故能铺满;C、正三角形和正六边形内角分别为60°、120°,由于60°×2+120°×2=360°,故能铺满;D、正三角形、正方形和正六边形内角分别为60°、90°、120°,由于60°+90°+90°+120°=360°,故能铺满.故选A.【总结升华】考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.举一反三:【变式】学校要铺设一个活动场地,供选用的地砖有边长相等的正多边形,为了美观,要求至少用两种不同形状的地砖铺设,同学们设计了四种方案:①正三角形,正四边形;②正三角形,正六边形;③正五边形,正八边形;④正三角形,正四边形,正六边形,你认为以上可行的方案有()A.1种B.2种C.3种D.4种4.(2015•西城区校级模拟)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:正多边形边数 3 4 5 6 …n正多边形每个内角的度数_____ _____ _____ _____ …°(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.【思路点拨】(1)利用正多边形一个内角=(180﹣)°求解;(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍;(3)常见的两种正多边形的密铺组合有:正三角形和正四边形能密铺,正六边形只能和正三角形密铺.所以要从正三角形、正四边形、正六边形中选一种,只能选择正四边形.【答案与解析】解:(1)由正n边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形、…、正n边形的每一个内角为:60°,90°,108°,120°,…180﹣;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)如:正方形和正八边形(如图),设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m•90°+n•135°=360°的正整数解.即2m+3n=8的正整数解,只有m=1,n=2一组,∴符合条件的图形只有一种.【总结升华】本题考查了求正多边形一个内角度数,可先求出这个外角度数,让180减去即可.一种正多边形的镶嵌应符合一个内角度数能整除360°;两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.举一反三:【变式】用三种边长相等的正多边形铺地面,已选了正方形和正五边形两种,还应选正边形.。
用多种正多边形铺设地面分析
)
C. 3种 D. 4种 )
2. 下列边长都相等的正多边形的组合能够铺满地面的是( A.正三角形和正方形 C.正方形和正六边形 B.正三角形和正十二边形 D. 正三角形、正方形和正六边形
3.下列图形组合中,能够铺满地面的是(
A.任意一种三角形和任意一种四边形
)
B.正五边形和正十边形
用正三角形和正六边形可以铺满地面吗? 可以的话,请说出分别需要几个?不可以的 话,请说明理由
解:设在一个顶点周围有 m 个正三角形的角,n 个正六 。 。 边形的角,则有 。
m· 60 +n· 120 =360
m+2n=6 m=4
∵ m,n 为正整数
m=2
∴解为
n=2
n=1
正六边形、正方Leabharlann 和正三角形的组合。上一页下一页
返回
小结:
两种正多边 形的类型
正三角形 四边形 正三角形 正六边形 正八边形 正方形 正十二边形 正三角形
围绕一点每 种正多边形 的个数
围绕一点拼 在一起的各 角的度数和
3
2
4 或 2
1 或 2
2 1
2 1
360° 360° 360° 360°
规律:
当围绕一点拼在一起的几个多边形的内角和 加在一起恰好组成一个周角(360°)时,就能拼 成一个平面图形。
60 ° 90 ° 60 °
60 ° 60 ° 60 ° 90 ° 90 °
上一页
下一页
返回
60°
60°
上一页
下一页
返回
(3)正三角形和正十二边形
90 °
思考:还有其它的组合吗?
上一页 下一页 返回
华师大版数学七年级下册9.3 用正多边形铺设地面教案与反思
9.3 用正多边形铺设地面原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!灵师不挂怀,冒涉道转延。
——韩愈《送灵师》9.3.1 用相同的正多边形教学目标一、基本目标1.通过用相同的正多边形拼地板的活动,巩固多边形的内角和与外角和公式.2.通过“拼地板”和有关计算,使学生从中发现能拼成一个不留空隙,又不重叠的平面图形的关键是围绕一点拼在一起的几个多边形的内角相加要等于360°.二、重难点目标【教学重点】正多边形进行密铺的原理.【教学难点】掌握用哪些正多边形可以进行密铺.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P88~P89的内容,完成下面练习.【3 min反馈】1.完成下表:n-2×180°n内角的大小2.当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就能拼成一个平面图形,即可以铺满地面.3.用一种正多边形铺地面时,需要的条件是这种正多边形的每个内角都能被360o整除.4.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( D )A.正三角形B.正四边形C.正六边形D.正八边形环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图所示,有一边长为8米的正方形大厅,它是由黑白完全相同的方砖密铺而成.求一块方砖的边长.【互动探索】(引发学生思考)正方形大厅中共用方砖多少块?正方形大厅的面积与方砖有什么关系?【解答】根据题意可知,共有32块方砖,所以每块方砖的面积为8×8÷32=2(平方米),故一块方砖的边长为2米.【互动总结】(学生总结,老师点评)正方形大厅的四个角处的白方砖正好组成一块白方砖,各边上的残缺白瓷砖正好组成6块完整的白瓷砖,那么共有32块瓷砖.求出每块瓷砖的面积,进而求得边长即可.【例2】如图所示,已知等边三角形ABC的边长为,按图中所示的规律,用2019个这样的三角形镶嵌而成的四边形的周长是( )A.2018 B.2019C.2020 D.2021【互动探索】(引发学生思考)观察图形可知,第一个三角形的周长是3,利用2个三角形成的第1个四边形的周长是3+1=4,利用3个三角形成的第2个四边形的周长是3+2=5,利用4个三角形成的第3个四边形的周长是3+3=6,…,利用n个三角形成的第n-1个四边形的周长就是3+n-1=n+2,所以用2019这样的三角形镶嵌而成的四边形的周长是n+2=2019+2=2021.【答案】D【互动总结】(学生总结,老师点评)解答本题关键是得出利用n个三角形进行镶嵌而成的四边形的周长规律.活动2 巩固练习(学生独学)1.下列几种形状的瓷砖中,只用一种不能够铺满地面的是( B )A.正六边形B.正五边形C.正方形D.正三角形2.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个点处的正六边形地砖有( A )A.3块B.4块C.5块D.6块3.如果只用一种正多边形做平面密铺而且在每一个正多边形的每一个顶点周围都有6个正多边形,则该正多边形的每个内角度数为60°.4.在一个边长为10 m的正六边形地面,用边长为50 cm的正三角形瓷砖铺满,则需这样的瓷砖2400块.环节3 课堂小结,当堂达标(学生总结,老师点评)用一种正多边铺地面时,需要的条件这种正多边形的每个内角都能被360o 整除.练习设计请完成本课时对应练习!9.3.2 用多种正多边形教学目标一、基本目标通过用两种以上的正多边形拼地板,提高学生观察、分析、概括、抽象等能力.二、重难点目标【教学重点】寻找用哪几种正多边形能铺满地面.【教学难点】用列举法根据铺满地面的条件,设计铺设地面的方案.教学过程环节1 自学提纲生成问题【5 min阅读】阅读教材P90~P91的内容,完成下面练习.【3 min反馈】1.下列图形中能单独进行镶嵌的是 ( B )A.正五边形B.正六边形C.正八边形D.正十二边形2.当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就能拼成一个平面图形,即可以铺满地面.3.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形,正方形,正六边形,那么另外一个是 ( B ) A.正三角形B.正方形C.正五边形D.正六边形环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖,从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第9层中含有正三角形个数是( )A.54个B.102个C.90个D.114个【互动探索】(引发学生思考)观察图形可知,第1层包括6个正三角形,第2层包括18个正三角形,…,则每一层比上一层多12个,所以第9层中含有正三角形的个数是6+12×8=102(个).【答案】B【互动总结】(学生总结,老师点评)本题考查了平面镶嵌(密铺)问题,此题要注意能够分别找到三角形和正方形的个数的规律.【例2】如图是小亮家里地面上铺设的正方形地板砖,上面的图案由一个小正方形和四个等腰梯形组成,小明发现地板上有正八边形图案,那么地板上的两个正八边形图案需要这样的地板砖至少( )A.6块B.8块C.10块D.12块【互动探索】(引发学生思考)由正多边形铺满地面的条件知,在一个顶点处各个内角和为360°.∵正方形的一个内角为90°,∴同一顶点处等腰梯形的一个内角为(360-90)÷2=135°.又∵正八边形的内角为180°-360°÷8=135°,∴小正方形的边长即为正八边形的边长,画图如下:则两个正八边形图案需要这样的地板砖至少8块.【答案】B【互动总结】(学生总结,老师点评)解题时画出图形分析,并利用正八边形的性质得出答案.活动2 巩固练习(学生独学)1.下列正多边形中,与正八边形组合能够铺满地面的是( B )A.正三角形B.正方形C.正五边形D.正六边形2.阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点周围正方形、正三角形地砖的块数可以是( B ) A.正方形2块,正三角形2块B.正方形2块,正三角形3块C.正方形1块,正三角形2块D.正方形2块,正三角形1块3.下列四组多边形中,能铺满地面的是①②③④.①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形.4.用正多边形镶嵌,设在一个顶点周围有m个正方形,n个正八边形,则m =1,n=2.环节3 课堂小结,当堂达标(学生总结,老师点评)几种边长相等的正多边形能密铺要满足围绕一点拼在一起的几种正多边形的内角和为360°.练习设计请完成本课时对应练习!【素材积累】不怕你不懂不会,旧怕你不学不干。
趣味数学
趣味数学(七)—关于图形镶嵌引言:数学是无处不在的,生活中我们常常会遇到一些有关数学的问题,在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。
这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?换一些其他的形状行不行?为了解决这些问题,我们得探究一下其中的道理。
从数学的角度看,用不重叠摆放的多边形把平面的一部分完全覆盖;通常把这类问题叫做用多边形的平面镶嵌。
内容:我们得探究一下图形镶嵌中在日常生活中的道理,研究一下多边形的有关概念,性质。
例如,三角形。
三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。
通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。
用6个正三角形就可以铺满地面。
再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。
用4个正四边形就可以铺满地面。
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。
它不能铺满地面。
六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。
用3个正四边形就可以铺满地面。
七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。
它不能铺满地面。
……由此,我们得出了:n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷n度,外角和是360度。
若(n-2)*180÷n能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。
我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。
例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形……现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。
浙教版数学九年级上册_用正多边形进行平面镶嵌
用正多边形进行平面镶嵌平面镶嵌定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌。
它有以下两类:1.用相同的正多边形铺地板.对于给定的某种正多边形,它能否拼成一个平面图形,而不留一点空隙?显然问题的关键在于分析能用于完整铺平地面的正多边形的内角特点。
当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角360°时,就铺成一个平面图形.事实上,正n边形的每一个内角为(n-2)180,要求k个正n边形各有一个内角拼于一点,恰好覆盖地面,这样360°=k(n-2)180/n,而k是正整数,所以n只可能为3,4,6.因此,用相同的正多边形地板砖铺地面,只有正三角形,正四边形,正六边形的地砖可以用.如下图:(正三角形)(正四边形)(正六边形) 但是也有特殊情况,我们知道,任意四边形的内角和都等于360°.所以用一批形状大小完全相同但不规则的四边形也可以铺成无空隙的地板.用任意相同的三角形可以铺满地面吗?请同学们拼拼看.2.用两种或两种以上的正多边形拼地板我们已知知道.有些相同的正多边形能够铺满地面,而有些则不行.实际上我们还看到有不少用两种以上边长相等的正多边形组合成的平面图案.为什么这些正多边形组合能够密铺地面?这个问题实质上是相关正多边形“交接处各角之和能否拼成周角”的问题.如下图:(正六边形,正三角形,正四边形)然而,如果这种镶嵌不限于用同一种正多边形,只要求同一种正多边形是有同样尺寸的。
那么怎样寻求其它种类的镶嵌方案呢?下面列出17组解答(其中括号内的数是指共一个顶点的多边形的边数):(3,7,42)、(3,8,24)、(3,9,18)、(3,10,15)、(3,12,12)(4,5,20)、(4,6,12)、(4,8,8)、(5,5,10)、(6,6,6)(3,3,4,12)、 (3,3,6,6)、 (3,4,4,6)、 (4,4,4,4)(3,3,3,4,4)、(3,3,3,3,6) 、(3,3,3,3,3,3)据记载,这17组解是1924年一个叫波尔亚的人给出的。
多边形及其内角和练习题(答案)
第9章 多边形总复习一、知识点1.三角形:由三条不在同一直线上的线段首尾顺次连结组成的平面图形叫做三角形。
2.三角形的内角:在三角形中,每两条边所组成的角叫做三角形的内角。
3.三角形的外角:三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角。
4.三角形的分类:⑴按角分类:三角形 ⎝⎛钝角三角形直角三角形锐角三角形⑵按边分类:三角形 ⎝⎛ ⎝⎛)()(正三角形等边三角形三角形底边和腰不相等的等腰等腰三角形三条边互不相等不等边三角形 5.三角形的三条重要线段⑴中线:连结三角形的一个顶点与对边中点的线段叫做三角形的中线。
⑵高:从三角形的一个顶点向对边作垂线,顶点与垂足间的线段叫做三角形的高。
钝角三角形有两条边上的高在三角形外。
⑶三角形的角平分线:三角形一个内角的平分线与对边相交于一点,顶点与交点之间的线段叫做三角形的角平分线。
⑷重要规律:①三角形的三条中线相交于一点,该点叫做三角形的重心。
②三角形的三条高(或其所在直线)相交于一点。
三角形的三条高(或其所在直线)相交于一点,该点叫做三角形的垂心。
③三角形的三条角平分线相交于一点,这一点叫做三角形的内心,它到三角形的三边的距离相等。
6.三角形的内角和等于180°。
7.三角形的外角和等于360°。
8.三角形的外角性质:⑴三角形的一个外角等于和它不相邻的两个内角的和; ⑵三角形的一个外角大于任何一个与它不相邻的内角。
9.三角形的三边关系:⑴三角形任意两边之和大于第三边; ⑵三角形的任意两边之差小于第三边。
10.多边形的定义:由n 条不在同一直线上线段首尾顺次连结组成的平面图形叫做n 边形。
11.正多边形的定义:各边相等且各内角也相等的多边形叫做正多边形。
12.多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
经过)3(≥n n 多边形的一个顶点....有)3(-n 条对角线;)3(≥n n 边形共有..2)3(-n n 条对角线。
2019年春七年级数学下册用多种正多边形铺设地面课件华东师大版
6.如图,用正多边形 A、 B、 C 密铺地面,其中 A 为正六边形, C 为 正方形,请通过计算求出正多边形 B 的边数.
解:设正多边形 B 的一个内角为 x, 则 120° +90° +x=360° ,解得 x=150° , ∴n=360° ÷ (180° -150° )=12, ∴正多边形 B 的边数为 12.
【解析】 A.正方形的每个内角是 90° ,90° ×2+60° ×3=360° ,∴能 密铺; B.正六边形每个内角是 120° ,120° +60° ×4=360° ,∴能密铺; C.正八边形每个内角是 180° -360° ÷ 8=135° ,135° 与 60° 无论怎样也 不能组成 360° 的角,∴不能密铺; D.正十二边形每个内角是 150° ,150° ×2+60° =360° ,∴能密铺.
即镶嵌平面时,在一个顶点周围围绕着 2 个正三角形和 2 个正六边形 (或 4 个正三角形和 1 个正六边形)的内角可以拼成一个周角,所以用正三角 形和正六边形可以进行平面镶嵌. 第六类:在镶嵌平面时,设围绕某一点有 x 个正方形和 y 个正六边形, 则 90x+120y=360, 即 3x+4y=12, 此方程没有正整数解. 即镶嵌平面时,不能在一个顶点周围围绕着正方形和正六边形的内角 拼成一个周角,所以不能用正方形和正六边形进行平面镶嵌. 第七类:在镶嵌平面时,设围绕某一点有 x 个正三角形、y 个正方形和 z 个正六边形,
则 60x+90y+120z=360, 2x+3y+4z=12, x=1, 正整数解是y=2, z=1. 即镶嵌平面时,在一个顶点周围围绕着 1 个正三角形、2 个正方形、1 个正六边形的内角可以拼成一个周角,所以用正三角形、正方形、正六边 形可以进行平面镶嵌.
用多种正多边形铺地板2
正十二边形与正三角形的平面镶嵌
两种正多边形拼地板:
关键: 围绕 一点拼在一起的两种正多边形的
内角之和为360º ,且边长得相等。
模型: 正多边形1个数×正多边形1内角度数 + 正多边形2个数×正多边形2内角度数=360 º
正五边形、正十边形
围绕一点能拼 成360º ,但能 扩展到整个平 面,即铺满地 面吗?
用一种形状大小完全相同的三角形四边形也能进平面镶嵌常见的可以平面镶嵌的正多边形正三角形正方形正三角形正方角形形与正六边形正三角形与正方形正六边形正三角形与正六边形正三角形与正十二边形方正方形正六边形与正十二边形正四边形与正八边形课后作业请你为我们的教室设计一种瓷砖铺设图案并使它美观大方
9.3 .2用多种正 多边形铺设地面
注意:同一个组合会有不同的镶嵌效果
②
图案(Ⅱ)
60°
60°
每个顶点处正六边形1个,正三角形4个.
1、如果用正四边形与正八边形,如何镶嵌?
正 八 平边 面形 镶与 嵌正 方 形 的
135°+135°+90°=360 °
1、如果用正十二边形与正三角形 ,如何镶嵌?
150°+150° +60°=360°
发现一: 同一种正多边形进行平面镶嵌的图形只有三种: 正三角形、正方形、正六边形 发现二: 正多边形镶嵌的条件: (1)同一顶点的各角度数和为360度; (2)各个正多边形的边长要相等。
北师大版数学七年级上册第四章 4.5多边形和圆的初步认识练习题-普通用卷(含答案)
初中数学北师大版七年级上册第四章5多边形和圆的初步认识练习题一、选择题1.将一个四边形截去一个角后,它不可能是A. 六边形B. 五边形C. 四边形D. 三角形2.从多边形一条边上的一点不是顶点出发,连接各个顶点得到2018个三角形,则这个多边形的边数为A. 2015B. 2016C. 2018D. 20193.如图,将一个长方形剪去一个角,则剩下的多边形为A. 五边形B. 四边形或五边形C. 三角形或五边形D. 三角形或四边形或五边形4.下列图形中,不是正多边形的是.A. B.C. D.5.将长方形截去一个角,剩余几个角.A. 三个角B. 四个角C. 五个角D. 不能确定6.现要选用两种不同的正多边形地砖铺地板,若已选择了正六边形,则可以再选择的正多边形是A. 正七边形B. 正五边形C. 正四边形D. 正三边形7.如果一个四边形的面积正好等于它的两条对角线乘积的一半,那么这个四边形一定是A. 菱形B. 矩形C. 正方形D. 对角线互相垂直的四边形8.一个多边形截去一个角后,形成一个六边形,那么原多边形边数为A. 5B. 5或6C. 5或7D. 5或6或79.从多边形一条边上的一点不是顶点出发,分别连接这个点和其余各个顶点得到2017个三角形,则这个多边形的边数为A. 2015B. 2016C. 2017D. 201810.以线段,,,为边作四边形,可作A. 一个B. 2个C. 3个D. 无数个11.钟面上的分针长为2cm,从8点到8点40,分针在钟面上扫过的面积是.A. B. C. D.12.由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为A. B. C. D.13.如图所示,用不同颜色的马赛克覆盖一个圆形的台面,估计的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面.A. 6箱B. 7箱C. 8箱D. 9箱14.半径为1的圆中,扇形AOB的圆心角为,则扇形AOB的面积为A. B. C. D.15.钟面角是指时钟的时针与分针所成的角,如果时间从下午2点整到下午4点整,钟面角为的情况有A. 有一种B. 有二种C. 有三种D. 有四种二、填空题16.有一个角是直角的平行四边形是______;有一组邻边相等的平行四边形是______;四条边都相等,四个角都是直角的四边形是______.17.若一个多边形截去一个角后,变成八边形,则原来多边形的边数可能是________.18.将一个圆分割成四个扇形,它们的圆心角的度数比为,那么最大圆心角与最小圆心角相差________.19.有两个多边形,它们的边数之比为,对角线数之比为,则这两个多边形共有________条对角线.三、解答题20.如图所示是三个完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?21.如图,五角星中含有几个五边形?几个四边形?几个三角形?把它们分别表示出来.22.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形共有k条对角线,请算出代数式的值.答案和解析1.【答案】A【解析】【分析】本题考查了多边形,能够得出一个四边形截去一个角后得到的图形有三种情形,是解决本题的关键.根据一个四边形截去一个角后得到的多边形的边数即可得出结果.【解答】解:一个四边形截去一个角后得到的多边形可能是三角形,可能是四边形,也可能是五边形,但不可能是六边形.故选:A.2.【答案】D【解析】【分析】此题考查了多边形的概念,解题关键是掌握:多边形一条边上的一点不是顶点出发,连接各个顶点得到的三角形个数多边形的边数设多边形的边数为n,可根据多边形的一点不是顶点出发,连接各个顶点得到的三角形个数为.【解答】解:设多边形的边数为n,则:,,故选D.3.【答案】D【解析】【分析】此题主要考查了多边形,此题应根据题意,结合图形进行操作,进而得出结论.沿对角线剪,沿一个角剪,沿一个角上方一点剪,进而得出结论.【解答】解:如图所示:,所以剩下的多边形为三角形或四边形或五边形故选D.4.【答案】C【解析】【分析】此题主要考查了正多边形,关键是掌握正多边形的定义.根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:根据正多边形的定义知:A.是正三角形,故不符合题意;B.是正方形,故不符合题意;C.在这图形中,边角都不相等,故不是正多边形,故符合题意;D.是正六边形,,故不符合题意;故选C5.【答案】D【解析】【分析】本题考查了多边形的性质,此类问题,动手画一画准确性高,注意不要漏掉情况一个正方形截去一个角是指可以截去两条边,而新增一条边,得到三角形;也可以截去一条边,而新增一条边,得到四边形;也可以直接新增一条边,变为五边形.可动手画一画,具体操作一下。
华东师大版七年级数学下册全章课件 9.3 用正多边形铺设地面
●教学目标 1.通过用相同的正多边形拼地板活动,巩固多 边形内角和与外角和公式. 2.学会用数学知识解决生活中的问题. ●教学重点和难点 理解镶嵌的关键点.
一、课前预习 阅读教材第88~90页内容,了解本节课的主要 内容.
二、情景导入 随着人们生活水平的提高,很多家庭都铺上了瓷砖,这在 数学上是一门学问,叫做平面镶嵌.即用单一平面图形拼合 在一起覆盖一个平面,而图形没有空隙,也没有重叠.这种 用形状相同或不同的平面封闭图形,把一块地面无缝隙、又 不重叠地全部覆盖,在几何里叫做平面镶嵌.其实本章的开 头已提出了瓷砖的铺设问题,今天我们进一步来探究用什么 样的多边形能拼成一个既不留下空白,又不互相重叠的平面 图形,即用什么样的正多边形可以完全镶嵌一个平面?
2.计算验证 通过计算验证哪些正多边形可以镶嵌平面?
正多边形的边数 正多边形内ቤተ መጻሕፍቲ ባይዱ和… 每个内角的度数…
能否镶嵌平面
3 4 5 6 7 …n 能 能 不能 能 不能 …
3.归纳总结: 围绕同一顶点的几个多边形的内角相加等于360°.
探究2:不同正多边形的镶嵌 1.正三角形与正方形的镶嵌 正 三 角 形 的 每 一 个 内 角 为 60° , 正 方 形 的 每 一 个 内 角 为 90°.设在一个顶点处铺设m个正三角形,n个正方形.
❖结论:
❖任意全等的四边形能密铺 ,在每个拼接点处有四 个角,而这四个角的和恰好是这个四边形的内角 和,也就是它们的和为360º,且相等的边互相重 合
做一做(二)
❖用同一种四边形能否密铺? ❖在密铺过程中,观察每个拼接点的四个角,它 们与这种四边形四个内角有什么关系?
正五边形 正六边形
观察以下图案,说明它们都是由哪些几何图形组成?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、如果小明家准备采用三种不同的正多边形 拼地板,你能帮助小明家设计出方案吗?
练习: 1、任意三角形可以铺满地面吗?试试看。
2、下列组合中,能铺满地面的是( ) A . 边长相等的正方形和正六边形 B . 边长相等的正方形和正三角形 C .边长相等的正方形和正五边形 D . 边长相等的正方形和正八边形
3、用下列一种或两种正多边形铺地面: (1)正三角形, (2)正八边形, (3)正三角形和正八边形, (4)正六边形和正十二边形, (5)正五边形和正十边形, (6)正六边形和正八边形; 能铺满地面的有( ) A .2种 B .3种 C .4种地板
复习:
1、当围绕一点拼在一起的几个多边形 的内角加在一起恰好组成一个___时, 就拼成一个平面图形。
2、下列图形中不能铺满地面的是 ( ): A.正三角形 B.正方形 C.正六边形 D.正六边形
情境问题
1、小明家的地砖如图所示,它是由哪些图 形组成?它们为什么能拼地板?
2、小明想给家里的地砖换个花样,但是又只 能用这两种地砖,你能尝试用这两种正多 边形的地砖帮助小明家拼出与上图形不同 的图形吗?