等比数列教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列教案
等比数列教案篇一
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用
教材难点:灵活应用等比数列及通项公式解决一般问题
教材重点:等比数列的概念和通项公式
二、教学目标分析
1、知识目标
掌握等比数列的定义理解等比数列的通项公式及其推导
2.能力目标
(1)学会通过实例归纳概念
(2)通过学习等比数列的通项公式及其推导学会归纳假设
(3)提高数学建模的能力
3、情感目标:
(1)充分感受数列是反映现实生活的模型
(2)体会数学是来源于现实生活并应用于现实生活
(3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、教学对象分析:
(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
(2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四。教学策略选择与设计
1、课前复习
(1)复习等差数列的概念及通向公式
(2)复习指数函数及其图像和性质
2.情景导入
等比数列教案篇二
【教学目标】
知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。
能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。
情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。
【教学重点】
等比数列定义的归纳及运用。
【教学难点】
正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列
【教学手段】
多媒体辅助教学
【教学方法】
启发式和讨论式相结合,类比教学。
【课前准备】
制作多媒体课件,准备一张白纸,游标卡尺。
【教学过程】
复习回顾:等差数列的定义。
创设问题情境,三个实例激发学生学习兴趣。
1.利用游标卡尺测量一张纸的厚度。得数列a,2a,4a,8a,16a,32a.(a0)
2.一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数列15 ,15×0.9 ,15×0.92 ,15×0.93 ,…,15×0.95.
3.复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.052,…,10000×1.0512.
学生探究三个数列的共同点,引出等比数列的定义。
【新课讲授】
由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。
等差数列:
一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示。数学表达式:an+1-an=d
等比数列:
一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示。数学表达式:an?1 an?q
知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实
例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。
在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析。
等比数列教案篇三
知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。
能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。
情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。
等比数列定义的归纳及运用。
正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列
多媒体辅助教学
启发式和讨论式相结合,类比教学。
制作多媒体课件,准备一张白纸,游标卡尺。
复习回顾:等差数列的定义。
创设问题情境,三个实例激发学生学习兴趣。
1.利用游标卡尺测量一张纸的厚度。得数列a,2a,4a,8a,16a,32a.(a0)
2.一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数列15 ,15×0.9 ,15×0.92 ,15×0.93 ,…,15×0.95.
3.复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.052,…,10000×1.0512.
学生探究三个数列的共同点,引出等比数列的定义。
由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。
等差数列:
一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示。数学表达式:an+1-an=d
等比数列:
一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示。数学表达式:an?1 an?q
知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实
例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。
在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析。
关于等比数列教案篇四
尊敬的各位专家、评委:
上午好!
我叫郑永锋,来自安庆师范学院。今天我说课的课题是人教a版必修5第二章第三节《等差数列的前n项和》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
数列是刻画离散现象的函数,是一种重要的属性模型。人们往往通过离散现象认识连续现象,因此就有必要研究数列。
高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。
在推导等差数列前n项和公式的过程中,采用了:
1从特殊到一般的研究方法;
2倒叙相加求和。不仅得出来等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。
等差数列的前n项和是学习极限、微积分的基础,与数学课程的其他内容(函数、三角、不等式等)有着密切的联系。
(一)、教学目标
1、知识与技能
掌握等差数列的前n项和公式,能较熟练应用等差数列的前n项和公式求和。
2、过程与方法
经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会