高考立体几何专题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何综合习题
一、考点分析
基本图形
1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
①★
②四棱柱 底面为平行四边形 平行六面体 直平行六面体 底面为矩形
长方体 底面为正方形 正四棱柱 侧棱与底面边长相等 正方体
2. 棱锥
棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
3.球
球的性质:
①球心与截面圆心的连线垂直于截面;
★②(其中,球心到截面的距离为
d 、球的半径为R 、截面的半径为r )
★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.
注:球的有关问题转化为圆的问题解决.
顶点侧面斜高高侧棱
底面O C D B
H
S l
侧棱
侧面底面B'
C'A'F'D
E F C r
d R 球面轴
球心
半径
A
O
O1
B
A'
C'
D'B'
C
D O
A
B
O
C'
A'
A
c
平行垂直基础知识网络★★★
异面直线所成的角,线面角,二面角的求法★★★
1.求异面直线所成的角
:
解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;
2求直线与平面所成的角
:关键找“两足”:垂足与斜足
解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用);
二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。
3求二面角的平面角
解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。
平行关系
平面几何知识 线线平行
线面平行 面面平行 垂直关系
平面几何知识
线线垂直
线面垂直
面面垂直
判定
性质
判定推论
性质 判定
判定 性质
判定
面面垂直定义 1. 2. 3. 4. 5.
平行与垂直关系可互相转化
俯视图
二、典型例题
考点一:三视图
1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________.
第1题
2.若某空间几何体的三视图如图2所示,则该几何体的
体积是________________.
第2题 第3题
3.一个几何体的三视图如图3所示,则这个几何体的体积为 .
4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 .
2
2 侧(左)视图 2
2 2 正(主)视图
3 俯视图
1 1
2 a
第4题 第5题
5.如图5是一个几何体的三视图,若它的体积是
,则
.
6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 .
第6题 第7题
7.若某几何体的三视图(单位:)如图所示,则此几何体的体积是
8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3
。
20
20正视图
20侧视图
10 10
20俯视图
俯视图
正(主)视图
侧(左)视图
2
3
2
2
第7题第8题
9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________.
图9
10.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm),则该三棱柱的表面积为_____________.
图10
11. 如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_____________.
图
图11 图12 图13
12. 如图12,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为_____________.
13.已知某几何体的俯视图是如图13所示的边长为的正方形,主视图与左视图是边长为的正三角形,则其表面积是_____________.
14.如果一个几何体的三视图如图14所示(单位长度: ), 则此几何体的表面积是_____________.
图14
15.一个棱锥的三视图如图图9-3-7,则该棱锥的全面积(单位:)_____________.
正视图
俯视图