上海沪教版八年级数学上下册知识点梳理完整版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海沪教版八年级数学
上下册知识点梳理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
上海市沪教版八年级数学上下册知识点梳理
第十六章 二次根式
第一节 二次根式的概念和性质
二次根式
1.二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。
2.二次根式的性质 ①⎩
⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a b
a b a 最简二次根式与同类二次根式
1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式
二次根式的运算
1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.
2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,
即 ).0,0(≥≥=⋅b a ab b a
3.二次根式的和相乘,可参照多项式的乘法进行.
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.
4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分
母有理化.
二次根式的运算法则:
(c ≥0)
=a ≥0,b>0)
n =≥0)
第十七章 一元二次方程
一元二次方程的概念
1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程
2.一般形式y=ax2+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项
一元二次方程的解法
1.特殊的一元二次方程的解法:开平方法,分解因式法
2.一般的一元二次方程的解法:配方法、求根公式法
3.求根公式2b x a -±=:1222b b x x a a
-+--= , = ; △=24b ac -≥0
一元二次方程的判别式
1.一元二次方程20(0)ax bx c a ++=≠:
△>0时,方程有两个不相等的实数根
△=0时,方程有两个相等的实数根
△<0时,方程没有实数根
2.反过来说也是成立的
一元二次方程的应用
1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得
2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根
2.把二次三项式分解因式时;
如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式
如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式
3.实际问题:设,列,解,答
第十八章 正比例函数和反比例函数
.函数的概念
1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量
2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量
3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =
4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值
正比例函数
1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例
2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数
3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像
4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =
5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:
(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大
(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小
反比例函数
1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例
2.解析式形如(0)k y k k x
=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数
反比例函数的定义域是不等于零的一切实数
3.反比例函数(0)k y k k x
=≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小
(2)当k <0时 ,函数图像的两支分别在第二、四象限,在每一个象限内。
自变量x 的值逐渐增大时,y 的值也随着逐渐增大
函数的表示法
1.把两个变量之间的依赖关系用数学式子来表达------解析法
2.把两个变量之间的依赖关系用图像来表示------图像法
3.把两个变量之间的依赖关系用表格来表示------列表法
第十九章几何证明
命题和证明
1.我们现在学习的证明方式是演绎证明,简称证明
2.能界定某个对象含义的句子叫做定义
3.判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题
4.数学命题通常由题设、结论两部分组成
5.命题可以写成“如果……那么……”的形式,如果后是题设,那么后是结论
证明举例
1.平行的判定,全等三角形的判定
逆命题和逆定理
1.在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题
2.如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理
线段的垂直平分线
1. 线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。
2、逆定理:和一条线段的两个端点距离相等的点,在这条线段的垂直平
分线上。
角的平分线
1、角的平分线定理:在角的平分线上的点到这个角的两边距离相等。
2、逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的平
分线上。
轨迹
1、和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线
2、在一个叫的内部(包括顶点)且到角两边距离相等的点的轨迹是这个角的平分线
3、到定点的距离等于定长的点的轨迹是以这个定点为圆心、定长为半径的圆
直角三角形全等的判定
1.定理1:如果直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为)
2.其他全等三角形的判定定理对于直角三角形仍然适用
直角三角形的性质
1.定理2:直角三角形斜边上的中线等于斜边的一半
2.推论1:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边
的一半
3.推论2:在直角三角形中,如果一条之骄傲便等于斜边的一般,那么这条直角边所对的角等于30
勾股定理
1.定理:在直角三角形中,斜边大于直角边
2.勾股定理:直角三角形两条直角边的平方和,等于斜边的平方
3.勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形
两点间距离公式
1.如果直角坐标平面内有两点11(,)A x y 、22(,)B x y ,那么A 、B 两点的距离
AB =八年级 下册
第二十章 一次函数
一次函数的概念
1.一般地,解析式形如(0)y kx b k b k =+⋅≠是常数,的函数叫做一次函数; 一次函数的定义域是一切实数
2.一般地,我们把函数y c =(c 为常数)叫做常值函数
一次函数的图像
1.列表、描点、连线
2.一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距
3.一般地,直线(0)y kx b k b k =+⋅≠是常数,与y 轴的交点坐标是(0,b ),
直线的截距是b
4.一次函数y kx b =+(b ≠0)的图像可以由正比例函数y kx =的图像平移得到 当b >0时,向上平移b 个单位,当b <0时,向下平移b 的绝对值个单位
5.一元一次不等式与一次函数之间的关系(看图)
一次函数的性质
1. 一次函数(0)y kx b k b k =+⋅≠是常数,具有以下性质:
当k >0时,函数值y 随自变量x 的值增大而增大
当k <0时,函数值y 随自变量x 的值增大而减小
①如图所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经
过第四象限);
②如图所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限);
③如图所示,当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限);
④如图所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限).
一次函数的应用
1.利用一次函数及图像解决实际问题
第二十一章 代数方程
一元整式方程
1.12ax =(a 是正整数),x 是未知数,a 是用字母表示的已知数。
于是,在项ax 中,字母a 是项的系数,我们把a 叫做字母系数,我们把a 叫做字母系数,这个方程是含字母系数的一元一次方程
2.如果方程中只有一个未知数且两边都是关于未知数的整式, 那么这个方程叫做一元整式方程
3.如果经过整理的一元整式方程中含未知数的项的最高次数是n (n 是正整数),那么这方程就叫做一元n 次方程;其中次数n 大于2的方程统称为一元高次方程,本章简称高次方程
二项方程
1.如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程;一般形式为0n ax b +=(0,0a b ≠≠,n 是正整数)
2.解一元n (n >2)次二项方程,可转化为求一个已知数的n 次方根
3.对于二项方程0n ax b +=(0,0a b ≠≠)
当n 为奇数时,方程有且只有一个实数根
当n 为偶数时,如果ab <0,那么方程有两个实数根,且这两个根互为相反
数;如果ab >0,那么方程没有实数根
可化为一元二次方程的分式方程
1.解分式方程,可以通过方程两边同乘以方程中各分式的最简公分母,约去分母,转化为正式方程来解
2.注意将所得的根带入最简公分母中检验是否为增根(也可带入方程中)
3.换元法可将某些特殊的方程化繁为简,并且在解分式方程的过程中,避免了出现解高次方程的问题,起到降次的作用
无理方程
1.方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程
2.整式方程和分式方程统称为有理方程
3.有理方程和无理方程统称为初等代数方程,简称代数方程
4.解简单的无理方程,可以通过去根号转化为有理方程来解,解简单无理方程的一般步骤
5.注意无理方程的检验必须带入原方程中检验是否为增根
二元二次方程和方程组
1.仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫二元二次方程
2.关于x、y的二元二次方程的一般形式是:220
+++++=
ax bxy cy dx ey f
(a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零;当b为零时,a 与d以及c与e分别不全为零)
3.仅含有两个未知数,各方程是整式方程,并且含有未知数的项的最高次数为2。
像这样的方程组叫做二元二次方程组
4.能是二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程
5.方程组中所含各方程的公共解叫做这个方程组的解
二元二次方程组的解法
1.代入消元法
2.因式分解法
列方程(组)解应用题
第二十二章四边形
多边形
1.由平面内不在同一直线上的一些线段收尾顺次联结所组成的封闭图形骄傲做多边形
2.组成多边形每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点
3.多边形相邻两边所成的角叫做多边形的内角
4.对于一个多边形,画出它的任意一边所在的直线,如果其余个边都在这条直线的一侧,那么这个多边形叫做凸多边形;否则叫做凹多边形
5.多边形的内角和定理:n边形的内角和等于(n-2)×180°
6.多边形的一个内角的邻补角叫做多边形的外角
7.对多边形的每一个内角,从与它相邻的两个外角中取一个,这样取得的所有的外角的和叫做多边形的外角和
8.多边形的外角和等于360°
平行四边形
1表示
2.(1)性质定理1:如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等
简述为:平行四边形的对边相等
(2)性质定理2:如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等
简述为:平行四边形的对角相等
(3)夹在平行线间的平行线段相等
(4)性质定理3:如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分
(5)性质定理4:平行四边形是中心对称图形,对称中心是两条对角线的交点3.(1)判定定理1:如果一个四边形两组对边分别相等,那么这个四边形是平行四边形
简述为:两组对边分别相等的四边形是平行四边形
(2)判定定理2:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形
简述为:一组对边平行且相等的四边形是平行四边形
(3)判定定理3:如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形
简述为:对角线互相平分的四边形是平行四边形
(4)判定定理4:如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形
简述为:两组对角分别相等的四边形是平行四边形
特殊的平行四边形
1.有一个内角是直角的平行四边形叫做矩形
2.有一组邻边相等的平行四边形叫做菱形
3.矩形的性质定理1:矩形的四个角都是直角
2:矩形的两条对角线相等
菱形的性质定理1:菱形的四条边都相等
2:菱形的对角线互相垂直,并且每一条对角线平分一组对角4.矩形的判定定理1:有三个内角是直角的四边形是矩形
2:对角线相等的平行四边形是矩形
菱形的判定定理1:四条边都相等的四边形是菱形
2.:对角线互相垂直的平行四边形是菱形
5.有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形
6.正方形的判定定理1:有一组邻边相等的矩形是正方形
2:有一个内角是直角的菱形是正方形
7.正方形的性质定理1:正方形的四个角都是直角,四条边都相等
2:正方形的两条对角线相等,并互相垂直,每条对角线平分一组对角
梯形
1.一组对边平行而另一组对边不平行的四边形叫做梯形
2.梯形中,平行的两边叫做梯形的底(短—上底;长—下底);不平行的两边叫做梯形的腰;两底之间的距离叫做梯形的高
3.有一个角是直角的梯形叫做等腰梯形
4.两腰相等的梯形叫做等腰梯形
等腰梯形
1.等腰梯形性质定理1:等腰梯形在同一底商的两个内角相等
2.性质定理2.:等腰梯形的两条对角线相等
3.等腰梯形判定定理1:在同一底边上的两个内角相等的梯形是等腰梯形
4.判定定理2:对角线相等的梯形是等腰梯形
三角形、梯形的中位线
1.联结三角形两边中点的线段叫做三角形的中位线
2.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半3.联结梯形两腰中点的线段叫做梯形的中位线
4.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半
平面向量
1.规定了方向的线段叫做有向线段,有向线段的方向是从一点到另一点的指向,这时线段的两个端点有顺序,我们把前一点叫做起点,另一点叫做终点,画图时在终点处画上箭头表示它的方向
2.既有大小。
又有方向的量叫做向量,向量的大小也叫做向量的长度(或向量的模)
3.方向相同且长度相等的两个向量叫做相等的量
4.方向相反且长度相等的两个向量叫做互为相反向量
5.方向相同或相反的两个向量叫做平行向量
平面向量的加法
1.求两个向量的和向量的运算叫做向量的加法
2.求不平行的两个向量的和向量时,只要把第二个向量与第一个向量收尾相接,那么以第一个向量的起点为起点、第二个向量的终点为终点的向量就是和向量,这样的规定叫做向量加法的三角形法则
3.一般地,我们把长度为零的向量叫做零向量
4.向量的加法满足交换律、结合律
平面向量的减法
1.已知两个向量的和及其中一个向量,求另一个向量的运算叫做向量的减法
2.在平面内任取一点,以这点为公共起点作出这两个向量,那么它们的差向量是以减向量的终点为起点、被减向量的终点为终点的向量;求两个向量的差向量的规定叫做向量减法的三角形法则
3.减去一个向量等于加上这个向量的相反向量
4.向量加法的平行四边形法则
第二十三章概率初步
确定事件和随机事件
1.在一定条件下必定出现的现象叫做必然事件
2.在一定条件下必定不出现的现象叫做不可能事件
3.必然事件和不可能事件统称为确定事件
4.那些在一定条件下可能出现也可能不出现的现象叫做随机时间,也称为不确定事件
事件发生的可能性
时间的概率
1.用来表示某事件发生的可能性大小的数叫做这个事件的概率
2.规定用0作为不可能事件的概率;用1作为必然时间的概率
3.事件A的概率我们记作P(A);对于随机事件A,可知0<P(A)<1
4.如果一项可以反复进行的试验具有以下特点:
(1)试验的结果是有限个,各种结果可能出现的机会是均等的;
(2)任何两个结果不可能同时出现
那么这样的试验叫做等可能试验
5.一般地,如果一个试验共有n个等可能的结果,事件A包含其中的k个结果,那么事件A的概率 P(A)=事件A包含的可能结果数/所有的可能结果总数=k/n 6.列举法、树状图、列表
概率计算举例。