2021高考物理一轮复习第3章牛顿运动定律第3讲牛顿运动定律的综合应用学案.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲牛顿运动定律的综合应用
知识点连接体问题Ⅱ
1.连接体
多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的01物体系统称为连接体。
2.外力与内力
(1)外力:系统02之外的物体对系统的作用力。
(2)内力:系统03内各物体间的相互作用力。
3.整体法和隔离法
(1)整体法:把04加速度相同的物体看做一个整体来研究的方法。
(2)隔离法:求05系统内物体间的相互作用时,把一个物体隔离出来单独研究的方法。
知识点临界极值问题Ⅱ
1.临界或极值条件的标志
(1)有些题目中有“刚好”“恰好”“正好”等字眼,即表明题述的过程存在着01临界点。
(2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往对应02临界状态。
(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点。
(4)若题目要求“最终加速度”“稳定速度”等,即是求收尾加速度或收尾速度。
2.四种典型的临界条件
(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是03弹力F N=0。
(2)相对滑动的临界条件:两物体相接触且相对静止时,常存在着静摩擦力,则相对滑动的临界条件是04静摩擦力达到最大值。
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于05它所能承受的最大张力,绳子松弛的临界条件是06F T=0。
(4)加速度变化时,速度达到最值的临界条件:速度达到最大的临界条件是07a=0,速度为0的临界条件是a达到08最大。
知识点多过程问题Ⅱ
1.多过程问题
很多动力学问题中涉及物体有两个或多个连续的运动过程,在物体不同的运动阶段,物体的01运动情况和02受力情况都发生了变化,这类问题称为牛顿运动定律中的多过程问题。
2.类型
多过程问题可根据涉及物体的多少分为单体多过程问题和多体多过程问题。
3.综合运用牛顿第二定律和运动学知识解决多过程问题的关键
首先明确每个“子过程”所遵守的规律,其次找出它们之间的关联点,然后列出“过程性方程”与“状态性方程”。
一堵点疏通
1.整体法和隔离法是确定研究对象时常用的方法。( )
2.应用牛顿第二定律进行整体分析时,需要分析内力。( )
3.轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等的。( )
4.相互接触的物体分离时的临界状态是两者没有共同的加速度。( )
答案 1.√ 2.× 3.√ 4.×
二对点激活
1.如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg、m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增大,在增大到45 N 的过程中,下列说法正确的是( )
A.当拉力F<12 N时,物体均保持静止状态
B.两物体开始没有相对运动,当拉力超过12 N时,开始相对滑动
C.两物体从受力开始就有相对运动
D.两物体始终没有相对运动
答案 D
解析当A、B间达到最大静摩擦力时两者开始相对滑动,以B为研究对象,设临界加速度为a,由牛顿第二定律得:μm A g=m B a,得a=6 m/s2。由整体法得:F=(m A+m B)a=48 N,所以F增大到45 N的过程中,两物体始终没相对运动,B、C错误,D正确。由于地面光滑,故一开始物体就加速运动,A错误。
2.(人教版必修1·P77·科学漫步改编)在探索测定轨道中人造天体的质量的方法过程中做了这样的一个实验:用已知质量为m1的宇宙飞船去接触正在轨道上运行的火箭组m2(后者的
发动机已熄灭)。接触后,开动宇宙飞船的推进器,使飞船和火箭组共同加速,如图所示。推进器的平均推力为F ,推进器开动时间为t ,测出飞船和火箭组的速度变化是Δv ,求火箭组的质量m 2。
答案
Ft
Δv
-m 1 解析 根据a =Δv Δt 得,m 1、m 2的共同加速度为a =Δv
t
,选取m 1、m 2整体为研究对象,则
F =(m 1+m 2)a ,所以m 2=
Ft
Δv
-m 1。
考点细研 悟法培优
考点1 应用整体法和隔离法解决连接体问题
1.连接体的类型 (1)弹簧连接体
(2)物物叠放连接体
(3)物物并排连接体
(4)轻绳连接体
(5)轻杆连接体
2.连接体的运动特点
(1)轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。
(2)轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。一般情况下,连接体沿杆方向的分速度相等。
(3)轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。
3.连接体的受力特点
轻绳、轻弹簧的作用力沿绳或弹簧方向,轻杆的作用力不一定沿杆。
4.处理连接体问题的方法
(1)整体法
若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量)。
(2)隔离法
若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解。
(3)整体法、隔离法交替运用
若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力。即“先整体求加速度,后隔离求内力”。若已知物体之间的作用力,求连接体外力,则“先隔离求加速度,后整体求外力”。
例1 如图所示,在水平面上,有两个质量分别为m1和m2的物体A、B与水平面的动摩擦因数均为μ,m1>m2,A、B间水平连接着一轻质弹簧测力计。若用大小为F的水平力向右拉B,稳定后B的加速度大小为a1,弹簧测力计示数为F1;如果改用大小为F的水平力向左拉A,稳定后A的加速度大小为a2,弹簧测力计示数为F2。则以下关系式正确的是( )
A.a1=a2,F1>F2 B.a1=a2,F1<F2
C.a1=a2,F1=F2 D.a1>a2,F1>F2
(1)两种情况下整体受的合外力大小是否相同?
提示:相同。
(2)F1、F2的大小与μ有关吗?