矩阵理论(科学出版社)习题详细解答

合集下载

矩阵理论第一章课后习题答案

矩阵理论第一章课后习题答案

1.按通常矩阵的加法及数与矩阵的乘法,下列数域F 上方阵集合是否构成F 上的线性空间:(1)全体形如⎪⎪⎭⎫ ⎝⎛b a-a 0的二阶方阵的集合; (2)全体n 阶对称(或反对称、上三角)矩阵的集合; (3){|0,}n n V X AX X F ⨯==∈(A 为给定的n 阶方阵).解:(1)设⎪⎪⎭⎫ ⎝⎛=111b a-a 0α⎪⎪⎭⎫ ⎝⎛-=222a 0b a β⎪⎪⎭⎫⎝⎛-=3330b a a γ ①αββα+=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=+111222212121222111b a -a 0a 00a 0b a -a 0b a b b a a a a b a ②)(0b a -a 0000a 0b a -a 0)(323232111321321321333212121333222111γβαγβα++=⎪⎪⎭⎫⎝⎛+--++⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛++---++=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=++b b a a a a b b b a a a a a a b a a b b a a a a b a a b a③存在零向量V ∈0,使得对每个V a ∈,a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+111111b a -a 00000b a -a 00④对每个V a ∈,存在负向量a -,使得0b -a a -0b a -a 0)(111111=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=-+a a再令F y x ∈,⑤αα)(b a -a 0xyb xya -xya 0yb ya -ya 0b a -a 0)(111111111111xy xy x y x y x =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛= ⑥αα=⎪⎪⎭⎫⎝⎛=111b a -a 011⑦βαβαx x b a xb xb xa xa xa xa b b a a a a x b a x x +=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛+--+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=+222111212121212121222111a 0b a -a 000a 0b a -a 0)(⑧ya xa yb xb yaxa ya xa y x y x +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛+=+111111*********yb ya -ya 0xb xa -xa 00b a -a 0)()(α所以全体形如⎪⎪⎭⎫⎝⎛b a -a 0的二阶方阵的集合构成F 上的线性空间。

矩阵论习题答案

矩阵论习题答案

自测题一一、解:因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解:(1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解:(1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即212)21(311-⋅≤e .四、解:(1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=-得T )1,1,1(3=ξ .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P , :,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故12211)])([)],([(sin -⋅=P J f J f Pdiag A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112sin 2cos 2sin 1sin 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2cos 1sin 1sin 2cos 1sin 2cos 2sin 2sin 1sin 1sin 2sin 1sin 2sin 2cos 2cos 2sin 2cos .五、解:(1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1)6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以7557)(1=⨯==∞∞-∞A A A cond ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故5lim )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3)-+-r B B B ,,均可取1-B .七、证:设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解:I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ ,其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α,得n aA n A ===212,1,α,即有212ααA A >.五、解:(1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫ ⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫ ⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以,方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n 必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解:(1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(411322003---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解:由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证:当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ;从而0>=FTX X α. ,C k ∈∀FT FTX k kx kX αα()(===X k X k FT=α,FTFTFT T FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FT T FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证:⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ. 1)(<≤⇐A A ρ便得证.八、证:(1)1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2)B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B ,则AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证:易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX =,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-=,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此3,521==λλ,所以5m ax)(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解:由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为()()221--=-λλλA I ,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(,,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T . 令 AA f 1)(=, 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X TT T T ,所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x-,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解:(1),9,1,3,3121====∞m T XX XXX3,4,3===∞∞X X XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫⎝⎛-=100000010J .六、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2)⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1)当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A对角化,取⎪⎪⎪⎭⎫ ⎝⎛=110001020C 使⎪⎪⎪⎭⎫⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y ,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1))1(4963752542-=---+---=-λλλλλλA I,A 的特征根1,0321===λλλ;行列式因子)1()(23-=λλλD ,易得1)()(12==λλD D ; 不变因子)1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即,BA AB -=两端右乘B 得BAB AB -=2, 从而AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(. (2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I ,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λn;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故A e 为正交矩阵.七、证:(1) 设R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k ,得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以22200212),(2n k +++=-= αα .八、证:由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑=====③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b aE E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a000000; (2) 由,B A AB +=得到I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((,显然I A -与I B -均为阶可逆方阵,于是有I I A I B =--))((,即I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而AB BA =.三、解:(1))2()1(2320110012λλλλλλ--=---=-E A ,)2()1()(23λλλ--=D ,1)(2=λD ,1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d , 所以初等因子为:λλ--2,)1(2.A 的Jordan标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011.(2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd =且,0Ie = 得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B B B cond 54145=⨯⨯=. (3)2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--21103001052152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解: (1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故1±=λ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以11-+=V V V . 又 ⇒∈∀-11V V α,)(αα=且,)(αα-=;得αα-=,即0=α,故11-⊕=V V V .自测题八{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====10121121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令矩阵,3)(I A A f -=若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan标准形为⎪⎪⎪⎭⎫⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴ +-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令()==T R R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证:()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故()()I a A a AAA n n n 12111111--++-+++-=.自测题九一、解:不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.V Y X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B . (3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B ,⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解:非负性.A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行. (2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TT T F F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11TT T G GG G G .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解:(1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解:,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TT T T =Λ=Λ=Λ,,即A 为实对称矩阵,故A是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =,故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321x x x x A , 其中 ⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛=-101001010010001,10100101001000011=C C , 所以在4321,,,εεξξ下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴B 是幂收敛.∴原级数和为()⎪⎪⎭⎫⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F HH,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H五、解:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=7610,122121211142b A , ⎪⎪⎪⎪⎭⎫⎝⎛----=+561651224112331A ,。

矩阵论往年部分真题讲解题(含解答)

矩阵论往年部分真题讲解题(含解答)

2011年《矩阵论》习题解答一、 掌握线性空间的定义及判断是否为线性空间。

二、 在4R 中有两组基,()()()()12341,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1αααα====()()()()12342,1,1,1,0,3,1,0,5,3,2,1,6,6,1,3ββββ=-=== 求 (1)由基1234,,,αααα到基1234,,,ββββ的过渡矩阵;(2)向量()1234,,,x ξξξξ=在基1234,,,ββββ之下的坐标; (3)在两组基下有相同坐标的非零向量。

解:(1)因为 ()()()12341234123420561336,,,,,,,,,11211013C ββββαααααααα⎛⎫ ⎪⎪== ⎪- ⎪⎝⎭所以由基1234,,,αααα到基1234,,,ββββ的过渡矩阵2056133611211013C ⎛⎫⎪⎪= ⎪- ⎪⎝⎭(2) ()()()112211234123412343344,,,,,,,,,x C ξξξξξξξξααααββββξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以向量()1,0,1,0在基1234,,,ββββ之下的坐标为12134C ξξξξ-⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭ 或解 非齐次线性方程组的解 11223344k k C k k ξξξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)由 (2)式有112213344C ξξξξξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则有()12340C E ξξξξ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭,该方程组的通解为()1,1,1,1T k -,对两个基有相同坐标的非零向量为()1234k x x x x ++-,k 非零常数。

二、已知线性空间V 是矩阵空间22R ⨯, (1) 证明:123410010000,,00001001E E E E ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦是V 的一组基;(2) 求向量1223A ⎡⎤=⎢⎥⎣⎦在基1234,,,E E E E 下的坐标。

研究生矩阵理论课后答案第6-7章

研究生矩阵理论课后答案第6-7章

求矩阵的Jordan标准形与变换矩阵 求矩阵的Jordan标准形与变换矩阵 Jordan
由行列式因子定不变因子和初等因子:( :(参看 ①由行列式因子定不变因子和初等因子:(参看 0 λ − 2 0 第二章有关定义及结果). ).如 第二章有关定义及结果).如 λE-A= −1 λ −1 −1 )=λ行列式因子:D 行列式因子:D1(λ)=1; D2(λ)=λ-2;
第六章 矩阵函数
•矩阵函数一般定义:矩阵函数是从Cm×n到Cu×v的一 矩阵函数一般定义:矩阵函数是从C 个对应规则f:C 使对每个x 个对应规则f:Cm×n→Cu×v,使对每个x∈Cm×n,都 对应于唯一 f(x)∈ 唯一的 对应于唯一的f(x)∈Cu×v. 例如:det:C ,det(A)∈ 例如:det:Cn×n→C1×1,∀A∈Cn×n,det(A)∈C1×1; ,f(A)=2Af:Cn×n→Cn×n,∀A∈Cn×n,f(A)=2A-E∈Cn×n. 矩阵函数的概念十分广泛, •矩阵函数的概念十分广泛,其应用也相应地十分 广泛. 广泛. 我们仅限于讨论从C •我们仅限于讨论从Cn×n到自身的函数 f:Cn×n→Cn×n. 特别更限于最简单的矩阵多项式函数和由矩阵 矩阵多项式函数和由 特别更限于最简单的矩阵多项式函数和由矩阵 幂级数定义的矩阵函数. 幂级数定义的矩阵函数.
0 1 1 1 0 0 1 0 −1
. P -1=
0 1 0 1 −1 1 0 1 − 1
2 0 0 2 0 0 0 A − 2E = 1 1 1 − 2 = 1 −1 1 1 −1 3 2 1 −1 1 0 0 x = 1 , ( A − 2E)x = 1 1 1 1 0 z = 0 , ( A − 2E)z = 1 −1 1 0 00 −1 1 1 = 0 −1 1 1 0 0 1 −1 1 0 = 0 −1 1 −1

矩阵理论试题答案最终版

矩阵理论试题答案最终版


G

(2, 2) (2, t + 1) (2, t 2 − 1) 2 (t + 1, 2) (t + 1, t + 1) (t + 1, t − 1) (t 2 − 1, 2) (t 2 − 1, t + 1) (t 2 − 1, t 2 − 1)
1 ∫−1 4dt 1 = ∫ 2*(t + 1)dt −1 1 ∫ 2*(t 2 − 1)dt −1 −8 4 8 3 10 −4 = 4 3 3 −8 −4 16 3 15 3
2
x ' −1 0 x 1 = + y ' 0 2 y −1 求多项式 P(x)经此仿射变换所得到的曲线,变换后的曲线是什么曲线? 解:(1)由平面的四个点我们可得如下方程。
a0 + a1 *1 + a2 *12 = 0 2 −1 a0 + a1 *(−1) + a2 *(−1) = 2 1 a0 + a1 * 2 + a2 * 2 = a + a *(−3) + a *(−3) 2 = 2 2 0 1
∫ ∫ ∫
1 −1 1
1
−1
2*(t + 1)dt
−1
(t 2 + 2t + 1)dt
(t + 1) *(t 2 − 1)dt
1 2 ∫−1 (t + 1) *(t − 1)dt 1 2 2 t dt t ( 1) *( 1) − − ∫−1

1
−1
2*(t 2 − 1)dt

矩阵论课后习题答案

矩阵论课后习题答案

第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。

(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。

(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。

研究生矩阵理论课后答案矩阵分析所有习题

研究生矩阵理论课后答案矩阵分析所有习题
证:存在UUnn使得 A=Udiag(1,…,n)U*, (*)
其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和
A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U*
∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在
2 5
5 0 1 5
0 1 0
1
5
0
2 5
习题3-9
#3-9:若S,T分别为实对称,反实对称矩阵,则 A=(E+T+iS)(E-T-iS)-1为酉矩阵.
证: A*A=((E-T-iS)*)-1(E+T+iS)*(E+T+iS)(E-T-iS)-1
=((E+T+iS)-1(E-(T+iS))(E+(T+iS))(E-T-iS)-1 =(E+T+iS)-1(E+T+iS)(E-T-iS)(E-T-iS)-1 =E
∴ A+B是正定Hermite矩阵.
习题3-22设A,B均是正规矩阵,试证:A 与B相似的充要条件是A与B酉相似
证:因为A,B是正规矩阵,所以存在U,VUnn 使得 A=Udiag(1,…,n)U*, B=Vdiag(1,…,n)V*,
其中1,…, n,,1,…,n分别是A,B的特征值集 合的任意排列.
证:因为A是正规矩阵,所以存在UUnn 使得 其中1,…, ArA=n是=UUdAdi的iaag特g((征1r1,,值…….,,于nn是r))U,U**,=0 蕴∴涵Air==U0d,iia=g1(,0…,…,n,.0后)U者*=又0.蕴涵 1=…=n=0.

矩阵论第五章答案

矩阵论第五章答案
(α k A ( k ) + β k B ( k ) ) − (α A + β B ) = (α k A ( k ) − αA) + ( β k B ( k ) − βB ) ≤ α k A ( k ) − αA + β k B ( k ) − β B = α k A ( k ) − α k A + α k A − αA + β k B ( k ) − β k B + β k B − βB ≤ α k A(k ) − A + α k − α A + β k B (k ) − B + β k − β B .
k =0 k =0 k =0


N
N
N
(k )

∑ PA
k =0

Q = lim S ( N ) = P ( lim ∑ A ( k ) )Q = PSQ = P (∑ A ( k ) )Q
N →∞ N →∞ k =0 k =0
∞ ∞
即 ∑ PA ( k ) Q 也 收 敛 . 如 果 ∑ A ( k ) 绝 对 收 敛 , 则 ∑ A ( k ) 收 敛 . 又 由 于
1 2 1 3 1 A + A + L + An + L 2! 3! n!
1 ⎛1 1 ⎞ = I + A + A 2 ⎜ + + L + + L⎟ n! ⎝ 2! 3! ⎠ 2 = I + A + (e − 2)A sin A = A − 1 3 1 5 1 k A + A + L + (− 1) A 2 k +1 + L (2k + 1)! 3! 5!

研究生矩阵理论课后答案第5章

研究生矩阵理论课后答案第5章

按范数收敛
定义:赋范空间V的序列{x(n)|n=1,2,…}按范数 ‖‖α收敛于aV,如果 limn‖x(n)-a‖α=0 命题:对赋范空间V的任意两个等价向量范数 ‖‖α, ‖‖β, 都有 limn‖x(n)-a‖α=0 limn‖x(n)-a‖β=0 (即按任意两个向量范数的收敛实质上等价) 因 0 limn‖x(n)-a‖α d limn‖x(n)-a‖β 0 limn‖x(n)-a‖β(1/c)limn‖x(n)-a‖α
1=|yk|(i=1n|yi|p)1/p =‖y‖p n1/p (*) (i|yi|=|xi|/|xk|1) 1=limp1limp‖y‖p limpn1/p=n0=1 1=limp‖y‖p=limp‖x‖p/‖x‖ ‖x‖=limp‖x‖p
同一向量的三种范数之间的大小关系
Frobenius 矩阵范数
例5.2.2:矩阵的Frobenius范数定义为 ‖A‖F=(i=1mj=1n|aij|2)1/2. (ACmn的向量2-范数蕴含前3条公理)不难证明4 条范数公理全部满足.因非负性和齐次性是显 然的;③的证明见课本.我们只讲④的证明. ‖AB‖F2=i=1mj=1n|k=1paikbkj|2 i=1mj=1n((k=1p|aik|2)(k=1p|bkj|2))(C-S不等


n
1 ak 1 bk a k bk a b p q q b p a
1 a k bk a b k 1 pa
p

n k 1
ak
p
1 qb
q

b k 1 k
n q
1 1 ab ab q xn|}=|k‖x‖; ‖x+y‖= max{|x1+y1|,…,|xn+yn|} max{|x1|+|y1|,…,|xn|+|yn|} max{|x1|,…,|xn|}+max{|y1|,…,|yn|} =‖x‖+‖y‖

矩阵理论与应用题目和答案

矩阵理论与应用题目和答案

11.设4是宛阶矩阵.对任总O ≠r ∈ F”均HAT≠ x.址明/ 一 A对逆并求其逆.12.设〃阶矩阵/1可逆.R与“足八维列向虽.如果(A + r<∕∙)-1可逆.证明SherUIan-MQrrhoii'5公式:μ÷x∕Γ=.4--±±⅛≤l.'八 1 +旷心Jr(提示;可用上题的结论•)13.设门阶矩昨人可逆.ZrGD分别½∏ X m,m X n.τn × m矩阵•证明=∖A∖∖D-CA^l B∖.15.设炬阵/1与A-BG均可逆,试用A9A^∖β.C^^(Λ-BCΓ∖(提不:研宛廿块矩阵(:的逆矩陈•)30.对工=(zι,x2)τ, y = @1皿几规定(4") = Olly l+ biι y2 + bx2yι + Ci22/2 ・证明S2/)是酬的内积=α > O1αc > b2.31.设U= {αco6f+ bsinf,其中α,b为任意实数}是实二维线性空间.对任意/,g W匕定义(/.<7)= /(OMO)+ /(∣)<7(^).证明(/,g)是V■上的内积,并求仇⑴=3∣cos(f + 7) + 4 Sin (t + 9)的长度•32.设欧氏空间昭刃2中的内枳为1(/,g) = J f(χ)g(χ)dx.-J⑴求棊1・以2的度虽矩阵:(2)用矩阵乘法形式计算/U) = l-ι + F与ff(x)= l-4x-5F的内积.12.设线性空间V = R2是欧氏空间(未必是逋常的欧氏空间)∙‰1 = (l,l)τ,α2 = (1,-1)T与內=(0,2)Γ,A¾ = (6,12)r½V的两纽疥.设術巧与仇的内积分别为(αiw4ι) = 1. (a\.02)= 15. (az.βι) = -1∙(Q2.旳)=3∙(L)求阴组丛的度呈屯阵:(2)求U的一个标准IE交基.44・设A是反对称实矩阵(即ST = -A),证明;(1)A的特征值为0或纯虚数;(2)设α + 0i是4的属于一个非零特征值的特征向量,其中α,&均为实向量,则a与0正交.&设2是所竹次数小于71的实系数多项式爼成的实块性空间.U= {∕(r) ∈ V 1/(1) = 0}∙证明UiLV的子空间,并求V的一个补空间・9.设(/ = [(1,2,X6)τ. (4, -L3,6)τ, (5∙ L 6.12)T b W = [(1.-LLI)T,(2∙-13,5)τ]足R4的恃个子空何.(1)求UnW的基;(2)扩充U∩ IV的菇,使其成为D的基;(3)扩ftu∩ Vr的施,便其成为W的皐;(4)求U + W的基.Io-设U = {(τ,ι∕7 2. w) ∣τ + y + 2 + w = 0}1Ir = {(ι∙7y, 2τ w) |r —y÷2-tr = O}.求U ∩ W z, U + W 的维数与基•12.设/1是“阶方阵.证用(1)4∏f以唯4⅛衣乐成个对称炉阵和个反对称炉PnrJ和.试用f z空何的直和分鮒理论斛种这菇果(2)∙2J以唯一地农加成一个HCnnltC矩障和一个反HcrmItc舱阵的和.比用于空间的自和分鮮埋论解释这一(3)解释定义域为R的任盘实函敢可以咁•地衣示成个偶函数与•个奇函数的和;(4)请举一个类似于上曲(1)-(3)的例子并解释之・27. (1)求例2222屮的幕零变换丁的幕零指数及其在标准基下的矩阵;(2)设ST∈ EIKl”分别是线性空何"的同构变换和峯零变换,证∏JJσ÷ T&V的同构变换;(3)设AD是可逆矩阵,£,C是導零矩阵,证明分块矩阵(2 可逆.29.设V r = K3. σ(τ. t/, Z)=(工 + 2y -Z, # + z, @ + M — 2z)・求(1)。

矩阵理论课后习题答案习题二

矩阵理论课后习题答案习题二

3 0 1 λ⎤ 0 0 ⎡ 2λ ⎡ 0 ⎢ 4λ ⎥ ⎢ 3λ + 6 0 λ + 2 2λ ⎥ c − 2c ⎢ 0 0 0 ⎢ c −3 c ⎢ 0 6λ λ 2λ 0 ⎥ ⎯⎯⎯ →⎢ 0 0 λ ⎢ ⎥ ⎢ 0 λ −1 0 0⎥ 0 λ −1 ⎢ λ −1 ⎢ λ −1 ⎢ ⎢ 0 0⎥ ⎣3λ − 3 1 − λ 2 λ − 2 ⎦ ⎣3 λ −3 1 − λ 2 λ −2
于是不变因子为
d1 (λ ) = d 2 (λ ) = d 3 (λ ) = 1,d 4 (λ ) =
Smith 标准形为
D4 (λ ) D (λ ) = λ (λ − 1),d 5 ( λ )= 5 = λ2 ( λ − 1) 故 该 矩 阵 的 D3 ( λ ) D4 ( λ )
0 1 0 0 0 0 0 0 ⎤ ⎥ 0 0 0 ⎥ 1 0 0 ⎥. ⎥ 0 λ (λ − 1) 0 ⎥ 0 0 λ 2 (λ − 1) ⎥ ⎦
0 0 0 ⎡1 ⎤ ⎢0 λ (λ − 1) ⎥ 0 0 ⎢ ⎥; ⎢0 0 λ( λ − 1) 0 ⎥ ⎢ 2 2⎥ 0 0 λ (λ − 1) ⎦ ⎣0
(3)对矩阵作初等变换
⎡3λ 2 + 2 λ − 3 2 λ −1 λ 2 + 2 λ − 3 ⎤ c − c ⎡3 λ 2 − 2 3 ⎢ 2 ⎥ c1 ⎢ 2 3 − c2 → ⎢4 λ 2 −3 ⎢4λ + 3λ − 5 3λ − 2 λ + 3 λ − 4 ⎥ ⎯⎯⎯ ⎢ λ2 + λ − 4 ⎢ λ2 − 2 λ −2 λ −1 ⎥ ⎣ ⎦ ⎣ 4 2 3 2 ⎡ −λ + 7 λ − 6 −λ + 2λ + 4λ − 5 0 ⎤ ⎢ ⎥ r2 − r1 ⎯⎯⎯⎯→ λ 2 −1 λ −1 0⎥ r1 −( λ 2 −2) r3 ⎢ ⎢ λ2 −2 λ −2 1⎥ ⎣ ⎦ 4 2 3 2 ⎡ −λ + 7λ − 6 −λ + 2λ + 4λ − 5 0 ⎤ 2 ⎢ ⎥ c1 −( λ −2) c 3 ⎯⎯⎯⎯⎯ →⎢ λ 2 −1 λ −1 0⎥ c2 −( λ − 2) c3 ⎢ 0 0 1⎥ ⎣ ⎦ ⎡ −λ 3 + λ 2 − λ −1 −λ3 + 2λ 2 + 4λ − 5 0 ⎤ ⎢ ⎥ c1 −( λ +1) c 2 ⎯⎯⎯⎯ →⎢ 0 λ −1 0⎥ ⎢ 0 0 1⎥ ⎣ ⎦ ⎡λ 3 − λ 2 − λ +1 0 0⎤ ⎡1 2 ⎢ ⎥ r1 ↔ r3 ⎢ r1 + (λ −λ − 5)r2 ⎯⎯⎯⎯⎯ →⎢ 0 λ −1 0 ⎥ ⎯⎯⎯ → ⎢0 r1× (− 1) c1 ↔ c3 ⎢ ⎢ 0 0 1⎥ ⎣0 ⎣ ⎦

矩阵论引论 习题答案

矩阵论引论 习题答案

矩阵论引论习题答案矩阵论引论习题答案矩阵论是线性代数中的重要分支,它研究的是矩阵的性质和运算规律。

在实际应用中,矩阵论有着广泛的应用,涉及到各个领域,如物理学、经济学、计算机科学等。

在学习矩阵论时,习题是巩固知识和提高技能的重要途径。

下面,我将为大家提供一些矩阵论引论的习题答案。

1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求A的转置矩阵AT。

解答:A的转置矩阵AT = [1 4 7; 2 5 8; 3 6 9]。

2. 习题二已知矩阵A = [2 4; 6 8],求A的逆矩阵A-1。

解答:由于A是一个2x2的矩阵,我们可以使用伴随矩阵法来求解A的逆矩阵。

首先,计算A的行列式det(A) = 2*8 - 4*6 = 16 - 24 = -8。

然后,计算A的伴随矩阵adj(A) = [8 -4; -6 2]。

最后,计算A的逆矩阵A-1 = adj(A)/det(A) = [8/(-8) -4/(-8); -6/(-8) 2/(-8)] = [-1/2 1/2; 3/4 -1/4]。

3. 习题三已知矩阵A = [1 2 3; 4 5 6],矩阵B = [1 0; 0 1; 1 1],求矩阵C = AB。

解答:由于A是一个2x3的矩阵,B是一个3x2的矩阵,所以C是一个2x2的矩阵。

计算C的每个元素,C = [1*1 + 2*0 + 3*1 1*0 + 2*1 + 3*1; 4*1 + 5*0 + 6*1 4*0 + 5*1 + 6*1] = [4 5; 10 11]。

4. 习题四已知矩阵A = [1 2; 3 4],求A的特征值和特征向量。

解答:首先,求A的特征值λ。

计算A的特征多项式det(A - λI) = (1-λ)(4-λ) - 2*3 = λ^2 - 5λ + 2。

解特征多项式得到λ1 = (5 + √17)/2,λ2 = (5 - √17)/2。

然后,求A的特征向量v。

研究生矩阵论课后习题答案(全)习题一

研究生矩阵论课后习题答案(全)习题一
习题一 1.检验以下集合对于所指的线性运算是否构成实数域的线性空间: (1)设 A 是 n 阶实数矩阵. A 的实系数多项式 f ( A) 的全体,对于矩阵的加法 和数乘; (2)平面上不平行于某一向量所组成的集合,对于向量的加法和数与向量的 乘法; (3)全体实数的二元数列,对于如下定义的加法 ⊕ 和数乘 o 运算:

(1)设 Eij 是第 i 行第 j 列的元素为 1 而其余元素全为 0 的 n 阶方阵.
①令 Fij = ⎨
⎧ Eii , i = j , 则 Fij 是对称矩阵, 易证 F11 ,L , F1n , F22 , L , F2 n , ⎩ Eij + E ji , i ≠ j
L , Fnn 线 性 无 关 , 且 对 任 意 n 阶 对 称 矩 阵 A = (aij ) n×n , 其 中 aij = a ji , 有
1 −1 −1
= aa −1 = 1
⑥ k o (l o a ) = k o a = (a ) = a
l l k
lk
= (lk ) o a
⑦ (k +;l
= a k a l = a k ⊕ a l = (k o a) ⊕ (l o a )
k k k
⑧ k o ( a ⊕ b) = k o ( ab) = ( ab) = a b = ( k o a ) ⊕ (k o b) 所以 R+对这两种运算构成实数域 R 上的线性空间. (5)否.设 V2 = y ( x ) y ′′ + a1 y ′ + a 0 y = f ( x ), f ( x ) ≠ 0 ,则该集合对函数的 加法和数乘均不封闭.例如对任意的 y1 , y 2 ∈ V2 , y1 + y 2 ∉ V2 .故不构成线性空间. (6)是.集合 V 对函数的加法和数乘显然封闭.零函数是 V 的零元素;对任意

矩阵理论作业7:奇异值引理证明

矩阵理论作业7:奇异值引理证明

奇异值引理证明—矩阵BA 和AB 的关系摘 要矩阵理论中关于矩阵AB 和BA 的特征值的关系非常丰富,本文针对两个结论:()()tr AB tr BA =和det()det()n mn m I BA I AB λλλ--=-进行了证明。

关键字:矩阵 迹 BA 和AB 特征值引言在学习矩阵奇异值分解前,我们引入了一个引理,本文参考矩阵理论中关于矩阵AB 和BA 的特征值的关系[1][2][3][4],用矩阵分块的方法证明了此引理,即对m nA ⨯∀∈R ,n mB ⨯∀∈Rdet()det()n m n m I BA I AB λλλ--=-,以及AB BA 、迹相等的结论。

引理证明对于m n A ⨯∀∈R ,n m B ⨯∀∈R ,证明 ①()()tr AB tr BA = ②det()det()n mn m I BA I AB λλλ--=-特别地,当T B A =时,则有det()det()T n m T n m I A A I AA λλλ--=-(提示:借助分块矩阵乘法证明) 证明①:已知111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪⎪= ⎪⎪⎝⎭(1)111212122212m m n n nm b b b b b b B b b b ⎛⎫⎪⎪= ⎪⎪⎝⎭(2)先来计算AB ,令A 按行分块,B 按列分块11112122122212=(,,,)=(,,,)=(,,,)n n m m m mn a a a a a a a a a ααα(3)11121121222212=(,,,)'=(,,,)'=(,,,)'n n m m m nm b b b b b b b b b βββ(4)则矩阵A B 、可简化为12m A ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(5),()11m B βββ= (6)111212122212=m m m m m m AB αβαβαβαβαβαβαβαβαβ⎛⎫⎪⎪⎪⎪⎝⎭(7) 由矩阵的迹的定义可知,AB 的迹为1122()m m tr AB αβαβαβ=+++ (8)将αβ、带入(8)展开,得111112211121122222221122112211111()()()()n n n n m m m m mn nm nnni i i i mi imi i i mnji ijj i tr AB a b a b a b a b a b a b a b a b a b a b a b a b a b ======++++++++++++=+++=∑∑∑∑∑(9)同理再来计算BA ,令A 按列分块,B 按行分块11121121222212=(,,,)'=(,,,)'=(,,,)'m m n n n mn a a a a a a a a a ααα(10)11112122122212=(,,,)=(,,,)=(,,,)mmn n n nmb b b b b b b b b βββ(11)矩阵A B 、简化为()12nA ααα= (12), 12n B βββ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭(13)1211112222122=nn n n n BA βαβαβαβαβαβαβαβαβα⎛⎫ ⎪⎪⎪ ⎪⎪⎝⎭(14) BA 的迹为1212()n n tr BA βαβαβα=+++ (15) 将 αβ、带入(15)展开111112211121122222221122112211111()()()()m m m m n n n n nm mn mmmi i i i ni ini i i nmji ijj i tr BA b a b a b a b a b a b a b a b a b a b a b a b a b a ======++++++++++++=+++=∑∑∑∑∑(16)显而易见,(9)和(16)式互换,i j 结果相等,由此可以证明()()tr AB tr BA =。

矩阵论试题及答案可编辑全文

矩阵论试题及答案可编辑全文

2006矩阵论试题答案一.填空(每题4分,共40分)1. 设−−=41311221222832A ,则A 的值域4(){,R }R A y y Ax x ==∈的维数=)(dim A R 2 .2. 设A 的若当标准型−−−=10000011000001100000020000012000002J ,则A 的最小多项式=)(λψm 32(1)(2)λλ+−.3. 设110430102A −=−,则()5432333h A A A A A A =−++−=110430102−− −−. 4. 设埃尔米特阵为 −−+=2005111i i i i A , 则矩阵A 为 正定的 埃尔米特阵.5. 在3R 中有下列两组向量:()13,1,2Tα=−−,()21,1,1Tα=−,()32,3,1Tα=−; ()11,1,1Tβ=,()21,2,3Tβ=,()32,0,1Tβ=,则由321,,ααα到321,,βββ的过渡矩阵=P 619113421270−−−−−− −− .6.设33CA ×∈,21332211{}ij m j i A a ===∑∑,H AA 的非零特征值分别为15 ,5 ,3,则=2mA.7. 设12102101, 11111137A B −== −−,12,V V 分别为齐次线性方程组 0Ax =,0Bx =的解空间,则=)dim(21V V ∩ 1 .8. 设1(1)1(1)121()321nn n n n n n A n n n n +−−=++ −,则lim n n A →∞=1311e .9. 设213121202A −=,则A 的 LDU 分解为 A =100121012/51 2001123205200115004/5001−  −   − 10.设 −=5221A ,=0242B ,则2448204048102040100A B−−−⊗=. 二.(10分)设T 为n 维欧氏空间V 中的线性变换,且满足:),(),(Ty x y Tx −=,试证明:T 在标准正交基下的矩阵A 为反对称阵(T A A −=)证明:设n ααα,,,21 为V 的标准正交基,n n ij a A ×=}{,下证:ji ij a a −=: 由=),,,(21n T ααα A n ),,,(21ααα 知n ni i i i a a a T αααα+++= 2211,n nj j j j a a a T αααα+++= 2211, ),(),(j i j i T T αααα−=;=),(j i T ααji j n ni i i a a a a =+++),(2211αααα , =),(j i T ααij n nj j j i a a a a =+++),(2211αααα , 所以:ji ij a a −=.三.(10分)在复数域上求矩阵−−−=7137341024A 的若当标准形J ,并求出可逆矩阵P 使得J AP P =−1.解: A 的若当标准形210021002J=. 令123(,,)P p p p =,则有112123232,2,2Ap p Ap p p Ap p p ==+=+;1213262100621062104170,417,4173150315315p p p p p −−−−=−=−= −−−解得:123(2,1,1),(0,1,0),(1,2,1)T T Tp p p ===− , 201112101P=−.四. (10分)已知 =654321x x x x x xX ,162534()sin()x x f X e x x x x =++,求dXdf . 解答:16161234652543225516cos()cos()x x x x ff f x x x df dX ff f x x x x e x x x x x x x x x e ∂∂∂∂∂∂== ∂∂∂ ∂∂∂. 五.(10分)已知311202113A −=−−−,求4sin()A π,Ae .解:3||(2)E A λλ−=−,A 的最小多项式2)2()(−=λλϕ .待定系数一:令24sin ()(2)q a b πλλλλ=−++,则21,0a b b +==,4sin()A E π=;令2()(2)e q a b λλλλ=−++,则222,a b e b e +==.222211212112A e e e E e A −−=−+=− −−.待定系数二:令324sin ()(2)q a b c πλλλλλ=−+++,则22222414018,8,32216a b c b c a b c c ππππ ++=+=⇒=−==− =− ; 224sin()(44)32A E E A A E ππ=−−+=.令32()(2)e q a b c λλλλλ=−+++,则2222222414,,22a b c e b c e a e b e c e c e++= +=⇒==−== ; 2221()2211212112A e e E A A e −−− =− +−−= .六.(10分)设−=01200110A ,求A 的奇异值分解. 解答一:=5002A A H ,A 的奇异值为5,2; 00Σ= , 25H HV A AV = ,1001V =; 1100100100200100U AV −−− =Σ==; 00000000U− =; 0000010001 0 000 0 000A=.解答二:=5002A A H ,那么A 的奇异值为5,2,A A H对应于特征值5,2的标准特征向量为 = =01,1021x x ,=0110V ; 再计算H AA 的标准正交特征向量,解得分别与5,2,0,0对应的四个标准正交特征向量=0520511υ, −=2102102υ,−=0510523υ,=2102104υ,−−=210210051052210210052051U ; 所以=∆=HV UA 0000000000000110.七.(10分)设n n i A ×∈≠C 0,2rank rank i i A A =),,2,1(n i =,且当i j ≠时),,2,1,(0n j i A A j i ==.试用归纳法证明存在同一个可逆阵n n P ×∈C 使 得对所有的i ),,2,1(n i =有1−=P PE a A ii i i ,其中C ∈i a . 证明:1n =时,命题显然.假设n k ≤时,命题成立. 当1n k =+时,设1rank A r =.由若当分解11111000D A P P − =,其中1C r rD ×∈可逆; 当2,,j n = 时,由110j j A A A A ==可得1(1)(1)1100, C 0n n j jj A P P B B −−×− =∈(直接推出的j B 为()()n r n r −×−的) 再由0i j A A =得0i j B B =(,,2,,)i j i j n ≠= ;0j B ≠,2rank rank j j B B =也是明显的.由假设知存在可逆阵(1)(1)C n n Q −×−∈使得1j j jj B a QE Q −=,其中C j a ∈,2,,j n = .此时,再由110j j A A A A ==得到11111111110101010000000a A P P a P P Q Q −−− == ; 记1100P P Q =,则 11111111100000000 (2,,).0 j j j jj j j jj jj A P P P P B a QE Q a P P a P E P j n E −−−−− =====由归纳原理知命题为真.。

矩阵论典型试题解析

矩阵论典型试题解析

习题11.计算下列方阵的幂(1)n cos sin sin cos θθ⎡⎤⎢⎥-θθ⎣⎦; (2)1111n ⎡⎤⎢⎥-⎣⎦; (3)1111na a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 解:(1)由 cos sin sin cos n n n n ⎡⎤⎢⎥-⎣⎦θθθθcos sin sin cos θθ⎡⎤⎢⎥-θθ⎣⎦= cos(1) sin(1)sin(1) cos(1)n n n n ++⎡⎤⎢⎥-++⎣⎦θθθθ,故由归纳法知cos sin sin cos nn n A n n ⎡⎤=⎢⎥-⎣⎦θθθθ。

法2:由矩阵cos sin sin cos A ⎡⎤=⎢⎥-⎣⎦θθθθθ为正交矩阵,且二维平面中任一向量x y ⎛⎫α= ⎪⎝⎭.则向量cos sin x A sin cos y θθθ⎡⎤⎛⎫α= ⎪⎢⎥-θθ⎣⎦⎝⎭相当于将向量x y ⎛⎫α= ⎪⎝⎭顺时针针旋转θ角度,故由此几何意义,有:() cos sin sin cos n n n n A A n n ⎡⎤==⎢⎥-⎣⎦θθθθθθ (2)由11441144cos sin A sin cos ππ⎡⎤⎥⎡⎤==⎥⎢⎥-ππ⎣⎦⎥-⎢⎥⎣⎦,得11441144n n n n cos sin(n n sin cos ππ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥-ππ⎣⎦⎢⎥-⎢⎥⎣⎦ (3)记J=0 1 0 1 1 0 ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则由于B J J J E ⋅==⋅,2010010100101001010000J ,J ,,⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 0K J =其中5K ≥112244113311 () n n n n n n n n n n n n n nk k n k n n n n n a C a C a C a a C a C a A aE J C a J a C a a -------⎡⎤⎢⎥⎢⎥⎢⎥=+==⎢⎥⎢⎢⎢⎣⎦40k =⎥⎥⎥∑(规定:0k n C (n k )=<)2. 求平方等于单位阵的所有二阶方阵 。

矩阵理论简明教程 第二版 张凯学院课后答案下载

矩阵理论简明教程 第二版 张凯学院课后答案下载

矩阵理论简明教程第二版张凯学院课后答案下载《简明矩阵教程》(张凯学院)第二版课后答案下载《矩阵论简明教程》是科学出版社2004年出版的一本书。

以下是阳光网边肖想与大家分享的简明矩阵理论教程(张凯研究所编写)第二版,供大家参考!《简明矩阵教程》(张凯学院)第二版课后答案下载点击此处下载简明矩阵理论课程第二版课后答案(张凯学院编写)简明矩阵课程第二版(张凯学院):内容简介矩阵相似变换、范数理论、矩阵分析、矩阵分解、特征值的估计和表示、广义逆矩阵、矩阵直积、线性空间和线性变换。

每章都配有练习题,书末有练习题答案和提示。

与传统的矩阵理论教材不同,《矩阵论简明教程》没有从较为抽象的线性空间和线性变换入手,而是在较为具体的矩阵相似变换理论的基础上,介绍矩阵理论的主要内容,从而达到由简入深的目的,使读者能够在短时间内掌握现代矩阵理论中相当广泛和基本的内容。

学过工程线性代数课程的都可以读《矩阵论简明教程》。

[1]《矩阵简明教程》(第二版)(张凯学院):内容第一章矩阵的相似变换1.1特征值和特征向量1.2相似对角化1.3约旦标准表格介绍1.4i米尔顿-卡耶定理1.5个向量的内积1.6酉相似下的标准型1个练习第二章规范理论2.1向量范数2.2矩阵范数2.2.1方阵的范数2.2.2与向量范数的兼容性2.2.3从属定额2.2.4长方阵的范数2.3规范应用示例2.3.1矩阵谱半径矩阵的条件数练习2第三章矩阵第四章矩阵分解第五章特征值的估计和表达第六章广义逆矩阵第七章矩阵的直积第八章线性空间和线性变换问题解决和提示。

矩阵理论(科学出版社)习题详细解答

矩阵理论(科学出版社)习题详细解答

习题 一1.(1)因 cos sin sin cos nx nx nx nx ⎡⎤⎢⎥-⎣⎦ cos sin sin cos x x x x ⎡⎤⎢⎥-⎣⎦= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++⎡⎤⎢⎥-++⎣⎦,故由归纳法知cos sin sin cos nnx nx A nx nx ⎡⎤=⎢⎥-⎣⎦。

(2)直接计算得4A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出23,A A 即可。

(3)记J=0 1 0 1 1 0 ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则 , 112211111 () n n n nn n n n n n n n n nii n inni n nna C a C a C a C a C a A aE J Ca Ja C a a -----=-⎡⎤⎢⎥⎢⎥⎢⎥=+==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n∑。

2.设1122 (1,0),0 a A P P a A E λλ-⎡⎤===⎢⎥⎣⎦则由得21112111 1 1 210 0 0 a λλλλλλλ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1时,不可能。

而由2112222 0 0 000 0 0 a λλλλλλ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1时,知1i λ=±所以所求矩阵为1i P B P -, 其中P 为任意满秩矩阵,而1231 0 1 0 1 0,,0 10 1 0 1B B B -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦。

注:2A E =-无实解,n A E =的讨论雷同。

3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2n 个未知数时线性方程AX -XA=0有2n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵,通过直接检验即发现A 为纯量矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题 一1.(1)因 cos sin sin cos nx nx nx nx ⎡⎤⎢⎥-⎣⎦cos sin sin cos x x x x ⎡⎤⎢⎥-⎣⎦= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++⎡⎤⎢⎥-++⎣⎦,故由归纳法知cos sin sin cos n nx nx A nx nx ⎡⎤=⎢⎥-⎣⎦。

(2)直接计算得4A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出23,A A 即可。

(3)记J=0 1 0 1 1 0 ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则 ,112211111 () n n n nn n n n n n n nnni i n inn i n n n a C a C a C a C a C a A aE J C a J a C a a -----=-⎡⎤⎢⎥⎢⎥⎢⎥=+==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n∑。

2.设1122 (1,0),0 a A P P a A E λλ-⎡⎤===⎢⎥⎣⎦则由得21112111 1 1 210 0 0 a λλλλλλλ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1时,不可能。

而由2112222 0 0 000 0 0 a λλλλλλ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1时,知1i λ=±所以所求矩阵为1i PB P -, 其中P 为任意满秩矩阵,而1231 0 1 0 1 0,,0 10 1 0 1B B B -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦。

注:2A E =-无实解,nA E =的讨论雷同。

3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2n 个未知数时线性方程AX -XA=0有2n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵, 通过直接检验即发现A 为纯量矩阵。

110n n a a a -+++=4.分别对(A B )和A C ⎛⎫⎪⎝⎭作行(列)初等变换即可。

5.先证A 或B 是初等到阵时有()***AB B A =,从而当A 或B 为可逆阵时有()***AB B A =。

考虑到初等变换A 对B 的1n -阶子行列式的影响及*1A A -=即可得前面提到的结果。

下设 00 0r E PAQ ⎡⎤=⎢⎥⎣⎦,(这里P ,Q 满秩),则由前讨论只需证下式成立即可:*** 0 00 00 0r r E E B B ⎛⎫⎡⎤⎡⎤= ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭, (1) r<n-1时,因秩小于n-1的n 阶方阵的n-1阶子式全为0,结论显然;(2) r=n-1时,*00 00 10 0r E ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,n12**nn 0 0 0 0 B 0n B B rE B ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,但 1112111121212222122212 00 0 0 0 0n n n r n n n nn b b b b b b b b b E b b b b b b ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ ,故 *00 0r E B ⎛⎫⎡⎤= ⎪⎢⎥⎣⎦⎝⎭n12 nn 0 B 0n B B ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦**00 0r E B ⎡⎤=⎢⎥⎣⎦。

6.由()()0()0r A r A AX AX AX ⊥⊥==⇔=及,即0AX =与0A AX ⊥=同解,此即所求证。

7.设其逆为()ij a ,则当I 固定时由可逆阵的定义得n 个方程()()()121111123n j j j i i i in ij a a w a w a w δ----++++= ,1,2,j n = ,其中ij δ为Kronecker 符号。

对这里的第l 个方程乘以()()1j n l w--然后全加起来得()()()()111j n j n i ij nw a w ----=,即得()()111j n iij a w n-+-=。

注:同一方程式的全部本原根之和为0,且mw 也是本原根(可能其满足的方程次数小于n )。

习题 二1. 因11x x x ⊕==⊕,所以V 中零元素为1,x 的负元素为1x,再证结合律、交换律和分配律。

2. 归纳法:设121s W W W V -≠ ,则下面三者之一必成立:(1)121s s W W W W -⊂ ; (2)121s s W W W W -⊃ 。

(3) 存在121\s s W W W W α-∈ 及121\()s s W W W W β-∈ 。

如果是(1)(2)则归纳成立,如果是(3)则选s 个不同的数12,,,s k k k ,则必有某一个12i s k W W W αβ+∉ 。

3. U 是满足方程tr(A)=0解向量空间,其维数为21n -,故其补空间为一维的,可由任一迹非0的矩阵生成。

4. 易证线性封闭。

又设V 中元素为1211n n n n f a xa x a ---=+++ ,则U 是满足方程110n n a a a -+++= 的子空间。

故U 的维数为n-1,其补空间为一维的,故任取一系数非0且不满足此方程式的元即可生成此补空间。

5. 记U=()123,,u u u ,()12,W w w =,把U,W 放在一起成4行5列的矩阵,其Hermite 标准形为1 4 5 1 2150 1 1 390 0 0 1 30 0 0 0 0⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 故U W 的基为123w w -+,U 的基为123w w -+,1u ;W 的基为123w w -+,1w ;U W +的基为123w w -+,1u ,1w 。

6.0(,,,)0x y z w U W x y z w x y z w ⎧+++=⎫⎧=⎨⎨⎬-+-=⎩⎩⎭, 1 1 1 121 1 1 1r ⎛⎫= ⎪--⎝⎭,故()()()dim 2,dim dim dim dim 4U W U W U W U W =+=+-= ;()()1,1,1,1U W -- 的基为方程组的解向量0,1,1,-1和。

7.(1)由1(1)(1)j j jijii i x x a X x x -==---∑知可表示为线性组合,由基定义知其为一组基。

(2)由()01n nii iii i a x b x ===-∑∑及()0(11)1jijjiji xx C x ==-+=-∑得0jj j k k k b C a ==∑。

注:当k<j 时,1j k C =。

8.由12,,,j t αβββ 为的线性组合知存在矩阵A 使得()()1212,,,,,,s t A αααβββ= ,由i α线性无关可知()r A s =故s t ≤,把A 的Hermite 标准形非0行的第一个非0元所在列对应的i β全替代为i α即为所求。

9.易证为子空间; {}n U B Z XA x F =∈为在空间上的核空间,故{}()()()dim dim nU Z XA X F r AB r A r AB ==∈-=-。

习题三1.略2.()()1122 ,, y a b x y x x b c y ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,故内积定义的(1)(3)显然;而(2)成立 c a b b ⎛⎫⇔⎪⎝⎭为正定矩阵20,0a ac b ⇔>->。

3.(1)(3)显然(2)(,)0f f ≥且等号成立当且仅当(,)0f f =⇔()22002f f π⎛⎫+= ⎪⎝⎭⇔()002f f π⎛⎫== ⎪⎝⎭⇔ cos sin 0cos sin 022a b a b θθππ+=⎧⎪⎨+=⎪⎩⇔00a b f ==⇔=。

||()||5h t ==。

习题 四1. 设AB 的特征值及其对应的特征向量为,i i X λ,即i i i A B X X λ=,如0i BX =,则0i λ=(注意到只能有一个特征值为0)。

故由i i i BABX BX λ=知BA 与AB 特征值勤全相同,所以它们都相似于()12,,n dig λλλ 。

2.σ对应的矩阵为0 2 22 3 12 1 3T--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦, 即()()123123,,,,,e e e e e e A σ=作基变换()()'''123123,,,,.e e e e e e P=则()()'''1123123,,,,.e e e e e e PAP σ-=故使为对角形的基()1123,,e e e P -即可。

3.V 的一组基为1 00 00 10 1 1 00 0⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,,,分别记为123,,e e e ,则123223332,,e e e e e e e e e σσσ=-=-=-,故()()123123 0 0 0,,,, 1 1 11 1 1e e e e e e σ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦=()123,,e e e A ,求出使1PAP -为对角形阵的P ,基取为()1123,,e e e P -4.令11 20 0,2 10 1P P AP -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦则, ()10 00 01,||0,0 10 5tr A A A P P -⎡⎤⎡⎤====⎢⎥⎢⎥⎣⎦⎣⎦。

5. ()||m nm n E AB E BA λλλ--=-知除0外AB 与BA 的特征值全相同(包括代数重数),而迹为矩阵特征值之和。

6. (1)特征多项式287x x -+为最小多项式,可能角化 (2)()()()||123E A λλλλ-=---为最小多项式,可对角化(3)特征多项式为()()212λλ-+,经验证()()2A E A E -+,故最小多项式为()()12λλ-+,可对角化。

(4)同(3),但()()20A E A E -+≠,故最小多项式为()()212λλ-+,不能对角化。

7.(1) a 0 a 1, 0 a 0 a A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,则()()()22,A B A B f f x a m x a x a m ==-=-≠-=; (2) a 1 0 0 a 1 0 00 a 0 00 a 0 0,0 0 a 00 0 b 00 0 0 b 0 0 0 b A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦()()()()322A B f x a x b x a x b f =--≠--=,()()()()22A B m x a x b x a x b m =--=--=8. 由特征多项式的表达式特和题设有10,0ni i j i i j λλλ=≠==∑∑,故22110n ni i i j i i i j λλλλ==≠⎛⎫==+ ⎪⎝⎭∑∑∑21n i i λ==∑,又i λ为实数故i λ均为0。

相关文档
最新文档