天体运动中的追及相遇问题 (1)

合集下载

天体的追及相遇问题(分层练习)(原卷版)

天体的追及相遇问题(分层练习)(原卷版)

天体的追及相遇问题1.高度为R ,此时a 、b 恰好相距最近。

已知地球质量为M 、半径为R 、地球自转的角速度为ω,万有引力常量为G ,忽略卫星间的引力,下列说法中正确的是( )A .发射卫星b 时速度要大于11.2km/sB .卫星a 受到的合力大于卫星b 受到的合力C .卫星a 和b 到再次相距最近,至少还需时间38t GM R ω=-D .若要卫星c 与b 实现对接,可让卫星c 直接在原轨道加速2.北斗卫星导航系统由地球同步静止轨道卫星a 、与地球自转周期相同的倾斜地球同步轨道卫星b ,以及比它们轨道低一些的轨道卫星c 组成,它们均为圆轨道卫星。

若轨道卫星c 与地球同步静止轨道卫星a 运动轨迹在同一平面内,已知卫星c 的离地高度为h ,地球自转周期为T ,地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,下列说法正确的是( )A .若卫星a 与卫星c 的周期之比为3:1,某时刻两者相距最近,则经过2T 时间后,两者再次相距最近 B .卫星a 与卫星b 一定具有相同的机械能C .可以发射一颗地球同步静止轨道卫星,每天同一时间经过杭州正上空同一位置D .卫星c ()2Rh gR π+3.如图所示,A 、B 两卫星绕地球做匀速圆周运动,它们的轨道在同一平面内且绕行方向相同。

若A 离地面的高度为h ,运行周期为T ,根据观测记录可知,A 观测B 的最大张角θ=60°。

设地球的半径为R ,则下列说法中不正确...的是( )A .卫星B 的运行轨道半径为2R h + B .卫星A 与B 的加速度之比为1:4C .卫星A 与B 运行的周期之比为2D .若某时刻卫星A 和B 相距最近,则再经过时间T ,它们又相距最近4.(2022春·重庆沙坪坝·高一重庆八中校考期末)(多选)如图所示,有A 、B 两颗行星绕同一恒星O 做圆周运动,运行方向相反。

A 行星的周期为A T ,B 行星的周期为B T ,在某一时刻两行星相距最近,则( )A .经过时间AB B A T T t T T =+,两行星将再次相距最近 B .经过时间A B B A T T t T T =-,两行星将再次相距最近 C .经过时间()A B B A 2nT T t T T =+(n =1,3,5,…),两行星相距最远 D .经过时间()A B B A 2nT T t T T =-(n =1,3,5,…),两行星相距最远 5.如图所示,地球的两个卫星绕地球在同一平面内做匀速圆周运动,已知卫星一运行的周期为T 1=T 0,地球的半径为R 0,卫星一和卫星二到地球中心之间的距离分别为R 1=2R 0,R 2=4R 0,引力常量为G ,某时刻,两卫星与地心之间的夹角为23π。

专题 天体的追和相遇问题(课件)高中物理(人教版2019必修第二册)

专题  天体的追和相遇问题(课件)高中物理(人教版2019必修第二册)

C. 经过时间t T1 T2 ,两行星相距最远 2
D. 经过时间t T1T2 ,两行星相距最远
2(T2 T1 )
感谢您的耐心聆听
I'd like to finish by saying how grateful I am for your attention.
第七章 万有引力与宇宙航行
专题 天体的追和相遇问题
目录
contents
01 天体的追及相遇 02 典例分析
导入新课
问题与思考
冲日,是由地球上观察 天体与太阳的位置相差180 度,即天体与太阳各在地 球的两侧的天文现象。所 谓行星冲日,是指地外行 星运行到与太阳、地球形 成一条直线的状态。
你知道什么是冲日了吗?
r1 1
北斗卫星中轨道卫星 A 的轨道半径 r2 R h2 2.74 107 m 可得 r2 4
r3
根据开普勒第三定律 T 2
k
,从而得出二者的周期之比为Fra bibliotekT1 T2
r1 r2
r1 1 r2 8
从图示位置开始,二者转过的角度相差 n2
,得
2
T1
2
T2
t
n2
n
1,2,3
化简 t
nT2 7
卫星B绕行方向与地球自转方向相同,离地面高度为h。已知地球半径为R,地球自
转角速度为ω0,地球表面的重力加速度为g,O为地球中心。 (1)某时刻A、B两卫星相距最近(O、B、A在同一直线上),
则至少经过多长时间,它们再一次相距最近?
(2)某时刻A、B两卫星相距最近,则经过多长时间,
它们相距最远?
【答案】(1) t
如乙图所示,假设有一长度为r的太空电梯连接地球赤道上的固定基地与同步空间

(完整版)“双星”问题及天体的追及相遇问题

(完整版)“双星”问题及天体的追及相遇问题
A. B. C. D.
【答案】D
【解析】设未知的行星的周期为T,依题意有: ,则 ,根据开普勒第三定律: ,联立解得: ,D正确,ABC错误.故选:D。
【类题训练4】如图建筑是厄瓜多尔境内的“赤道纪念碑”。设某人造地球卫星在赤道上空飞行,卫星的轨道平面与地球赤道重合,飞行高度低于地球同步卫星。已知卫星轨道半径为r,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R,地球表面重力加速度为g,某时刻卫星通过这一赤道纪念碑的正上方,该卫星过多长时间再次经过这个位置?( )
A. B. C. D.
【答案】A
【解析】对双黑洞中的任一黑洞: 得
对另一黑洞: 得
又 联立可得:
则 即
双黑洞总质量 。故A项正确。
点睛:双星模型与卫星模型是万有引力部分的典型模型,要能熟练应用。
【类题训练1】引力波现在终于被人们用实验证实,爱因斯坦的预言成为科学真理.早在70年代有科学家发现高速转动的双星,可能由于辐射引力波而使质量缓慢变小,观测到周期在缓慢减小,则该双星间的距离将( )
A. A星的轨道半径为
B. A星和B星的线速度之比为m1:m2
C.若A星所受B星的引力可等效为位于O点处质量为 的星体对它的引力,则
D.若在O点放一个质点,它受到的合力一定为零
【答案】C
【解析】试题分析:双星系统是一个稳定的结构,它们以二者连线上的某一点为圆心做匀速圆周运动,角速度相等,万有引力提供向心力,根据牛顿第二定律列式求解.
A. B. C. D.
【答案】D
【解析】试题分析:在地球表面重力与万有引力大小相等,根据卫星的轨道半径求得卫星的角速度,所以卫星再次经过这个位置需要最短时间为卫星转动比地球转动多一周,从而求得时间

天体追及相遇问题

天体追及相遇问题

天体追及相遇问题
嘿,让我们来聊聊超有趣的天体追及相遇问题呀!
比如说,两颗行星就像在浩瀚宇宙赛道上赛跑的运动员,它们啥时候能碰面呢?这就是其中一个问题呀!想象一下,就像你在操场上跑步,你和另一个人跑的速度不一样,那你们会在什么时候碰到一起呢?这是不是很神奇?
还有呀,假如有一颗小行星在绕着恒星转,另一颗星星从远方飞过来,它们会不会恰好相遇呢?这就好像你在路上走,突然看到对面有个人朝你走来,你们会不会在某个点交汇呢?这多有意思啊!
再想想,如果一个星系中有多个天体,它们之间的追及相遇情况那可就更复杂啦!不就像一场混乱但又充满惊喜的宇宙派对吗?它们之中谁会和谁先碰上呢?这难道不让你超级好奇吗?。

一轮天体运动中的变轨、对接、追及相遇问题

一轮天体运动中的变轨、对接、追及相遇问题
自主对接的优点在于可以减少对地面控制中心的依赖,提高对接的灵活 性和可靠性。同时,自主对接还可以缩短对接时间,提高空间任务的效
率。
自主对接面临的挑战包括航天器导航精度要求高、控制算法复杂以及需 要克服空间环境中的干扰因素等。
遥控对接
遥控对接是指通过地面控制中心对航天器进行远程操控,完成与 天体的对接任务。这种对接方式需要地面控制中心与航天器之间 建立稳定的通信链路,以便实时传输指令和数据。
天体追及相遇问题
同向追及
同向追及是指两个天体在同一直线上运动,一个天体在另一 个天体的前方,并保持一定的距离,相对地面速度较快的天 体将会追上并超过相对地面速度较慢的天体。
解决同向追及问题时,需要先确定两个天体的相对位置和速 度,然后根据相对速度和时间计算出两者之间的距离,最后 根据距离和速度关系确定相遇时间。
无人值守对接是指在没有地面控制中心干预的情况下 ,航天器自动完成与天体的对接任务。这种对接方式 需要航天器具备高度智能化的自主导航和控制系统, 以实现自主规划、决策和执行。
无人值守对接面临的挑战包括航天器自主导航和控制 技术难度大、需要克服空间环境中的不确定性和干扰 因素等。
03
CATALOGUE
遥控对接的优点在于可以对航天器进行精确的操控,确保对接的 准确性和安全性。同时,地面控制中心可以实时监测和评估对接 过程,及时发现和解决问题。
遥控对接面临的挑战包括对地面控制中心的技术要求高、通信链 路可能受到干扰或中断以及对接过程中需要快速响应意外情况等 。
无人值守对接
无人值守对接的优点在于可以进一步减少对地面控制 中心的依赖,降低对接成本和风险。同时,无人值守 对接还可以提高空间任务的灵活性和适应性,更好地 应对意外情况。

(完整版)天体运动中的追及相遇问题

(完整版)天体运动中的追及相遇问题

天体运动中的追及相遇问题信阳高中陈庆威2013.09.17在天体运动的问题中,我们常遇到一些这样的问题。

比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。

而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。

根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。

天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。

而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。

一、追及问题【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近?②经过多长时间,两行星第一次相距最远?解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力,因此T1<T2。

可见当A运动完一周时,B还没有达到一周,但是要它们的相距最近,只有A、B行星和恒星M的连线再次在一条直线上,且A、B在同侧,从角度上看,在相同时间内,A比B多转了2π;如果A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内,A 比B 多转了π。

所以再次相距最近的时间t 1,由;第一次相距最远的时间t 2,由。

如果在问题中把“再次”或“第一次”这样的词去掉,那么就变成了多解性问题。

【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。

地球的轨道半径为R ,运转周期为T 。

地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。

已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。

天体运动中的追击相遇问题

天体运动中的追击相遇问题

天体运动中的追击相遇问题1.天文上曾出现几个行星与太阳在同一直线上的现象,假设地球和火星绕太阳的运动看作是匀速圆周运动,周期分别是T1和T2,它们绕太阳运动的轨道基本上在同一平面上,若某时刻地球和火星都在太阳的一侧,三者在一条直线上,那么再经过多长的时间,将再次出现这种现象(已知地球离太阳较近,火星较远)()再次出现这种现象(已知地球离太阳较近,火星较远)()2. 如图,两颗行星和太阳在同一条直线上.外面的行星B每12年绕太阳一周,里面的行星A每3年绕太阳一周.两颗行星都沿顺时针方向运行.如果今年这两颗行星和太阳形成一条直线,再过多少年两颗行星又将和太阳形成一条直线?解:根据行星A与行星B要成一条直线就是说它们要成180°,设N年成一条直线.行星B12年绕一圈就是说一年转30度,行星A3年绕一圈一年就是转120度,所以得到:120°×N-30°×N=180°,解得:N=2,所以过2年两颗行星又将和太阳形成一条直线.3.(2007•黄冈)张宇同学是一名天文爱好者,他通过查阅资料得知:地球、火星的运行轨道可以近似地看成是以太阳为圆的两个同心圆,且这两个同心圆在同一平面上(如图所示).由于地球和火星的运行速度不同,所以二者的位置不断发生变化.当地球、太阳和火星三者处在一条直线上,且太阳位于地球、火星中间时,称为“合”;当地球、太阳和火星三者处在一条直线上,且地球于太阳与火星中间时,称为“冲”.另外,从地球上看火星与太阳,当两条视线互相垂直时,分别称为“东方照”和“西方照”.已知地球距太阳15(千万千米),火星距太阳20.5(千万千米).(1)分别求“合”、“冲”、“东方照”、“西方照”时,地球与火星的距离(结果保留准确值);(2)如果从地球上发射宇宙飞船登上火星,为了节省燃料,应选择在什么位置时发射较好,说明你的理由.(注:从地球上看火星,火星在地球左、右两侧时分别叫做“东方照”、“西方照”.)(1)“合”=地球距太阳距离+火星距太阳距离、“冲”=火星距太阳距离-地球距太阳距离、勾股定理得出“东方照”、“西方照”=(2)从地球上发射宇宙飞船登上火星,为了节省燃料,即找出地球与火星的最短距离,这时太阳和火星三者处在一条直线上,且地球于太阳与火星中间.解:(1)“合”=15+20.5=35.5(千万千米),“冲”=20.5-15=5.5(千万千米),“东方照”=“西方照”(2)“冲”位置时发射较好,因为太阳和火星三者处在一条直线上,且地球于太阳与火星中间,地球与火星的距离最短.4.2013年10月3日发生天王星“冲日”,此时天王星、地球、太阳位于同一条直线上,地球和天王星距离最近,每到发生天王星“冲日”的时候,是天文学家和天文爱好者观测天王星的最佳时机.若把地球、天王星围绕太阳的运动当作匀速圆周运动,并用r1、r2分别表示地球、天王星绕太阳运转的轨道半径,并设太阳质量M与万有引力常量G的乘积GM=1/k2,再经过多长时间发生下一次天王星“冲日”?()研究天王星、地球绕太阳做匀速圆周运动,根据万有引力提供向心力,列出等式表示出角速度.天王星、地球绕太阳做匀速圆周运动,当地球转过的角度与天王星转过的角度之差等于2π时,再一次相距最近.5.据报道,美国宇航局发射的“勇气”号和“机遇”号孪生双子火星探测器在2004年1月4日和1月25日相继带着地球人的问候在火星着陆.假设火星和地球绕太阳的运动可以近似看作同一平面内同方向的匀=2.4×1011m,地球的轨道半速圆周运动,已知火星的轨道半径r1径r=1.5×1011m,如图所示,从图示的火星与地球相距最近的时2刻开始计时,请估算火星再次与地球相距最近需多长时间()。

天体追及相遇问题公式

天体追及相遇问题公式

天体追及相遇问题公式自古以来,人类就对宇宙深深地着迷。

我们想要了解宇宙的起源,了解星球运转的方式,了解有没有其他的生命存在,等等。

为了研究宇宙,人们付出了很多努力,包括制作各种仪器观察宇宙,想出各种方法计算星球的运转速度和轨道等等。

而在这些方法中,有一个非常常见的计算问题就是天体追及相遇问题。

在本文中,我们将探讨一些有关这一问题的公式。

天体追及相遇问题指的是,当我们知道两个天体的初始位置、速度和加速度时,我们可以计算出它们会在何时何地相遇的问题。

这个问题看似简单,但是要计算出它,需要用到许多数学公式,下面我们就来详细地探讨一下。

1. 速度公式速度公式是计算天体相遇时间和位置的重要公式之一。

设一个天体的初始速度为v1,加速度为a1;另一个天体的初始速度为v2,加速度为a2。

分别用t表示它们相遇所需的时间,x表示它们相对距离的变化,则有:x = v1*t + 1/2*a1*t^2x = v2*t + 1/2*a2*t^2因为它们相遇时,它们处于相同的位置,所以可以将两个等式相等,得到:v1*t + 1/2*a1*t^2 = v2*t + 1/2*a2*t^2移项化简,得到:t = (v1-v2) / (a2-a1)将t带入其中一个式子中,可以得到它们相遇时的位置。

这个公式可以广泛应用于比如计算航空、卫星、导弹等的相遇时间和位置。

2. 相对速度公式在天体追及问题中,相对速度是非常重要的一个概念。

相对速度指的是,两个天体之间的相对速度,是一个把两个天体看作一个整体时,整体的速度与另一个天体的速度差值。

相对速度的大小可以用下面这个公式计算:v = v1 - v2其中,v1和v2分别表示两个天体的速度。

如果v是正数,表示两个天体追上了;如果v是负数,表示两个天体错过了。

3. 圆周运动公式在天体追及问题中,有时候我们需要计算天体的圆周运动速度和半径。

在这种情况下,我们可以使用圆周运动公式。

假设一个天体以半径为r的圆周运动,圆周运动的周期为t,则有:v = 2πr / t其中,v表示天体的圆周运动速度。

高中物理:天体运动中的追及相遇问题,卫星的追及和相遇问题

高中物理:天体运动中的追及相遇问题,卫星的追及和相遇问题

高中物理:天体运动中的追及相遇问题,卫星的追及和相遇问题地面上的物体常常出现追及相遇问题,关键是找出它们的位移、速度和时间等关系,运动路线应该在同一轨道上。

天体运动中也有追及相遇问题,它与地面上的追及相遇问题在思维有上相似之处,即也是找出一些物理量的关系,但它也不同之处,有其自身特点。

根据万有引力提供向心力,即,所以当天体速度增加或减少时,对应的圆周轨道会发生相应的变化,所以天体不可能能在同一轨道上追及或相遇。

分析天体运动的追及相遇重点是角度、角速度和时间等关系的判断。

1、追及问题例1、如图1所示,有A 、B 两颗行星绕同一颗恒星M 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近?②经过多长时间,两行星第一次相距最远?解析:A 、B 两颗行星做匀速圆周运动,由万有引力提供向心力,因此T 1<T 2。

可见当A 运动完一周时,B 还没有达到一周,但是要它们的相距最近,只有A 、B 行星和恒星M 的连线再次在一条直线上,且A 、B 在同侧,从角度看,在相同时间内,A 比B 多转了2π;如果A 、B在异侧,则它们相距最远,从角度看,在相同时间内,A 比B 多转了π。

所以再次相距最近的时间t1,由;第一次相距最远的时间t 2,由。

如果在问题中把“再次”或“第一次”这样的词去掉,那么结果如何?2、相遇问题1月14日高中物理例2、设地球质量为M,绕太阳做匀速圆周运动,有一质量为m的飞船由静止开始从P点沿PD方向做加速度为a的匀加速直线运动,1年后在D点飞船掠过地球上空,再过3个月又在Q处掠过地球上空,如图2所示(图中“S”表示太阳)。

根据以上条件,求地球与太阳之间的万有引力大小。

解析:飞船开始与地球相当于在D点相遇,经过3个月后,它们又在Q点相遇,因此在这段时间内,地球与太阳的连线转过的角度。

设地球的公转周期为T,飞船由静止开始做加速度为a的匀加速直线运动,则地球的公转半径为所以 地球与太阳之间的万有引力大小为例3、阅读下列信息,并结合该信息解题:(1)开普勒从1609年~1619年发表了著名的开普勒行星运动三定律,其中第一定律为:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳在这个椭圆的一个焦点上。

天体运动中追及相遇问题、能量问题和图像问题(学生版)

天体运动中追及相遇问题、能量问题和图像问题(学生版)

天体运动中追及相遇问题、能量问题和图像问题特训目标特训内容目标1天体运动中的追及相遇问题(1T-5T)目标2天体运动中的能量问题(6T-10T)目标3天体运动中的图像问题(11T-15T)【特训典例】一、天体运动中的追及相遇问题1“冲日”是指地球运行轨道外的其他行星或小行星和太阳正好分处地球的两侧,三者几乎成一条直线。

2022年9月17日海王星冲日。

海王星公转轨道半径约为30个天文单位(1个天文单位等于地球和太阳之间的平均距离),假设海王星和地球绕太阳做匀速圆周运动,取30=5.5()A.海王星和地球公转速度之比约为5.5:1B.海王星和地球公转周期之比约为1:165C.下一次海王星“冲日”发生时间在2023年8月2023年9月之间D.下一次海王星“冲日”发生时间在2023年9月2023年10月之间2如图所示为三颗卫星a、b、c绕地球沿逆时针方向做匀速圆周运动的示意图,其中b、c是地球同步卫星,a在半径为r的轨道上,此时a、b恰好相距最近,已知地球质量为M,地球自转的角速度为ω,引力常量为G,则()A.卫星a、c与地心的连线单位时间扫过的面积相等B.卫星c加速一段时间后就可能追上卫星bC.到卫星a和b下一次相距最近,还需经过时间2πGM-ωr3D.若已知近地卫星的周期为T,则可计算得出地球的平均密度ρ3如图,在万有引力作用下,a、b两卫星在同一平面内绕某一行星c沿逆时针方向做匀速圆周运动,已知轨道半径之比为ra∶rb=1∶4,则下列说法中正确的有()A.a、b运动的周期之比为Ta∶Tb=1∶8B.a、b运动的周期之比为Ta∶Tb=1∶4C.从图示位置开始,在b转动一周的过程中,a、b、c共线12次D.从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线14次42022年6月23日10时22分,我国在西昌卫星发射中心使用长征二号丁运载火箭,采取一箭三星方式,成功将遥感三十五号02组卫星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功。

万有引力与航天考点微专题6、 天体运动的追及和相遇问题

万有引力与航天考点微专题6、 天体运动的追及和相遇问题

«万有引力与航天»考点微专题6 天体运动的追及和相遇问题一 知能掌握1.天体运动追击和相遇问题的分析要点 (1)两星追上或相距最近的运动关系两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两星运行的角度之差等于2π的整数倍;两卫星运动关系应满足(ωA -ωB )t =2n π(n =1,2,3,…). (2)相距最远的运动关系当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,相距最远时,两星运行的角度之差等于π的奇数倍.两卫星运动关系应满足(ωA -ωB )t ′=(2n -1)π(n =1,2,3…).(3)卫星与地面上物体追及(卫星在地面上物体的正上方)时,要根据地面上物体与同步卫星角速度相同的特点进行判断.2.天体运动追击和相遇问题的分析技巧 (1)根据GMm r 2=mr ω2,可判断出谁的角速度大.(2)轨道在同一平面内的两颗卫星之间的距离有最近和最远之分,但它们与中心天体都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量.若它们初始位置与轨道圆心在同一直线上,实际上内轨道上卫星所转过的圆心角与外轨道上卫星所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. (3)轨道不在同一平面内的两颗卫星也可能发生碰撞,但轨道高度要相同.二 探索提升【典例1】我国发射的北斗系列卫星的轨道位于赤道上方,轨道半径为r ,绕行方向与地球自转方向相同.已知地球自转角速度为ω0,地球半径为R ,地球表面重力加速度为g.若某一时刻卫星通过赤道上某建筑物的上方,则当它再一次通过该建筑物上方时,所经历的时间为 ( )A .√2r 3-ω0B .2π(√r 2gR 2-1ω0) C .2π√r 3gR 2 D .2π√gR 2r 3+ω0【答案】A.【解析】人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m ,地球质量为M ,有G Mm r 2=mω2r ,解得ω=√GMr 3,卫星再次经过某建筑物的上空,卫星比地球多转动一圈,有(ω-ω0)t=2π,地球表面的重力加速度为g=GM R 2,联立解得t=√2r3-ω0,选项A 正确.【典例2】如图1所示,A 、B 为地球的两个轨道共面的人造卫星,运行方向相同,A 为地球同步卫星,A 、B 两卫星的轨道半径的比值为k ,地球自转周期为T 0.某时刻A 、B 两卫星距离达到最近,从该时刻起到A 、B间距离最远所经历的最短时间为 ( )图1 A .02(√k 3+1)B .√k 3-1C .2(√k 3-1)D .(√k 3+1)【答案】C.【解析】根据公式r 3T 2=C ,可得r A 3T A2=r B3T B2,两卫星间距最远,则正好在一条直线上,即B 比A 多转半圈,有t T B-t T A=12,A为同步卫星,周期和地球自转周期相同,即T A=T 0,结合rA r B=k ,解得t=,选项C 正确.【典例3】小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍.某时刻,航天站使登月器减速分离,登月器沿如图2所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回.当第一次回到分离点时恰与航天站对接.登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g 0,月球半径为R ,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为( )图2A .4.7πRg 0B .3.6πRg 0C .1.7πRg 0D .1.4πR g 0【答案】A【解析】由题可知,月球半径为R ,则航天站的轨道半径为3R ,设航天站转一周的时间为T ,则有GM 月m(3R )2=m 4π2T 2(3R ),对月球表面的物体有m 0g 0=GM 月·m 0R 2,联立两式得T =63πRg 0.登月器的登月轨道是椭圆,从与航天站分离到第一次回到分离点所用时间为沿椭圆运行一周的时间T ′和在月球停留时间t 之和,若恰好与航天站运行一周所用时间相同时t 最小,则有:t min +T ′=T ,由开普勒第三定律有:(3R )3T2=⎝ ⎛⎭⎪⎫4R 23T ′2,得T ′=42πRg 0,则t min =T -T ′≈4.7πRg 0,所以只有A 对. 【典例4】科学家在地球轨道外侧发现了一颗绕太阳运行的小行星,经过观测该小行星每隔t 时间与地球相遇一次,已知地球绕太阳公转半径是R ,周期是T ,设地球和小行星都是圆轨道,求小行星与地球的最近距离。

天体运动中的追及相遇问题

天体运动中的追及相遇问题

天体运动中的追及相遇问题做了一定的角度。

根据题意,当行星处于最大视角时,地球和行星的连线与地球和太阳的连线的夹角为θ,即行星与地球的连线与地球的运动方向相同。

因此,行星的角速度比地球的角速度大,行星相对地球做了一定的角度。

设行星与地球的连线与地球的运动方向的夹角为α,则有α=θ/2.因为行星的运动速度比地球快,所以当行星再次处于最佳观察时期时,地球还没有绕完一周,即行星比地球多转了一定的角度。

设行星绕太阳的周期为T',则有T'=T/α。

因此,下一次行星处于最佳观察时期至少需要经历的时间为T'-T,即为T(1-1/α)。

一、太阳系行星运动问题在太阳系中,行星绕太阳做椭圆形轨道运动,其运动速度和角速度随着位置的不同而不同。

根据开普勒第二定律,行星在相等时间内扫过的面积相等,因此行星的轨道速度是不断变化的。

根据开普勒第三定律,行星的公转周期与其轨道半长轴的立方成正比。

因此,我们可以通过测量行星的运动轨迹和周期来计算出太阳系中各个天体的运动参数。

在某一时刻,如果行星处于最佳观测位置,则有两种情况:一是刚刚进入最佳观测位置;二是即将离开最佳观测位置。

在这两种情况下,行星到达下一次最佳观测位置所需的时间是不同的,可以通过计算行星在轨道上的运动角度来求得。

二、相遇问题在天体运动中,相遇问题是一个重要的研究课题。

例如,当一艘飞船从地球出发,经过一段时间后到达目的地,需要计算出飞船与目的地之间的距离和所需的时间。

这类问题可以通过计算天体的运动轨迹和速度来解决。

例如,当一艘飞船从地球出发,经过一年后到达地球附近,再经过三个月到达另一个地方,我们可以通过计算地球和飞船在这段时间内的运动轨迹和速度来求得地球与太阳之间的万有引力大小。

又例如,当我们向火星发射探测器时,需要计算出探测器的轨道和所需的发射时间。

这类问题可以通过计算天体的运动轨迹和周期来解决。

例如,在某一时刻,当探测器脱离地球并沿地球公转轨道稳定运行后,在某一年3月1日零时测得探测器与火星之间的角距离为60度。

天体的追及相遇问题

天体的追及相遇问题

天体的追及相遇问题1.卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. (1)两星相距最近的条件:ωa Δt -ωb Δt =2n π(n =1,2,3…)(图甲) (2)两星相距最远的条件:ωa Δt -ωb Δt =(2n +1)π(n =0,1,2,…)(图乙)甲 乙 2.对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解.【题型1】如图是在同一平面不同轨道上同向运行的两颗人造地球卫星.设它们运行的周期分别是T 1、T 2(T 1<T 2),且某时刻两卫星相距最近.问:(1)两卫星再次相距最近的时间是多少? (2)两卫星相距最远的时间是多少?【答案】(1)T 1T 2T 2-T 1 (2)(2k +1)T 1T 22(T 2-T 1)(k =0,1,2…)【解析】(1)依题意,T 1<T 2,周期大的轨道半径大,故在外层轨道的卫星运行一周所需的时间长.设经过t 1两卫星再次相距最近. 则它们运行的角度之差Δθ=2π 即2πT 1t 1-2πT 2t 1=2π 解得t 1=T 1T 2T 2-T 1.(2)两卫星相距最远时,它们运行的角度之差 Δθ=(2k +1)π(k =0,1,2…)即2πT 1t 2-2πT 2t 2=(2k +1)π(k =0,1,2…) 解得t 2=(2k +1)T 1T 22(T 2-T 1)(k =0,1,2…).【题型2】一颗在赤道上空飞行的人造地球卫星,其轨道半径为r =3R (R 为地球半径),已知地球表面重力加速度为g ,则该卫星的运行周期是多大?若卫星的运动方向与地球自转方向相同,已知地球自转角速度为ω0,某一时刻该卫星通过赤道上某建筑物的正上方,再经过多少时间它又一次出现在该建筑物正上方? 【答案】63Rg 2π13g3R-ω0 【解析】由万有引力定律和牛顿定律可得: GMm (3R )2=m 4π2T 2·3R ①GMmR 2=mg ① 联立①①两式,可得T =6π3R g. 以地面为参考系,卫星再次出现在建筑物上方时转过的角度为2π,卫星相对地面的角速度为ω1-ω0,则Δt =2π2πT -ω0=2π13g3R-ω0. 【题型3】(多选)太阳系中某行星运行的轨道半径为R 0,周期为T 0,但天文学家在长期观测中发现,其实际运行的轨道总是存在一些偏离,且周期性地每隔t 0时间发生一次最大的偏离(行星仍然近似做匀速圆周运动)。

一轮-天体运动中的变轨、对接、追及相遇问题

一轮-天体运动中的变轨、对接、追及相遇问题

02
CATALOGUE
天体对接问题
自主对接
定义
自主对接是指航天器在无人干预 的情况下,通过预设程序或自主 决策,自动完成与目标天体的对 接任务。
技术要求
自主对接需要精确的导航定位技 术、自主控制技术和传感器技术 ,以确保航天器能够准确找到目 标并进行对接。
优点
自主对接可以减少对地面控制人 员的依赖,提高对接的自主性和 灵活性。
遥控对接
定义
遥控对接是指通过地面控制中心的操作人员 远程控制航天器,使其与目标天体完成对接 任务。
技术要求
遥控对接需要稳定的通信链路、精确的指令传输和 熟练的操作人员,以确保对接过程的顺利进行。
优点
遥控对接可以充分利用地面控制中心的专业 知识和经验,提高对接的可靠性和成功率。
无人值守对接
定义
无人值守对接是指在对接过程中,地面控制中心不进行任何干预, 完全依靠航天器的自主控制系统完成与目标天体的对接任务。
利用离心力原理,使卫星 沿着离心方向运动,从而 实现轨道半径的增大。
应用场景
在卫星发射过程中,为了 将卫星送入更高的轨道, 通常需要进行离心变轨。
近心变轨
定义
当卫星的速度大于标准环绕速度时,将沿着近心方向 运动,从而实现轨道半径减小的变轨。
原理
利用向心力原理,使卫星沿着近心方向运动,从而实 现轨道半径的减小。
技术要求
无人值守对接需要高度自动化的航天器和先进的自主控制系统,以 确保航天器能够独立完成复杂的对接任务。
优点
无人值守对接可以大大减少对地面控制人员的依赖,降低对接成本和 风险。
03
CATALOGUE
天体追及相遇问题
同向追及
同向追及是指两个天体在同一直线上,一前一后,方向相同,后面的天体 以较大的速度追赶前面的天体。

专题30 天体运动中追及相遇问题、能量问题和图像问题(解析版)

专题30 天体运动中追及相遇问题、能量问题和图像问题(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题30 天体运动中追及相遇问题、能量问题和图像问题特训目标特训内容目标1 天体运动中的追及相遇问题(1T—5T)目标2 天体运动中的能量问题(6T—10T)目标3 天体运动中的图像问题(11T—15T)一、天体运动中的追及相遇问题1.屈原在长诗《天问》中发出了“日月安属?列星安陈?”的旷世之问,这也是中国首次火星探测工程“天问一号”名字的来源。

“天问一号”探测器的发射时间要求很苛刻,必须在每次地球与火星会合之前的几个月、火星相对于太阳的位置领先于地球特定角度的时候出发。

火星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动。

如图所示,不考虑火星与地球的自转,且假设火星和地球的轨道平面在同一个平面上,相关数据见下表,则根据提供的数据可知()质量半径绕太阳做圆周运动的周期地球M R1年火星约0.1M约0.5R约1.9年B .地球与火星从第1次会合到第2次会合的时间约为2.1年C .火星到太阳的距离约为地球到太阳的距离的1.9倍D .火星表面的重力加速度与地球表面的重力加速度之比约为3:5 【答案】B【详解】A .设地球最小的发射速度为v 地,则22mv GMm R R=地解得=7.9km/s GMv R =地则火星的发射速度与地球的发射速度之比为0.150.5Mv R v M R=火地57.9km/s v =<火故A 错误; B .根据(222)t T T πππ-=地火代入数据解得地球和火星从第1次会合到第2次会合的时间约为2.1年,故B 正确;C .根据开普勒第三定律得3322r r T T =火地地火代入数据解得火星到太阳的距离约为地球到太阳的距离的1.5倍,故C 错误;D .不考虑自转时,物体的重力等于万有引力2GMmmg R=火星表面的重力加速度与地球表面的重力加速度之比为220.120.5=5Mg R M g R=火()故D 错误。

高考物理一轮复习讲义天体运动专题(三)卫星的变轨问题天体追及相遇问题

高考物理一轮复习讲义天体运动专题(三)卫星的变轨问题天体追及相遇问题

卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。

(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。

(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。

(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。

2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。

(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。

(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。

2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。

“双星”问题及天体的追及相遇问题

“双星”问题及天体的追及相遇问题
A. A星的轨道半径为
B. A星和B星的线速度之比为m1:m2
C. 若A星所受B星的引力可等效为位于O点处质量为 的星体对它的引力,则
D. 若在O点放一个质点,它受到的合力一定为零
【答案】C
【解析】试题分析:双星系统是一个稳定的结构,它们以二者连线上的某一点为圆心做匀速圆周运动,角速度相等,万有引力提供向心力,根据牛顿第二定律列式求解.
【例题】太阳系中某行星运行的轨道半径为 ,周期为 .但科学家在长期观测中发现,其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔 时间发生一次最大的偏离.天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星,则这颗未知行星运动轨道半径为 ( )
A. B.
C. D.
【解析】:由题意可知轨道之所以会偏离那是因为受到某颗星体万有引力的作用相距最近时
【解析】已知地球绕太阳的公转周期为 设火星的公转周期为 根据开普勒第三定律 得 又根据 化简得
【类题训练2】如图所示,A、B为地球的两个轨道共面的人造卫星,运行方向相同,A为地球同步卫星,A、B卫星的轨道半径的比值为k,地球自转周期为T0.某时刻A、B两卫星距离达到最近,从该时刻起到A、B间距离最远所经历的最短时间为( )
A. B. C. D.
【答案】D
【解析】试题分析:在地球表面重力与万有引力大小相等,根据卫星的轨道半径求得卫星的角速度,所以卫星再次经过这个位置需要最短时间为卫星转动比地球转动多一周,从而求得时间
对卫星,万有引力充当向心力,故 ,结合黄金替代公式 可得卫星的角速度为 ,所以当卫星再次经过该建筑物上空时,卫星比地球多转动一周,故有 ,解得 ,D正确.
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天体运动中的追及相遇问题
信阳高中陈庆威在天体运动的问题中,我们常遇到一些这样的问题。

比如,A、B 两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。

而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。

根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。

天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。

而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。

一、追及问题
【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则
①经过多长时间,两行星再次相距最近?
②经过多长时间,两行星第一次相距最远?
解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力
,因此T1<T2。

可见当A运动完一周时,B还没有达到一周,但是要它们的相距最近,只有A、B行星和恒星M的连线再次在一条直线上,且A、B在同侧,从角度上看,在相同时间内,A比B多转了2π;如果A、B在异侧,则它们相距最远,从角度上看,在相同时间内,A比B多转了π。

所以再次相距最近的时间t1,由
;第一次相距最远的时间t2,由。

如果在问题中把“再次”或“第一次”这样的词去掉,
那么就变成了多解性问题。

【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。

地球的轨道半径为R ,运转周期为T 。

地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。

已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。

若某时刻该行星正好处于最佳观察期,问该行星下一次处于最佳观察期至少需经历多长时间?
解析:由题意可得行星的轨道半径θsin R r =
设行星绕太阳的运行周期为T /,由开普勒大三定律有:
23
23T r T R '=,得:θ3sin T T =' 绕向相同,行星的角速度比地球大,行星相对地球
θ
θπππω33sin )sin 1(222T T T -=-'=∆ 某时刻该行星正好处于最佳观察期,有两种情况:一是刚看到;
二是马上看不到,如图3所示。

到下一次处于最佳观察期至少需经历时
间分别为 两者都顺时针运转:T t •--=∆-=)
sin 1(2sin )2(2331θπθθπωθπ 两者都逆时针运转: T t •-+=∆+=)
sin 1(2sin )2(2332θπθθπωθπ 二、相遇问题
【例3】设地球质量为M ,绕太阳做匀速圆周运动,有一质量为m 的飞船由静止开始从P 点
视太行地
太行
地θ θ
沿PD方向做加速度为a的匀加速直线运动,1年后在D点飞船掠过地球上空,再过3个月又在Q处掠过地球上空,如图4所示(图中“S”表示太阳)。

根据以上条件,求地球与太阳之
间的万有引力大小。

解析:飞船开始与地球相当于在D点相遇,经过3个月后,它们又在Q点相遇,因此在这段时间内,地球与太阳的连线转过的角度。

设地球的公转周期为T,飞船由静止开始做加速度为a的匀加速直线运动,则
地球的公转半径为
所以,地球与太阳之间的万有引力大小为
【例4】从地球表面向火星发射火星探测器,设地球和火星都在同一平面上绕太阳做同向圆周运动,火星轨道半径r火为地球轨道半径r地的1.50倍,简单而又比较节省能量的发射过程可分为两步进行:
第一步:在地球表面用火箭对探测器进行加速,使之获得足够动能,从而脱离地球引力作用成为一个沿地球轨道运动的人造卫星(如图5);
第二步:在适当时刻点燃与探测器连在一起的火箭发动机,在短时间内对探测器沿原方向加速,使其速度数值增加到适当值,从而使得探测器沿着一个与地球轨道及火星轨道分别在长轴两端相切的半个椭圆轨道正好射到火星上(如图6)。

当探测器脱离地球并沿地球公转轨道稳定运行后,在某年3月1日零时测得探测器与火星之间的角距离为60°(火星在前,探测器在后),如图7所示。

问应在何年何月何日
点燃探测器上的火箭发动机,方能使探测器恰好落在火星表面?(时间计算仅需精确到日),已知:;。

解析:根据根据开普勒第三定律,可求出火星的公转周期T 火: 2323地
地火火T r T r =,题设地火r r .51=, 得:地火)(T T 35.1==×365=671d 初始相对角距离θ∆=600。

点火前,探测器与地球在同一公转轨道同向运行,周期跟地球的公转周期相同,故相对火星的角位移为
探测器在适当位置点火后,沿椭圆轨道到与火星相遇所需时间2
d T t = 因2323)25.2(
地地第T r T r d = 得:2d T t ==225.13地)(T ⨯=255d 在这段时间t 内,探测器的绝对角位移为1800,火星的绝对角位移为
00
137255671
360=⨯==t 火火ωθ 探测器相对火星的角位移为000243137180=-=∆θ。

到探测器与火星相遇时,初始相对角距离θ∆(=600),应等于点火前探测器相对火星的角位移△θ1,与探测器沿椭圆轨道运动时间内相对火星的角位移△θ2之和,即
则0001174360=-=∆θ
图7 600 太阳 地球 火星 探测点太阳 地球 火星 火星 图5 θ 太阳
地球 火星
探测图6
而111t ∆•∆=∆ωθ 故得:38671
36036536017000
111=-=∆∆=∆ωθt d 已知某年3月1日零时,探测器与火星角距离为60°(火星在前,探测器在后),点燃发动机时刻应选在当年3月1日后38天,注意到“3月大”(有31号),即应在4月7日零时点燃发动机。

以上几例中,有的问题我们采用了“相对角速度”处理同心圆周运动中的追击和相遇问题,就是以角速度较小的物体为参照物,把它看作静止不动,则角速度较大的物体以“相对角速度”绕它做圆周运动,这样计算起来就比运用几何知识来找角度间的关系来的要简单。

相关文档
最新文档