大学物理习题(下)
大学物理下习题册答案详解
解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )
大学物理下册习题及答案
大学物理下册习题及答案(总16页) -本页仅作为预览文档封面,使用时请删除本页-大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。
(B)不是平衡过程,但它能用P—V图上的一条曲线表示。
(C)不是平衡过程,它不能用P—V图上的一条曲线表示。
(D)是平衡过程,但它不能用P—V图上的一条曲线表示。
[ ]2、在下列各种说法中,哪些是正确的? [ ](1)热平衡就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在P—V图上可用一连续曲线表示。
(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程: [ ](1)用活塞缓慢的压缩绝热容器中的理想气体。
(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。
(3)冰溶解为水。
(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。
其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断: [ ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的? [ ](1)可逆过程一定是平衡过程。
(2)平衡过程一定是可逆的。
(3)不可逆过程一定是非平衡过程。
(4)非平衡过程一定是不可逆的。
(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态 [ ](A)一定都是平衡态。
大学物理(下)练习题
大学物理(下)练习题大学物理习题集第六章 光的干涉6.1 在空气中做杨氏双缝干涉实验,缝间距为d = 0.6mm ,观察屏至双缝间距为D = 2.5m ,今测得第3级明纹与零级明纹对双缝中心的张角为2.724×10-3rad ,求入射光波长及相邻明纹间距.[解答]根据双缝干涉公式sin θ = δ/d ,其中sin θ≈θ,d = kλ = 3λ,可得波长为 λ = d sin θ/k = 5.448×10-4(mm) = 544.8(nm).再用公式sin θ = λ/d = Δx/D ,得相邻明纹的间距为 Δx = λD/d = 2.27(mm).[注意]当θ是第一级明纹的张角时,结合干涉图形,用公式sin θ = λ/d = Δx/D 很容易记忆和推导条纹间隔公式.6.2 如图所示,平行单色光垂直照射到某薄膜上,经上下两表面反射的两束光发生干涉,设薄膜厚度为e ,n 1>n 2,n 2<n 3,入射光在折射率为n 1的媒质中波长为λ,试计算两反射光在上表面相遇时的位相差.[解答]光在真空中的波长为λ0 = n 1λ. 由于n 1>n 2,所以光从薄膜上表面反射时没有半波损失;由于n 1>n 2,所以光从薄膜下表面反射时会产生半波损失,所以两束光的光程差为 δ = 2n 2e +λ0/2,位相差为:21012/222n e n n λδϕππλλ+∆==.6.3用某透明介质盖在双缝干涉装置中的一条缝,此时,屏上零级明纹移至原来的第5条明纹处,若入射光波长为589.3nm ,介质折射率n = 1.58,求此透明介质膜的厚度.[解答]加上介质膜之后,就有附加的光程差δ = (n – 1)e , 当δ = 5λ时,膜的厚度为:e = 5λ/(n – 1) = 5080(nm) = 5.08(μm).6.4 为测量在硅表面的保护层SiO 2的厚度,可将SiO 2的表面磨成劈尖状,如图所示,现用波长λ = 644.0nm 的镉灯垂直照射,一共观察到8根明纹,求SiO 2的厚度.[解答]由于SiO 2的折射率比空气的大,比Si 的小,所以半波损失抵消了,光程差为:δ = 2ne . 第一条明纹在劈尖的棱上,8根明纹只有7个间隔,所以光程差为:δ = 7λ. SiO 2的厚度为:e = 7λ/2n = 1503(nm) = 1.503(μm).6.5 折射率为1.50的两块标准平板玻璃间形成一个劈尖,用波长λ = 5004nm 的单色光垂直入射,产生等厚干涉条纹.当劈尖内充满n = 1.40的液体时,相邻明纹间距比劈尖内是空气时的间距缩小Δl = 0.1mm ,求劈尖角θ应是多少?[解答]空气的折射率用n 0表示,相邻明纹之间的空气的厚度差为Δe 0 = λ/2n 0;明纹之间的距离用ΔL 0表示,则:Δe 0 = θΔL 0, 因此:λ/2n 0 = θΔL 0.当劈尖内充满液体时,相邻明纹之间的液体的厚度差为:Δe = λ/2n ; 明纹之间的距离用ΔL 表示,则:Δe = θΔL ,n 1 n 2 λ n 3(1) (2)图6.2n 1=1.00 n 2=3.42 λn =1.50 Si SiO 2图6.4因此:λ/2n = θΔL .由题意得Δl = ΔL 0 – ΔL ,所以劈尖角为00()11()22n n l n nlnn λλθ-=-=∆∆= 7.14×10-4(rad).6.6 某平凹柱面镜和平面镜之间构成一空气隙,用单色光垂直照射,可得何种形状的的干涉条纹,条纹级次高低的大致分布如何?[解答]这种情况可得平行的干涉条纹,两边条纹级次低,越往中间条纹级次越高,空气厚度增加越慢,条纹越来越稀.6.7设牛顿环实验中平凸透镜和平板玻璃间有一小间隙e 0,充以折射率n 为1.33的某种透明液体,设平凸透镜曲率半径为R ,用波长为λ0的单色光垂直照射,求第k 级明纹的半径.[解答] 第k 级明纹的半径用r k 表示,则 r k 2= R 2 – (R – e )2 = 2eR .光程差为δ = 2n (e + e 0) + λ0/2 = kλ0,解得0012()22e k e n λ=--, 半径为: 001[()2]2k r k e R nλ=--.6.8 白光照射到折射率为1.33的肥皂上(肥皂膜置于空气中,若从正面垂直方向观察,皂膜呈黄色(波长λ = 590.5nm ),问膜的最小厚度是多少?[解答]等倾干涉光程差为:δ = 2nd cos γ + δ`,从下面垂直方向观察时,入射角和折射角都为零,即γ = 0;由于肥皂膜上下两面都是空气,所以附加光程差δ` = λ/2.对于黄色的明条纹,有δ = kλ,所以膜的厚度为:(1/2)2k d nλ-=.当k = 1时得最小厚度d = 111(nm).6.9光源发出波长可继续变化的单色光,垂直射入玻璃板的油膜上(油膜n = 1.30),观察到λ1 = 400nm 和λ2 = 560nm 的光在反射中消失,中间无其他波长的光消失,求油膜的厚度.[解答]等倾干涉光程差为;δ = 2nd cos γ + δ`,其中γ = 0,由于油膜的折射率比空气的大、比玻璃的小,所以附加光程差δ` = 0.对于暗条纹,有δ = (2k + 1)λ/2, 即 2nd = (2k 1 + 1)λ1/2 = (2k 2 + 1)λ2/2.由于λ2 > λ1,所以k 2 < k 1,又因为两暗纹中间没有其他波长的光消失,因此k 2 = k 1 – 1.光程差方程为两个:2nd /λ1 = k 1 + 1/2,2nd /λ2 = k 2 + 1/2, 左式减右式得:2nd /λ1 - 2nd /λ2 = 1,解得:12212()d n λλλλ=-= 535.8(nm).6.10 牛顿环实验装置和各部分折射率如图所示,试大致画出反射光干涉条纹的分布. [解答]右边介质的折射率比上下两种介质的折射率大,垂直入射的光会有半波损失,中间出现暗环;左边介质的折射率 介于上下两种介质的折射率之间,没有半波损失, 平面镜 柱面镜图6.6λ 图6.71.621.50 1.75 1.62 1.50 图6.10λR r e 0e中间出现明环.因此左右两边的明环和暗是交错的, 越往外,条纹级数越高,条纹也越密.6.11 用迈克尔逊干涉仪可测量长度的微小变化,设入射光波长为534.9nm ,等倾干涉条纹中心冒出了1204条条纹,求反射镜移动的微小距离.[解答]反射镜移动的距离为Δd = mλ/2 = 3.22×105nm = 0.322(mm).6.17 在迈克尔逊干涉仪一支光路中,放入一折射率为n 的透明膜片,今测得两束光光程差改变为一个波长λ,求介质膜的厚度.[解答]因为δ = 2(n – 1)d = λ,所以d = λ/2(n – 1).第七章 光的衍射7.1 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,并垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第三级衍射极小相重合,试问:(1)这两种波长之间有什么关系;(2)在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? [解答](1)单缝衍射的暗条纹形成条件是δ = a sin θ = ±k`λ,(k` = 1,2,3,…),当条纹重合时,它们对应同一衍射角,因此λ1 = 3λ2.(2)当其他极小重合时,必有k 1`λ1 = k 2`λ2, 所以 k 2` = 3k 1`.7.2 单缝的宽度a = 0.40mm ,以波长λ = 589nm 的单色光垂直照射,设透镜的焦距f = 1.0m .求:(1)第一暗纹距中心的距离; (2)第二明纹的宽度;(3)如单色光以入射角i = 30º斜射到单缝上,则上述结果有何变动? [解答](1)单缝衍射的暗条纹分布规律是`f y k aλ=±,(k` = 1,2,3,…),当k` = 1时,y 1 = fλ/a = 1.4725(mm).(2)除中央明纹外,第二级明纹和其他明纹的宽度为Δy = y k`-1 - y k` = fλ/a = 1.4725(mm). (3)当入射光斜射时,光程差为 δ = a sin θ – a sin φ = ±k`λ,(k` = 1,2,3,…). 当k` = 1时,可得 sin θ1 = sin φ ± λ/a = 0.5015和0.4985, cos θ1 = (1 – sin 2θ1)1/2 = 0.8652和0.8669.两条一级暗纹到中心的距离分别为y 1 = f tan θ1 = 579.6(mm)和575.1(mm). 当k` = 2时,可得sin θ2 =a sin φ ± λ/a = 0.5029和0.4971,cos θ2 = (1 – sin 2θ2)1/2= 0.8642和0.8677. 两条二级暗纹距中心的距离分别为:y 2 = f tan θ2 = 581.9(mm)和572.8(mm).φ θ a O第二明纹的宽度都为Δy = y 2 – y 1 = 2.3(mm),比原来的条纹加宽了.7.3 一单色平行光垂直入射于一单缝,若其第三级衍射明纹位置正好和波长为600 nm 的单色光垂直入射该缝时的第二级衍射明纹位置一样,求该单色光的波长.[解答]除了中央明纹之外,单缝衍射的条纹形成的条件是sin (21)2a k λδθ==±+,(k = 1,2,3,…).当条纹重合时,它们对应同一衍射角,因此(2k 1 + 1)λ1 = (2k 2 + 1)λ2, 解得此单色光的波长为12122121k k λλ+=+= 428.6(nm).7.4 以某放电管发出的光垂直照射到一个光栅上,测得波长λ1 = 669nm 的谱线的衍射角θ = 30º.如果在同样的θ角处出现波长λ2 = 446nm 的更高级次的谱线,那么光栅常数最小为多少?[解答]根据光栅方程得:(a + b )sin θ = k 1λ1 = k 2λ2,方程可化为两个:(a + b )sin θ/λ1 = k 1和 (a + b )sin θ/λ2 = k 2,解得光栅常数为:212112()()sin k k a b λλλλθ-+=-.由于k 2/k 1 = λ1/λ2 = 3/2,所以当k 1 = 2时,. k 2 = 3,因此光栅常数最小值为:2112()sin a b λλλλθ+=-= 2676(nm).7.5 一衍射光栅,每厘米有400条刻痕,刻痕宽为1.5×10-5m ,光栅后放一焦距为1m 的的凸透镜,现以λ = 500nm 的单色光垂直照射光栅,求:(1)透光缝宽为多少?透光缝的单缝衍射中央明纹宽度为多少? (2)在该宽度内,有几条光栅衍射主极大明纹? [解答](1)光栅常数为:a + b = 0.01/400 = 2.5×10-5(m), 由于刻痕宽为b = 1.5×10-5m ,所以透光缝宽为:a =(a + b ) – b = 1.0×10-5(m).根据单缝衍射公式可得中央明纹的宽度为:Δy 0 = 2fλ/a = 100(mm). (2)由于:(a + b )/a = 2.5 = 5/2,因此,光栅干涉的第5级明纹出现在单缝衍射的第2级暗纹处,因而缺级;其他4根条纹各有两根在单缝衍射的中央明纹和一级明纹中,因此单缝衍射的中央明纹宽度内有5条衍射主极大明纹,其中一条是中央衍射明纹.7.6 波长为600 nm 的单色光垂直入射在一光栅上,第二、第三级主极大明纹分别出现在sin θ = 0.2及sin θ = 0.3处,第四级缺级,求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)屏上一共能观察到多少根主极大明纹? [解答](1)(2)根据光栅方程得:(a + b )sin θ2 = 2λ; 由缺级条件得(a + b )/a = k/k`,其中k` = 1,k = 4.解缺级条件得b = 3a ,代入光栅方程得狭缝的宽度为:a = λ/2sin θ2 = 1500(nm). 刻痕的宽度为:b = 3a = 4500(nm), 光栅常数为:a + b = 6000(nm).(3)在光栅方程(a + b )sin θ = kλ中,令sin θ =1,得:k =(a + b )/λ = 10. 由于θ = 90°的条纹是观察不到的,所以明条纹的最高级数为9.又由于缺了4和8级明条纹,所以在屏上能够观察到2×7+1 = 15条明纹.7.7 以氢放电管发出的光垂直照射在某光栅上,在衍射角θ = 41º的方向上看到λ1 =656.2nm 和λ2 = 410.1nm 的谱线重合,求光栅常数的最小值是多少?[解答]根据光栅方程得:(a + b )sin θ = k 1λ1 = k 2λ2, 方程可化为两个(a + b )sin θ/λ1 = k 1和 (a + b )sin θ/λ2 = k 2,解得光栅常数为;212112()()sin k k a b λλλλθ-+=-.由于k 2/k 1 = λ1/λ2 = 1.6 = 16/10 = 8/5,所以当k 1 = 5时,. k 2 = 8,因此光栅常数最小值为:21123()sin a b λλλλθ+=-= 5000(nm).其他可能值都是这个值的倍数.7.8 白光中包含了波长从400nm 到760nm 之间的所有可见光谱,用白光垂直照射一光栅,每一级衍射光谱是否仍只有一条谱线?第一级衍射光谱和第二级衍射光谱是否有重叠?第二级和第三级情况如何?[解答]方法一:计算法.根据光栅方程(a + b )sin θ = kλ,对于最短波长λ1 = 400nm 和最长波长λ2 = 760nm 的可见光,其衍射角的正弦为sin θ1 = kλ1/(a + b )和sin θ2 = kλ2/(a + b ),数值如下表所示.可见第一级衍射光谱与第二级衍射光谱没有重叠,第二级衍射光谱与第三级衍射光谱从量值1200到1520是重叠的,第三级衍射光谱与第四级衍射光谱从量值1600到2280是重叠的.方法二:曲线法。
大学物理(下)习题
E
Q
E
r
l
Pe
r l
r
2
l /4
2
3/2
E
r
3
p 4 π 0 r
3
q
q
结论:电偶极子中垂线上,距离中心较远处一点
的场强,与电偶极子的电矩成正比,与该点离中心 的距离的三次方成反比,方向与电矩方向相反。
当r R 高斯面内电荷为 0
高斯面 E 0
均匀带电球壳
rR
高斯面
结果表明:
Q
均匀带电球壳外的场强 分布正像球面上的电荷 都集中在球心时所形成 的点电荷在该区的场强 分布一样。在球面内的 场强均为零。
R
r
例5:求无限大均匀带电平板的场强分布。
设面电荷密度为 e 。
解:由于电荷分布对于求场点 p到平面的垂线 op 是对称的, 所以 p 点的场强必然垂直于该 平面。
3 rR Q E r r 3 1 3 1 3 0 r1 4π 0 r1
r1 R
Q
E
r 1 Q E r2 r 3 2 3 0 4π 0 R
r2 R
r
R
例4:均匀带电的球壳内外的场强分布。 设球壳半径为 R,所带总电量为 Q。 解:场源的对称性决定着场强分布的对称性。
需注意方向:
A
C
B
由图可知,在A 区和B区场强均为零。C 区场强 的方向从带正电的平板指向带负电的平板。 场强大小为一个带电平板产生的场强的两倍。
2 0
EC E E 2
0
A
大学物理(下)练习题
大学物理(下)练习题第十章10-8一均匀带电的半圆形弧线,半径为R ,所带电量为Q ,以匀角速度ω绕轴OO /转动,如图所示,求O 点处的磁感应强度。
解:此题可利用运动电荷产生的磁场计算,也可利用圆电流产生的磁场计算。
以下根据圆电流在轴线产生的磁感应强度来计算的。
如图电荷dq 旋转在O 处产生的磁感应强度为3202R dIr dB μ=3202)sin (2RR Rd θπωθλμ= ⎰πθθπλωμ=020sin 4d B 240ππλωμ=80λωμ= RQπωμ=80 方向沿轴线向上。
10-15一半径为R 的无限长半圆柱面形导体,与轴线上的长直导线载有等值反向的电流I ,如图所示。
试求轴线上长直导线单位长度所受的磁力。
解:此电流结构俯视如图,圆柱面上的电流 与轴线电流反向,反向电流电流相斥,如图,对 称分析可知,合力沿x 轴正向,有θππμ==Rd R IR I BldI dF 20θπμ=d RI 2202=θ=⎰sin dF F θθπμ⎰πd RI 0220sin 2 RI 220πμ=习题 10-8图习题 10-15图x10-16半径为R 的圆形线圈载有电流I 2,无限长载有电流I 1的直导线沿线圈直径方向放置,求圆形线圈所受到的磁力。
解:此电流结构如图,对称分析可知,合力沿x 轴负向,有r I dl I dF πμ=2102θθπμ=Rd R I I cos 2210θθπμ=d II cos 2210=θ=⎰cos dF F θθθπμ=⎰πd I I cos cos 220210⎰πθπμ=202102d II 210I μ=10-19一半径为R 的薄圆盘,放在磁感应强度为B的均匀磁场中,B 的方向与盘面平行,如图所示,圆盘表面的电荷面密度为σ,若圆盘以角速度ω绕其轴线转动,试求作用在圆盘上的磁力矩。
解:圆盘上任一薄层电荷运转时产生的电流为dI ,其对应的磁矩为rdr r rdrr dI dm σω=ππωπσ=π=2222 整个圆盘的磁矩为44R rdr dm m Rσωπ=σω==⎰⎰作用在圆盘上的磁力矩为B m M ⨯====mB mB M 090sin B R 44σωπ,方向垂直纸面向里。
大学物理考试卷及答案下
汉A一、单项选择题(本大题共5小题,每题只有一个正确答案,答对一题得 3 分,共15 分)1、强度为0I 的自然光,经两平行放置的偏振片,透射光强变为 ,若不考虑偏振片的反射和吸收,这两块偏振片偏振化方向的夹角为【 】 A.30º; B. 45º ; C.60º; D. 90º。
2、下列描述中正确的是【 】 A.感生电场和静电场一样,属于无旋场;B.感生电场和静电场的一个共同点,就是对场中的电荷具有作用力;C.感生电场中可类似于静电场一样引入电势;D.感生电场和静电场一样,是能脱离电荷而单独存在。
3、一半径为R 的金属圆环,载有电流0I ,则在其所围绕的平面内各点的磁感应强度的关系为【 】A.方向相同,数值相等;B.方向不同,但数值相等;C.方向相同,但数值不等;D.方向不同,数值也不相等。
4、麦克斯韦为建立统一的电磁场理论而提出的两个基本假设是【 】A.感生电场和涡旋磁场;B.位移电流和位移电流密度;C.位移电流和涡旋磁场;D.位移电流和感生电场。
5、当波长为λ的单色光垂直照射空气中一薄膜(n>1)的表面时,从入射光方向观察到反射光被加强,此膜的最薄厚度为【 】A. ;B. ;C. ;D. ;二、填空题(本大题共15小空,每空 2分,共 30 分。
)6、设杨氏双缝缝距为1mm ,双缝与光源的间距为20cm ,双缝与光屏的距离为1m 。
当波长为0.6μm 的光正入射时,屏上相邻暗条纹的中心间距为 。
7、一螺线管的自感系数为0.01亨,通过它的电流为4安,则它储藏的磁场能量为 焦耳。
8、一质点的振动方程为 (SI 制),则它的周期是 ,频率是 ,最大速度是 。
9、半径为R 的圆柱形空间分布均匀磁场,如图,磁感应强度随时间以恒定速率变化,设dtdB为已知,则感生电场在r<R 区域为 ,在r>R 4I n 4λn 32λn2λn 43λ)6100cos(1052ππ-⨯=-t xd区域为 。
大学物理下复习题(附答案)
大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。
()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。
()错电荷电量是量子化的。
()对物体所带电量可以连续地取任意值。
()错物体所带电量只能是电子电量的整数倍。
()对库仑定律只适用于真空中的点电荷。
()对电场线稀疏处的电场强度小。
()对电场线稀疏处的电场强度大。
()错静电场是有源场。
()对静电场是无源场。
()错静电场力是保守力。
()对静电场力是非保守力。
()错静电场是保守力场。
()对静电场是非保守力场。
()错电势是矢量。
()错电势是标量。
()对等势面上的电势一定相等。
()对沿着电场线的方向电势降落。
()对沿着电场线的方向电势升高。
()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。
()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。
()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。
()错电荷在电场中某点受到电场力很大,该点场强E一定很大。
()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。
()对在以点电荷为中心,r为半径的球面上,场强E处处相等。
()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。
()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。
()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。
()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。
()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。
对导体达到静电平衡时,导体内部的场强处处为零。
()对第一章填空题已一个电子所带的电量的绝对值e= C。
1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。
8.85*10-12 真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。
大学物理习题下(完整版)
物理(下)作业专业班级:姓名:学号:第十章真空中的静电场(1)一、选择题1、根据电场强度定义式0/q F E(0q 为正的实验点电荷),下列说法中哪个是正确的?(A)、若场中某点不放实验电荷0q ,则F =0,从而E=0;(B)、电场中某点场强的大小与实验点电荷q 0的大小成反比;(C)、电场中某点场强的方向,就是正电荷在该点所受电场力的方向;(D)、以上说法都不正确。
[]2、如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为:(A)xq04 ;(B)30xqa;(C)302xqa;(D)204xq 。
[]3、(2010年北京科技大学)两个带有等量同号电荷,形状相同的金属小球1和2,相互作用力为F ,它们之间的距离远大于小球本身直径.现在用一个带有绝缘柄的原来不带电的相同金属小球3去和小球1接触,再和小球2接触,然后移去.这样小球1和2之间的作用力变为:(A)F/2;(B)F/4;(C)3F/8;(D)F/10.[]二、填空题1、一电量为–5×10―9C 的试验电荷放在电场中某点时,受到20×10―9N 向下的力,则该点的电场强度大小为___________________,方向__________________。
2、(2011年电子科技大学)由一根绝缘细线围成的边长为l 的正方形线框,今使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度大小E=__________________。
3、铁原子核里两质子间相距4.0×10-15米,每个质子的电荷都是1.6×10-19库仑,则它们之间的库仑力应为______________牛顿。
三、计算题1、(2012年深圳大学)如图,在O x 轴上有长为a 的细杆OM ,其电荷线密度为Cx ,其中C为大于零的常量,求:(1)在OM 延长线上距M点为b的P点的电场强度的大小;(2)如果在P点放置一个带电量为+q 的点电荷,该点电荷所受库仑力大小为多少?2、有一半径为R的半圆细环上均匀地分布电荷Q,若在其环心处放置一电荷量为q的点电荷,求该点电荷q所受到的电场力的大小及方向。
大学物理(下)练习题及答案
xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。
P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。
求圆心o 处的电场强度。
3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。
求圆心O 处的电场强度。
4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。
求P 点的场强。
5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。
[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。
[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。
大学物理(下)习题精选
1. 磁场复习题1、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。
(提示:无限长载流平板可看成许多无限长的载流直导线组成) 解:利用无限长载流直导线的公式求解。
(1)取离P 点为X 宽度为dx 的无限长载流细条,它的电流di=δdx(2)这载流长条在P 点产生的磁感应强度xdxx di dB o o πδμπμ22==方向垂直纸面向里。
(3)所有载流长条在P 点产生的磁感应强度的方向都相同,所以载流平板在P 点产生的磁感应强度⎰⎰+===+bb a x x dx dB B o b a bln 22πδμπδμο,方向垂直纸面向里。
2、书上习题7-16解:(1)取半径为r 的园为回路 ()()22222a r ab I rB -⋅-=ππμπ 所以, ()r a r ab IB 222202-⨯-=πμ (2) ⎰⋅=bardr j I π2⎰⋅=bardr Kr π23233a b K -⋅=π 因此,()3323a b IK -=π又根据环路定理,⎰⋅⋅=rrdr Kr rB απμπ22032330a r K -⋅=πμ故有 3333033023a b a r r I a r r K B --⋅=-⋅=∴πμμ3、如图所示,长直导线中通有电流I=5A ,另一矩形线框共1000匝,宽a =10cm ,长L=20cm , 以s m v /2=的速度向右平动,求当cm d 10=线圈中的感应电动势。
解:xIB πμ20=,设绕行方向为顺时针方向,则BLdx BdS d ==φ yay IL x ILdx d ay yay y +===⎰⎰++ln2200πμπμφφ =-=dt d Nφε)(20a y y vaIL N +πμ 当cm d y 10==时 ,mV 21.0)1.01.0(21.021042.0510007=+⨯⨯⨯⨯⨯=-ππε*上题中若线圈不动,而长导线中通有交变电流t i π100sin 5=A, 线圈内的感应电动势为多大? 解:同上有:yay IL x ILdx d ay yay y+===⎰⎰++ln2200πμπμφφ =-=dtd Nφε t y a y t L N πππμ100cos 1.02.0ln 2.010********ln 100cos 25070⨯⨯⨯⨯⨯-=+⨯-=- t π100cos 104.42-⨯-=V*上题中若线圈向右平动,而长导线中仍有交变电流,则线圈内感应电动势又为多大? 线圈在向右平动的同时,电流也在变化,则有=-=dt d Nφεy a y dt Ldi N +-ln 2/0πμ+)(20a y y vaiL N +πμ t π100cos 104.42-⨯-=+t π100sin 100.23-⨯I4、一无限长直导线通有电流I=I o e -3t ,一矩形线圈与长直导线共面放置,其长边与导线平行,位置如图所示。
大学物理(下)期末复习题
练习 一一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S面内的P 点移到T 点,且OP =OT ,那么(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。
3. 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ( )12121221(A) q /ε0 ; (B) q /2ε0 ; (C) q /4ε0 ; (D) q /6ε0。
4. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。
5. 关于高斯定理的理解有下面几种说法,其中正确的是 ( )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。
二、填空题:1. 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为 方向 。
2. 内、外半径分别为R 1、R 2的均匀带电厚球壳,电荷体密度为ρ。
则,在r <R 1的区域内场强大小为 ,在R 1<r <R 2的区域内场强大小为 ,在r >R 2的区域内场强大小为 。
大学物理学(下册)习题答案详解
第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。
大学物理知识题(下)
习 题 课(一)1-1 在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为 (A )aQ 034πε (B )a Q 032πε (C )a Q 06πε (D )a Q 012πε1-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A )302r U R (B )R U 0 (C )20r RU (D )rU1-3 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是(A )内表面均匀,外表面也均匀。
(B )内表面不均匀,外表面均匀。
(C )内表面均匀,外表面不均匀。
(D )内表面不均匀,外表面也不均匀。
1-4一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电量Q、电场强度的大小E和电场能量W将发生如下变化(A)Q增大,E增大,W增大。
(B)Q减小,E减小,W减小。
(C)Q增大,E减小,W增大。
(D)Q增大,E增大,W减小。
1-5 一半径为R的均匀带电圆盘,电荷面密度为 ,设无穷远处为电势零点,则圆盘中心O点的电势U0 = 。
1-6 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为+q 的点电荷,O 点有一电量为-q 的点电荷,线段BA = R ,现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为 。
1-7 两个电容器1和2,串联后接上电源充电。
在电源保证连接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 ,电容器极板上的电量 。
(填增大、减小、不变)1-8 如图所示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2,设无穷远处为电势零点,求空腔内任一点的电势。
1-9 如图所示,半径分别为R 1和R 2(R 2 > R 1)的两个同心导体薄球壳,分别带电量Q 1和Q 2,今A B O将内球壳用细导线与远处半径为r 的导体球相连,导体球原来不带电,试求相连后导体球所带电量q 。
大学物理下册最终版 习题、例题、概念
R2
(R23 R13 ) 3 0r 2
dr
2 0
(R22Βιβλιοθήκη R12 ) 。612-2.若将 27 个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大
水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损
失.)
解:设小水滴半径为 r、电荷 q;大水滴半径为 R、电荷为 Q=27 q.27 个小水滴聚成大水
14-8.一橡皮传输带以速度 v 匀速向右运动,如图所示,橡皮带上均匀带有电荷, 电荷面密度为 。 (1)求像皮带中部上方靠近表面一点处的磁感应强度
B 的大小; (2)证明对非相对论情形,运动电荷的速度 v 及它所
产生的磁场
B
和电场
E
之间满足下述关系:
B
1 c2
v
E
(式中
c
1 )。 00
解:(1)如图,垂直于电荷运动方向作一个闭合回路 abcda ,考虑到橡皮带上等
qa 4 0ra
qb 4 0rb
┄①,再由系统电荷为 Q,有:qa
qb
Q ┄②两式联立得:qa
Qa , ab
qb
Qb ab
;
(2)根据电容的定义: C Q Q (或 C Q Q ),将(1)结论代入,有:
U
qa
U
qb
4 0a
4 0b
C 4 0 (a b) 。
d
13-3.面积为 S 的平行板电容器,两板间距为 d ,求:(1)插入厚度为 3 ,相对介电常数
ω 是角频率, I0 和ω都是常量。在长直导线旁平行放置一矩形线圈,线圈面
积与直导线在同一平面内 。已知线圈长为 l,宽为 b,线圈近直线的一边离直
大学物理(下)试试题库
大学物理(下)试题库第九章 静电场知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是:A : 只要有电荷存在,电荷周围就一定存在电场;B :电场是一种物质;C :电荷间的相互作用是通过电场而产生的;D :电荷间的相互作用是一种超距作用。
2、【 】 电场中有一点P ,下列说法中正确的是:A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半;B :若P 点没有试探电荷,则P 点场强为零;C : P 点的场强越大,则同一电荷在P 点受到的电场力越大;D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止;C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在:D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。
4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性;C :涡旋性;D :对其中的电荷有力的作用。
5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上0<x<1.(C) x 轴上x<0. (D) y 轴上y>06、真空中一点电荷的场强分布函数为:E= ___________________。
7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。
8、【 】两个点电荷21q q 和固定在一条直线上。
相距为d ,把第三个点电荷3q 放在21,q q 的延长线上,与2q 相距为d ,故使3q 保持静止,则(A )212q q = (B )212q q -=(C )214q q -= (D )2122q q -=9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R), 环上均匀带有正电,电荷为q ,则圆心O 处的场强大小E =__________,场强方向为___________ 。
大学物理习题集(下,含解答)
大学物理习题集(下册,含解答)单元一 简谐振动一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
(4)题(5)题6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大学物理(下册)习题与答案
大学物理练习册物理教研室遍热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示。
(B)不是平衡过程,但它能用P—V图上的一条曲线表示。
(C)不是平衡过程,它不能用P—V图上的一条曲线表示。
(D)是平衡过程,但它不能用P—V图上的一条曲线表示。
[ ]2、在下列各种说法中,哪些是正确的?[ ](1)热平衡就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在P—V图上可用一连续曲线表示。
(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程:[ ](1)用活塞缓慢的压缩绝热容器中的理想气体。
(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升。
(3)冰溶解为水。
(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动。
其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断:[ ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的?[ ](1)可逆过程一定是平衡过程。
(2)平衡过程一定是可逆的。
(3)不可逆过程一定是非平衡过程。
(4)非平衡过程一定是不可逆的。
(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器的气体,如果气体各处压强相等,或气体各处温度相同,则这两种情况下气体的状态 [ ](A )一定都是平衡态。
大学物理习题下
大学物理习题下文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]习 题 课(一)1-1 在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为 (A )aQ 034πε (B )aQ 032πε (C )aQ 06πε (D )aQ 012πε1-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A )302r U R (B )R U 0 (C )20r RU (D )rU1-3 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是(A )内表面均匀,外表面也均匀。
(B )内表面不均匀,外表面均匀。
(C )内表面均匀,外表面不均匀。
(D )内表面不均匀,外表面也不均匀。
1-4 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电量Q 、电场强度的大小E 和电场能量W 将发生如下变化(A )Q 增大,E 增大,W 增大。
(B )Q 减小,E 减小,W 减小。
(C )Q 增大,E 减小,W 增大。
(D )Q 增大,E 增大,W 减小。
1-5 一半径为R 的均匀带电圆盘,电荷面密度为 ,设无穷远处为电势零点,则圆盘中心O 点的电势U 0 = 。
1-6 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为+q 的点电荷,O 点有一电量为q 的点电荷,线段BA = R ,现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为 。
1-7 两个电容器1和2,串联后接上电源充电。
在电源保证连接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 ,电容器极板上的电量 。
(填增大、减小、不变)1-8 如图所示为一个均匀带电的球层,其电荷体密度为,球层内表面半径为R 1,外表面半径为R 2,设无穷远处为电势零点,求空腔内任一点的电势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 课(一)1-1 在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为 (A )aQ 034πε (B )a Q 032πε (C )a Q 06πε (D )a Q 012πε1-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A )302rU R (B )R U 0 (C )20r RU (D )r U 01-3 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是(A )内表面均匀,外表面也均匀。
(B )内表面不均匀,外表面均匀。
(C )内表面均匀,外表面不均匀。
(D )内表面不均匀,外表面也不均匀。
1-4 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电量Q 、电场强度的大小E 和电场能量W 将发生如下变化(A )Q 增大,E 增大,W 增大。
(B )Q 减小,E 减小,W 减小。
(C )Q 增大,E 减小,W 增大。
(D )Q 增大,E 增大,W 减小。
1-5 一半径为R 的均匀带电圆盘,电荷面密度为σ ,设无穷远处为电势零点,则圆盘中心O 点的电势U 0 = 。
1-6 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为+q 的点电荷,O 点有一电量为-q 的点电荷,线段BA = R ,现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所做的功为 。
1-7 两个电容器1和2,串联后接上电源充电。
在电源保证连接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 ,电容器极板上的电量 。
(填增大、减小、不变)1-8 如图所示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2,设无穷远处为电势零点,求空腔内任一点的电势。
1-9 如图所示,半径分别为R 1和R 2(R 2 > R 1)的两个同心导体薄球壳,分别带电量Q 1和Q 2,今将内球壳用细导线与远处半径为r 的导体球相连,导体球原来不带电,试求相连后导体球所带电量q 。
AB O习 题 课(二)2-1 无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感应强度大小等于(A )0 (B )R I πμ20 (C )RI πμ40 (D ))11(20πμ-RI(E ))11(20πμ+RI2-2 无限长直圆柱体,半径为R ,沿轴向均匀流有电流。
设圆柱体内( r <R )的磁感应强度为B i ,圆柱体外( r >R )的磁感应强度为B e ,则有(A )B i 、B e 均与r 成正比。
(B )B i 与r 成反比,B e 与r 成正比。
(C )B i 、B e 均与r 成反比。
(D )B i 与r 成正比,B e 与r 成反比。
2-3 在匀强磁场中有两个平面线圈,其面积A 1=2A 2, 通有电流I 1=2I 2,它们所受的最大磁力矩之比等于(A )1 (B )2 (C )4 (D )1/42-4 一细长载流直导线通有电流I ,导线上还带有线电荷密度为λ 的净电荷。
一带电粒子在距此导线r 处平行于导线以速度v 作直线运动。
设粒子只受电磁力作用,则当导线内电流变为2I时,粒子仍作直线运动的条件是(A )使导线上净电荷密度增大一倍; (B )将粒子电荷增加一倍; (C )加上平行于导线的外磁场; (D )将粒子速率加倍。
2-5 将一无限长载流直导线弯曲成图示的形状,已知电流为I ,圆弧半径为R ,θ =120o ,则圆心O 处磁感应强度B 的大小为 , B 的方向为 。
2-6 已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2∶1,圆线圈在其中心处产生的磁感应强度为 B 0,那么正方形线圈(边长为 a )在磁感强度为B 的均匀外磁场中所受最大磁力矩为______________________。
2-7 如图所示,一无限长直导线通有电流I = 10A ,在M 处折成夹角θ = 60°的折线,求角平分线上与导线的垂直距离均为 r = 0.10m 的P 点处的磁感应强度。
2-8 如图所示,载有电流I 1和I 2的长直导线ab 和cd 相互平行,相距为3r ,今有载有电流I 3的导线MN = r ,水平放置,且其两端M 、N 与I 1、I 2的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向。
d1I 2I习题课(三)3-1 自感为0.25H的线圈中,当电流在(1/16)s 内由2A均匀减小到零时,线圈中自感电动势的大小为:(A)7.8×10 –3 V (B)2.0V (C)8.0V (D)3.1×10 –2 V3-2 有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r1和r2。
管内充满均匀介质,其磁导率分别为μ1和μ 2。
设r1:r2 = 1 : 2,μ1:μ 2 = 2 : 1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L1:L2与磁能之比W m1:W m2分别为:(A)L1:L2 = 1 : 1,W m1:W m2= 1 : 1 (B)L1:L2 = 1 : 2,W m1:W m2= 1 : 1(C)L1:L2 = 1 : 2,W m1:W m2= 1 : 2 (D)L1:L2 = 2 : 1,W m1:W m2= 2 : 1d B/ d t变化,有一长度为l0的金属棒先后放在磁场的两个不同位置1(ab)和2(a' b')。
则金属棒在这两个位置时棒内的感应电动势的大小关系为:(A)ε 2=ε 1 ≠0 (B)ε 2 > ε 1(C)ε 2 < ε 1 (D)ε 2=ε 1 = 03-4 长为l的金属直导线在垂直于均匀磁场的平面内以角速度ω转动。
如果转轴在导线上的位置是在,整个导线上的电动势为最大,其值为__________。
如果转轴位置是在____________,整个导线上的电动势为最小,其值为____________。
3-5 一半径r =10cm的圆形闭合导线回路置于均匀磁场B(B = 0.80T)中,B与回路平面正交。
若圆形回路的半径从t = 0开始以恒定的速率d r / d t = -80cm/s收缩,则在这t = 0时刻,闭合回路中的感应电动势大小为______________;如要求感应电动势保持这一数值,则闭合回路面积应以d S/d t=的恒定速率收缩。
3-6 有两个长度相同,匝数相同,截面积不同的长直螺线管,通以相同大小的电流。
现在将小螺线管完全放入大螺线管里(两者轴线重合),且使两者产生的磁场方向一致,则小螺线管内的磁能密度是原来的倍;若使两螺线管产生的磁场方向相反,则小螺线管内的磁能密度为(忽略边缘效应)。
3-7 如图所示,长直导线AB中的电流I沿导线向上,并以d I/d t=2A/s的变化率均匀增长。
导线附近放一个与之共面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图(设a =10cm, b=20cm, c =5.0cm)所示。
求此线框中产生的感应电动势的大小和方向。
3-8载流长直导线与矩形回路ABCD共面,且导线平行于AB,如图。
求下列情况下ABCD中的感应电动势:(1)长直导线中电流恒定,t时刻ABCD以垂直于导线的速度v从图示初始位置远离导线匀速平移到某一位置时。
(2)长直导线中电流I=I0sinω t,ABCD不动。
(3)长直导线中电流I=I0sinω t,ABCD以垂直于导线的速度v远离导线匀速运动,初始位置也如图。
习题课(四)4-1一束波长为λ的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A)λ/ 4 (B)λ/ (4n) (C)λ/ 2 (D)λ/ (2n)4-2 两块平玻璃构成空气劈尖,左边为棱边,用单色平行光垂直入射,若上面的平玻璃慢慢地向上平移,则干涉条纹(A)向棱边方向平移,条纹间隔变小。
(B)向远离棱边方向平移,条纹间隔变小。
(C)向棱边方向平移,条纹间隔不变。
(D)向远离棱边方向平移,条纹间隔不变。
4-3在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为a = 4λ的单缝上,对应于衍射角为30o的方向,单缝处波阵面可分成的半波带数目为(A)2个(B)4个(C)6个(D)84-4某元素的特征光谱中含有波长分别为λ1=450nm和λ2=750nm的光谱线。
在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是(A)2,3,4,5……(B)2,5,8,11……(C)2,4,6,8……(D)3,6,9,12……4-5用波长为λ的单色光垂直照射折射率为n2的劈尖薄膜(如图),图中各部分折射率的关系是n1< n2< n3,观察反射光的干涉条纹,从劈尖角开始向右数第五条暗纹中心所对应的厚度e= 。
34-6一双缝干涉装置,在空气中观察时干涉条纹间距为1.0mm。
若整个装置放在水中,干涉条纹间距将为mm。
(设水的折射率为4/3)4-7 一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,且不考虑吸收,则转动前后透射光强度之比为。
4-8如图是一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径R=400cm。
用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm。
(1)求入射光的波长。
(2)设图中OA=1.00cm,求在半径为OA的范围内可观察到的明环数目。
4-9波长范围在450~650nm之间的复色平行光垂直照射在每厘米有5000条刻线的光栅上,屏幕放在透镜的焦平面处,屏上第二级光谱各色光在屏上所占范围的宽度为35.1cm,求透镜的焦距f 。
综合测试一、选择题:1. 有N个电量均为q的点电荷,以两种方式分布在相同半径的圆周上:一种是无规则地分布,另一种是均匀分布。
比较这两种情况下在过圆心O并垂直于圆平面的Z轴上任一点P的场强与电势,则有(A)场强相等,电势相等。
(B)场强不等,电势不等。
(C)场强分量E z相等,电势相等。
(D)场强分量E z相等,电势不等。
2. 一平行板电容器始终与一端电压一定的电源相联。
当电容器两极板间为真空时,电场强度为E0 ,,而当两极板间充满相对电容率为εr的各向同性均匀电介质时,电场强度为E,电位移电位移为D为D,则(A)E= E0/ε r,D= D0(B)E = E0,D =ε r D0(C)E= E0 /ε r,D= D0/ε r(D)E= E0,D= D03.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带的电量都相等,则它们的静电能之间的关系是(A)球体的静电能等于球面的静电能。