人教版高一数学必修一至必修四公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初高中衔接:

和平方:))((2

2

b a b a b a -+=- 和、差平方: 2

2

2

2)(b ab a b a +±=±

立方和、立方差:))((2

2

3

3

b ab a b a b a +±=± 和、差立方:2

2

3

3

3

33)(ab b a b a b a +±±=±

ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=-- ac bc ab c b a c b a 222)(2222--+++=-+;ac bc ab c b a c b a 222)(2222+--++=+-

韦达定理:设⎪⎩

⎪⎨⎧

=

-=+=++a c x x a b x x c bx x x 21212210ax 的两根,那么为和 必修一:

1

23412n x A x B A B A B A n A ∈∉⎧⎪

⎪⎨⎪⎪⎩

∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨

⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪

⎪⎪

⎧⎪

⎪⎪

⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎨⎪⎪⎪⎪

⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩

恒成立问题:

00)0(0ax ;00)0(0ax 22<<≠<++<>≠>++且△上成立的条件为在且△上恒成立的条件在a R a c bx a R a c bx

指数函数:

⎩⎨⎧<-≥===00n a a a a a a n a a n n n n ,,为偶数时:;当为奇数时:当;⎪⎪

⎪⎪

⎬⎫

==-m n m

n m n m

n

a a a a

1)10*>∈>m N n m a ,且、,( )00()()0()()0(Q r b a b a ab Q s r a a a Q s r a a a a r r r rs s r s r s r ∈>>=∈>=∈>=+;,;、,;、,

对勾函数单调区间公式:对勾函数基本形式:x

p

x y +

=,在),0()0,(+∞⋃-∞上

⎪⎩⎪⎨

⎧⋃-+∞⋃--∞)00(),(),(p p p p ,(),单调递减:

单调递增:

对数函数:

1

log =a a ,

1

log log =•a b b a ,

1log =a ,

)

10(log ≠>=a a N N a N a 且、,

)10(log 1

log ≠>=

b a b a a b b a 、且、,d

c

d c c d c d b

a a

b b a a b log log log log =-=-=

⎪⎭

⎬⎫

-=+=•N M N M

N M N M a a a a a a log log log log log )(log (a 、M 、N>0,且a ≠1)

1log ln ),0(log ln ==∴>=e e x x x e e

⎪⎭

⎬⎫==b m n b m n m a n a a n a m log log log log )1,0(≠∈>a R n m b a 且,、、, )1,0(log log log ≠>=c a c b a a

b b

c c a

、且、、(换底公式) 函数图像(必须熟) 表1 指数函数

()0,1x

y a a a =>≠ 对数数函数

()log 0,1a y x a a =>≠

定义域 x R ∈ ()0,x ∈+∞

值域

()0,y ∈+∞

y R ∈

图象

性质

过定点(0,1)

过定点(1,0)

减函数

增函数

减函数

增函数

(,0)(1,)(0,)(0,1)

x y x y ∈-∞∈+∞∈+∞∈时,时,

(,0)(0,1)(0,)(1,)

x y x y ∈-∞∈∈+∞∈+∞时,时,

(0,1)(0,)(1,)(,0)

x y x y ∈∈+∞∈+∞∈-∞时,时,

(0,1)(,0)(1,)(0,)

x y x y ∈∈-∞∈+∞∈+∞时,时,

a b <

a b >

a b <

a b >

表2

幂函数()y x R α

α=∈

相关文档
最新文档