自卸车液压油缸

自卸车液压油缸

自卸车液压油缸

自卸车即车厢配有自动倾卸装置的汽车,又称为翻斗车,由汽车底盘、液压举升机构、取力装置和货厢组成。在土木工程中,常同挖掘机、装载机、带式输送机等联合作业,构成装、运、卸生产线,进行土方、砂石、松散物料的装卸运输。由于装载车厢能自动倾翻一定角度卸料,大大节省卸料时间和劳动力,缩短运输周期,提高生产效率,降低运输成本,是常用的运输机械。

自卸车液压油缸主要用于自卸车的液压举升机构,从应用范围上可分为农用自卸、轻型自卸、重型自卸;从安装位置上可分为前顶缸、中顶缸、侧翻缸;从油缸的结构上可分为小型套筒式液压缸、活塞式液油缸、大型套筒式液压缸;从油缸的作用方式上可分为单作用缸和双作用缸。以上各种型号的油缸缸径从Ф63-Ф240,包括新开发的Ф175、Ф185、Ф200系列的轻量化前顶式自卸车油缸,全部采用先进加工工艺,选用优质钢材,进口密封件,结构合理,性能可靠,具有安装维护方便,举升吨位大,使用寿命长等特点,并提供全套液压配件,能满足各用户的不同需求,各种油缸均得到第三方监督认证,并得到了市场客户的广泛认可。

如何确定液压油缸规格型号液压油缸选型参考)

目录 程序 1:初选缸径/杆径 ★条件一 已知设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 及其工况需要液压缸对负载输力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力 F2)的大小(应考负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(输出力的作用方式为推力 F1 的工况: 初定缸径 D:由条件给定的系统油压 P(注意系统的流道压力损失),满足推力 F1 的要求对缸径 进行理论计算,参选标准缸径系列圆整后初定缸径 D; 初定杆径 d:由条件给定的输出力的作用方式为推力 F1 的工况,选择原则要求杆径在速比 1.46(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径 d 的选择

(2)输出力的作用方式为拉力 F2 的工况: 假定缸径 D,由条件给定的系统油压 P(注意系统的沿程压力损失),满足拉力 F2 的要求对杆径 d 进行理论计算,参选标准杆径系列后初定杆径 d,再对初定杆径 d 进行相关强度校验后确定。(3)输出力的作用方式为推力 F1 和拉力 F2 的工况: 参照以上(1)、(2)两种方式对缸径 D 和杆径 d 进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ★条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力 F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力 P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。 (3)参照“条件一”缸径/杆径的初选方法进行选择。 注:缸径 D、杆径 d 可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

液压缸尺寸计算2

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷F g=59036N(活塞杆在抬腿过程中始终受压) 2、惯性载荷F a=0(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力F m=(1?ηm)F,其中F是作用于活塞上的载 荷,且F=F w ,F w是外载荷,F w=F g+F a,其中ηm是液 ηm 压缸的机械效率,取ηm=0.95 综上可得:外载荷F w=59036N,密封阻力F m=2952N, 总载荷F=61988N。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为P=12MPa1 (由于总载荷为61988N大于50000N,故根据手册 选取工作压力为12MPa) 2、选择执行元件液压缸的背压力为P2=1MPa(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时: F=P1A1?P2A2

P 1----------液压缸工作腔压力(Pa ) P 2----------液压缸回油腔压力(Pa ) A 1----------无杆腔活塞有效作用面积,A 1=πD 24 ,D 为活塞直径(m ) A 2----------有杆腔活塞有效作用面积,A 2=π4(D 2?d 2),d 为活塞 杆直径 (m ) 选取d/D=0.7(由于工作压力为12MPa 大于5MPa ,故根据手册选取d/D=0.7) 综上可得:D=82.8mm ,根据手册可查得常用活塞杆直径,可取D=90mm ,d=60mm 。 校核活塞杆的强度,其中活塞杆的材料为45钢,故[σ]=100MPa 。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其压缩强度即可。σ= F 14πd 2=21.9MPa <[σ]=100MPa ,故满足强度要 求。 即d=60mm ,则D=90mm 。 由此计算得工作压力为: P 1=10.3MPa 根据所选取的活塞直径D=90mm ,可根据手册选的液压缸的外径为108mm ,即可得液压缸壁厚为δ =9mm 。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故[σ]=100MPa 。 由于该缸处于低压系统,故先按薄壁筒计算,σ=P y D 2δ,其中工 作压力P =P =12MPa ≤16MPa 1,可取P y =1.5P 1,则σ=90MPa <

液压油缸型号大全

条件一 给定设备或设备的液压系统控制回路提供的油压P,流量Q和液压缸的工作条件,液压缸对负载输出力的作用方式(推,拉,推和拉))和相应的力(推力F1,拉力F2,推力F1和拉力F2)是必需的(应考虑可能的负载附加阻力)。根据负载输出力的三种不同作用方式,缸径/杆径的主要选择方法如下: (1)输出力的作用方式为推力F1的工作状态: 初始气缸直径D:根据条件给出的系统油压P(注意系统流路的压力损失)满足推力F1的要求。对气缸直径D进行理论计算,参加标准气缸直径系列的四舍五入,然后初步确定气缸直径D; 活塞杆直径D的初始确定:在输出力的作用方式为推力F1的条件下,选择原理要求活塞杆直径在1.46?2之间(速比:活塞杆有效容积的比)。液压缸至活塞杆腔的有效面积),以及诸如液压缸的回油压力,活塞杆的压缩稳定性以及液压缸系列的相应速比标准之类的具体因素应为用于杆的选择直径D。

(2)输出力的作用方式为张力F2 假设气缸直径D,由条件给出的系统油压P(注意系统沿途的压力损失)满足张力F2的要求,则从理论上计算杆直径D。在选择标准杆直径系列之后,首先确定杆直径D,然后在相关强度验证之后确定初始确定的杆直径D。 (3)输出力的作用方式为推力F1和张力F2 按照上述两种方法(1)和(2)比较计算缸径D和杆径d,并根据液压缸缸径和杆径的标准系列进行选择。 条件二 设备或设备所需的液压缸的作用模式(推,拉,推和拉)以及相应的力(推力F1,拉力F2,推力F1和拉力F2)是已知的(可能的负载附加阻力应该被考虑到)。但是,由设备或设备的液压系统的控制电路提供的液压缸的油压P和流量Q等参数未知

探讨自卸车油缸回落的原因

探讨自卸车油缸回落的原因 摘要:自卸车属于专用汽车的一种,不仅能够自动卸货还可以进行车体复位。简单来说,自卸车内部具有举升机构,驱动该结构的正是自卸车自身所具有的动力,而举升结构的驱动又能够使自卸车实现倾卸和复位的功能。本文对自卸车油缸回落的问题进行了探讨。 关键词:自卸车;油缸回落;原因 自卸车在我国专用车领域具有良好的应用市场,它不仅货物装载量大,而且举升的力量也非常大,完全适合市场的需求。尤其是自卸车中的前举升自卸车,被广泛应用到建筑工程的施工中,特别是砂石的运输、建筑垃圾的运输、便于倾卸的各种物料的运输,都需要用到前举升自卸车。不过,自卸车在运用过程中也时常会有一些问题出现,比如当运输粘土和湿性灰渣等不易倾卸的材料时,自卸车的举升过程很容易发生油缸回落的状况。 1.自卸车油缸回落的现象 根据大量的用户反馈资料以及试验分析材料可以知道,自卸车在使用时很有可能会发生油缸回落的状况。而自卸车发生油缸回落状况主要有以下几种表现: (1)首先,自卸车油缸回落状况的发生并不是经常性或每次都存在的,只有在车辆流动性较差、装载重型货物的时候才会偶尔发生几次。如果是在不载货物的情况下进行自卸车举升的话,一般就不会出现油缸回落现象。 (2)另外,当车体装载的货物为不易进行倾卸的材料时,也会发生油缸回落状况。至于不易卸下的货物主要包括粘土、湿润的沙子、矿粉以及淤泥等。 (3)自卸车的油缸回落现象在发生时,其油缸举升情况一般是刚刚升至第三或第四节,且厢体在举升时的角度在25°~35°的范围内。这种时候,车厢内大部分所载货物也都会分布在车厢的靠前部分。 2.自卸车油缸回落引发的问题 自卸车内部有液压缸,液压缸具有活塞,而活塞在自卸车的升举中会经过车内的卸油槽。这一点表明,自卸车液压缸的活塞必须满足一定的要求,要具备良好的密封性能,并且在经过车内卸油槽的时候不会划伤密封件。但就目前的情况来看,一般的密封件在路过卸油槽时非常容易划坏,尤其是在高温的情况下,常常会导致车内液压缸发生泄漏,从而对液压缸造成损坏。所以现在被广泛使用的自卸车内,其液压缸的结构采用的是金属活塞环式密封圈,该类型的密封圈可以有效控制密封件被划坏的状况。虽然如此,但是在使用过程中仍然会存在一些问题。

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧?好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度(m/min) S :液压缸行程(m) t :时间(min) 液压油缸出力(kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时) p :压力(kgf /cm 2 ) 泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm ) 泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm) 管内压力降(kgf/cm 2 ) △ P=0.000698×USLQ/d 4 U :油的黏度(cst) S :油的比重

液压油缸型号大全

液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。 根据《2013-2017年中国液压油缸行业产销需求预测与转型升级分析报告》统计,2010年我国液压行业实现产值351.13亿元,同比增长33.29%。我国的液压工业经过近50年的发展,已具有相当生产实力和技术水平,可基本满足经济发展的一般需求,其中重大成套装备的配套率已达到60%以上。尤其是近10年来下游行业的快速成长,积极推动了液压行业的成长。油缸是我国液压产品中比较成熟的产品之一。行业保持多年快速增长,已经形成了较为成熟的供需链,具备了较大的市场规模。前瞻网数据显示,我国液压油缸行业销售收入由2005年的31亿元增长至2010年的近110亿元,5年复合增长率为28.83%。但是,和液压行业相同,油缸占全国工业总产值的比例仍较低,远低于国外发达国家水平。同时,我国具有市场需求旺盛、成本低等优势,预计未来将成为世界液压行业和油缸行业的重心。液压缸的结构形式多种多样,其分类方法也有多种:按运动方式可分为直线往复运动式和回转摆动式;按受液压力作用情况可分为单作用式、双作用式;按结构形式可分为活塞式、柱塞式、多级伸缩套筒式,

齿轮齿条式等;按安装形式可分为拉杆、耳环、底脚、铰轴等;按压力等级可分为16Mpa、25Mpa、31.5Mpa等。 先说它的最基本5个部件:缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置、排气装置。 每种缸的工作原理几乎都是相似的,拿一个手动千斤顶来说,千斤顶其实也就是个最简单的油缸了。通过手动增压秆(液压手动泵)使液压油经过一个单向阀进入油缸,这时进入油缸的液压油因为单项阀的原因不能再倒退回来,逼迫缸杆向上,然后在做工继续使液压油不断进入液压缸,就这样不断上上升,要降的时候就打开液压阀,使液压油回到油箱,这个是最简单的工作原理,其他的都是在这个基础上改进的,气缸跟油缸的原理基本相同。

自卸汽车液压缸与液压系统设计

本科毕业设计说明书 自卸汽车液压缸及液压系统设计 DUMP TRUCKS HYDRAULIC CYLINDER AND HYDRAULIC SYSTEM DESIGN 学院(部):机械工程学院 专业班级:机设07-7班 学生姓名:邬亚兰 指导教师:许贤良教授 2011 年06 月01 日

安徽理工大学 毕业设计(论文)任务书 专业、班级机设07-7姓名邬亚兰日期2011.06.01 1.设计题目自卸汽车液压缸及液压系统设计(一)2. 设计原始资料及要求:1)推举力=2T 2)行程S=800mm 3)速度u=9m/min 3. 说明书:一份 图纸:A1图纸一张 A2图纸6张 A4图纸2张 4.设计(论文)任务下达日期:2011年03月22日5.设计(论文)完成日期:2011年06月01日 6.设计(论文)各章节答疑人: 部分部分 部分部分 部分部分 7.指导教师许贤良教授 8.教研室负责人张立祥教授 9.院系负责人

自卸汽车液压缸及液压系统设计 摘要 自卸汽车是利用发动机动力驱动液压举升机构,将货箱倾斜一定角度从而达到自动卸货的目的,并依靠货箱自重使其复位。因此,液压举升机构是自卸汽车的重要工作系统之一,其结构形式、性能好坏直接影响自卸汽车的使用性能和安全性能。本论文首先对自卸式汽车进行了说明,同时根据设计需要对液压系统进行了简要的阐述,并设计液压举升机构及液压系统。液压缸是一种配置灵活、设计制造比较容易而应用广泛的液压执行元件。尽管液压缸有系列化标准的产品和专用系列产品,但由于用户对液压机械的功能要求千差万别,因而非标准液压元件的设计是不可避免的。本次毕业设计的主要内容集中于自卸汽车液压缸及液压系统的设计,介绍了液压设计的前期准备工作:设计的依据、设计的一般原则和设计步骤。 关键词:自卸汽车,液压缸设计,液压系统设计

液压油缸标准尺寸表

一、液压油缸定义 液压油缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。 二、液压油缸型号尺寸有: 1、常用的标准有Φ140/100-800其含义是缸(直)径(内径)为140,杆径为100,行程为800。一般注明缸径,杆径,行程,连接方式,安装距离,工称压力,生产时间,出厂编号等。 2、180/150/125/100427019MPa50-75吨;缸筒材料采用45#或强度相当的材料,安全余量大;密封圈采用日本华尔卡产品;零部件采用数控机床加工,精度易于得到有效保证,生产质量一致性好。 3、三级、四级液压缸;额定工作压力19MPa;行程3880~6200mm;最大伸出套筒直径为195mm;油缸推力20-56吨,适用车载40-85吨。采用高端的三维设计及仿真软件进行油缸的设计,校核油缸关键部位的强度,进行液压系统及流场的仿真。 三、液压油缸型主要尺寸的确定 (1)缸筒直径的确定

根据公式:F=P×A,由活塞所需要的推力F和工作压力P可求得活塞的有效面积A,进一步根据油缸的不同结构形式,计算缸筒的直径D。 (2)活塞杆尺寸的选取 活塞杆的直径d,按工作时的受力情况来确定。根据表4-2来确定。 (3)油缸长度的确定 油缸筒长度=活塞行程+活塞长度+活塞导向长度+活塞杆密封及导向 长度+其它长度。活塞长度=(0.6—1)D;活塞杆导向长度=(0.6—1.5)d。其它长度指一些特殊的需要长度,如:两端的缓冲装置长度等。某些单活塞杆油缸油时提出最小导向程度的要求,如:H≥L/20+D/2。

液压油缸型号大全

液压油缸型号大全: PY497——油缸型号 100——缸径 70——杆径 1801——行程 液压油缸: 液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。 液压缸是液压传动系统中的执行元件,它是把液压能转换成机械能的能量转换装置。液压马达实现的是连续回转运动,而液压缸实现的则是往复运动。液压缸的结构型式有活塞缸、柱塞缸、摆动缸三大类,活塞缸和柱塞缸实现往复直线运动,输出速度和推力,摆动缸实现往复摆动,输出角速度(转速)和转矩。液压缸除了单个地使用外,还可以两个或多个地组合起来或和其他机构组合起来使用。以完成特殊的功用。液压缸结构简单,工作可靠,在机床的液压系统中得到了广泛的应用。 液压缸的结构形式多种多样,其分类方法也有多种:按运动方式

可分为直线往复运动式和回转摆动式;按受液压力作用情况可分为单作用式、双作用式;按结构形式可分为活塞式、柱塞式、多级伸缩套筒式,齿轮齿条式等;按安装形式可分为拉杆、耳环、底脚、铰轴等;按压力等级可分为16Mpa、25Mpa、31.5Mpa等。 活塞式 单活塞杆液压缸只有一端有活塞杆。如图所示是一种单活塞液压缸。其两端进出口油口A和B都可通压力油或回油,以实现双向运动,故称为双作用缸。 活塞仅能单向运动,其反方向运动需由外力来完成。但其行程一般较活塞式液压缸大。 活塞式液压缸可分为单杆式和双杆式两种结构,其固定方式由缸体固定和活塞杆固定两种,按液压力的作用情况有单作用式和双作用式。在单作用式液压缸中,压力油只供液压缸的一腔,靠液压力使缸实现单方向运动,反方向运动则靠外力(如弹簧力、自重或外部载荷等)来实现;而双作用液压缸活塞两个方向的运动则通过两腔交替进油,靠液压力的作用来完成。 如图所示为单杆双作用活塞式液压缸示意图。它只在活塞的一侧设有活塞杆,因而两腔的有效作用面积不同。在供油量相同时,不同腔进油,活塞的运动速度不同;在需克服的负载力相同时,不同腔进油,所需要的供油压力不同,或者说在系统压力调定后,环卫垃圾车液压缸两个方向运动所能克服的负载力不同。

液压油缸标准尺寸表

1 摘要 液压缸一般来说是标准件,但有时也需要自行设计。液压缸的设计是在对所设计的液压系统进行工况分析、负载计算和确定了其工作压力的基础上进行的。本文主要介绍液压缸主要尺寸的计算及强度,刚度的验算方法。 关键词:液压缸,缸径,活塞杆。 2 确定液压缸结构类型和各部分的连接形式 在确定液压缸结构类型和各部分连接形式时,应综合考虑主机的用途、工作条件、液压缸负载的性质和运动要求。具体如下: ①确定液压缸的结构类型、安装方式。 ②确定缸体和缸盖的连接形式。 ③确定活塞和活塞杆的连接形式。 ④确定缓冲装置形式、密封和防尘结构。 3 主要零件的材料和技术要求 ①缸体。缸体常用材料为20、35、45号无缝钢管制造。35、45号钢用的较多,并在粗加工后调质。 ②活塞。活塞材料常用耐磨铸铁,在工作压力及冲击载荷较大时采用钢材。为了避免活塞与缸体直接接触,在活塞上套有聚四氟乙烯或尼

龙支承环,以防止活塞划伤缸体表面。 ③活塞杆。有实心和空心两种。用35、45号钢制造。为了提高活塞杆的耐磨和防锈性能及抗碰撞能力,常在活塞杆表面高频淬火或火焰淬火(深度0.5~1mm),然后再镀铬(0.03~0.05mm)抛光。 ④导向套。导向套应具有良好的耐磨性能和一定的机械性能,材质不能太硬。一般用铸铁、黄铜、青铜、尼龙等耐磨材料制成。 4 设计输入 本文以一小型液压机的工作主缸研究对象,简述了其主要参数、尺寸的确定及强度、稳定性的校核方法过程。液压机主机概况: ①液压机公称力400kN; ②液压系统最大工作压力20Mpa; ③滑块行程400MM; ④压头工进速度10mm/s; ⑤压头快进速度40mm/s。 法国工程师雷诺看到热气球上的钢丝绳规格繁多,他就想了一个办法,将10开5次方,得到一个数1.6,然后辗转相乘,得出5个优先数如下:1.0、1.6、2.5、4.0、6.3 这是一个等比数列,后数为前数的1.6倍,那么10以下的钢丝绳一下子只有5种,10到100的钢丝绳也只有5种,即10, 16, 25, 40, 63。但是这样分法太稀疏,雷先生就再接再厉,将10开10次方,得出R10优先数系如下:1.0、1.25、1.6、2.0、2.5、3.15、4.0、5.0、

液压油缸标准尺寸表

液压油缸一般指液压缸,液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置与排气装置组成。缓冲装置与排气装置视具体应用场合而定,其他装置则必不可少。 液压油缸主要应用于机械中,是工程机械最主要部件,主要是为机械提供动力的重要核心元件。 液压油缸型号的选择,主要是看液压油缸内径,以及其使用压力这两个。如果,其推力是为4吨,其使用压力是为8MPa,那么,其型号可以表示为80*40*300-8MPa。如果,油缸内径为60,使用压力为16MPa,那么,型号表示是为60*35*300-16MPa。 常用的标准有Φ140/100-800其含义是缸(直)径(内径)为140,杆径为100,行程为800。 液压油缸:根据《2013-2017年中国液压油缸行业产销需求预测与转型升级分析报告》统计,2010年我国液压行业实现产值351.13亿元,同比增长33.29%。我国的液压工业经过近50年的发展,已具有相当生产实力和技术水平,可基本满足经济发展的一般需求,其中重大成套装备的配套率已达到60%以上。尤其是近10年来下游行业的快速成长,积极推动了液压行业的成长。油缸是我国液压产品中比较成熟的产品之一。行业保持多年快速增长,已经形成了较为成熟

的供需链,具备了较大的市场规模。前瞻网数据显示,我国液压油缸行业销售收入由2005年的31亿元增长至2010年的近110亿元,5年复合增长率为28.83%。但是,和液压行业相同,油缸占全国工业总产值的比例仍较低,远低于国外发达国家水平。同时,我国具有市场需求旺盛、成本低等优势,预计未来将成为世界液压行业和油缸行业的重心。

液压缸尺寸计算

①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的 载荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册选 取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时: ----------液压缸工作腔压力(Pa)

----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=) 综上可得:D=,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故。 由于该缸处于低压系统,故先按薄壁筒计算,,其中工作压力,可取,则

液压油缸型号大全及选型流程参考

液压缸选型流程: 程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例) ※条件一 已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)输出力的作用方式为推力F1的工况: 初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D; 初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比1.46~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。 (2)输出力的作用方式为拉力F2的工况: 假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。 (3)输出力的作用方式为推力F1和拉力F2的工况: 参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ※条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。

如何确定液压油缸规格型号液压油缸选型参考

如何确定液压油缸规格型 号液压油缸选型参考 This model paper was revised by the Standardization Office on December 10, 2020

目录 程序 1:初选缸径/杆径 ★条件一 已知设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力 F2)的大小 (应考虑负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方 法如下:(1)输出力的作用方式为推力 F1 的工况: 初定缸径 D:由条件给定的系统油压 P(注意系统的流道压力损失),满足推力 F1 的要求对缸 径 D 进行理论计算,参选标准缸径系列圆整后初定缸径 D; 初定杆径 d:由条件给定的输出力的作用方式为推力 F1 的工况,选择原则要求杆径在速比1.46~2 (速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径 d 的选择。

(2)输出力的作用方式为拉力 F2 的工况: 假定缸径 D,由条件给定的系统油压 P(注意系统的沿程压力损失),满足拉力 F2 的要求对杆径 d 进行理论计算,参选标准杆径系列后初定杆径 d,再对初定杆径 d 进行相关强度校验后确定。(3)输出力的作用方式为推力 F1 和拉力 F2 的工况: 参照以上(1)、(2)两种方式对缸径 D 和杆径 d 进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ★条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力 F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力 P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。 (3)参照“条件一”缸径/杆径的初选方法进行选择。 注:缸径 D、杆径 d 可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

液压泵液压缸液压马达的型号及参数以及

液压、气动 一、液压传动 1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。 2、组成原件 1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵 2 、调节、控制压力能的液压控制阀 3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达) 4 、传递压力能和液体本身调整所必需的液压辅件 液压系统的形式 3、部分元件规格及参数 液压泵是液压系统的动力元件,是靠发动机或电动机驱动,从液压油箱中吸入油液,形成压力油排出,送到执行元件的一种元件。 衡力,磨损严重,泄漏较大。 叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。

一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,但应用不如上述3种普遍。 适用工况和应用举例

【KCB/2CY型齿轮油泵】工作原理: 2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液

体并经泵的排出口排出泵外。 KCB/2Y型齿轮油泵型号参数和安装尺寸如下:【KCB/2CY型齿轮油泵】性能参数: 【KCB/2CY型齿轮油泵】安装尺寸图: KCB18.3~83.3与2CY1.1~5安装尺寸图

液压油缸尺寸表

液压油缸介绍以及安装尺寸标准 HS01·210L系列拉杆液压缸 HS 01?210L 【系列拉杆液压缸】 ◆用途与特征 HS 01?210L系列拉杆式液压缸是一种双作用单杆活塞式液压缸,其与同构、同压力等级液压缸相比更具有结构紧凑、重量轻。安装型式多样且容易变换,易装易拆,配件及维修方便。其广泛用于塑料、冶金、化工、矿山、行走机械等行业。 ◆型号说明 ◆技术指标 额定压力MPa 21MPa连续使用的最高压力使用温度—5℃ —+8℃最大允许压力MPa 27MPa(无杆腔)、25MPa(有杆腔) 允许最大速度400mm/s 耐压力MPa 31.5MPa 效率>90% 最低启动压力MPa 0.3MPa 工作介质※采用时请注明 矿物油、水乙二醇、※磷酸脂、高水酯等 ◆ SD(基本型) 代号缸径A BB D DD E EE TG F H J K KK L MM P W Y FA型其它 Φ40 30 17 40 M12×1.570 ZG3/8 50 13 8 10 47 32 M20×1.564 22 17 30 156 Φ50 35 18 46 M14×1.585 ZG1/2 62 15 8 13 52 37 M24×1.568 28 19 30 172 Φ63 45 20 55 M16×1.5 100 ZG1/2 74 18 6 12 57 37 M30×1.575 35 19 35 187 Φ80 60 25 65 M20×1.5 125 ZG3/4 92 24 10 10 67 42 M39×1.585 45 22 35 218 Φ100 75 29 80 M24×1.5 160 ZG3/4 120 26 7 12 67 42 M48×1.595 55 22 40 230 Φ125 95 35 95 M30×1.5 190 ZG1 140 33 6 10 77 52 M64×2105 70 27 45 267 Φ140 110 38 105 M33×1.5 215 ZG1 160 36 6 11 77 52 M72×2110 80 27 50 275 Φ160 120 42 120 M36×1.5 240 ZG1 180 41 5 10 80 51 M80×2132 90 27 55 304 ◆ SD(双出杆基本型)

液压油缸型号大全分类介绍

液压油缸型号大全分类介绍 液压油缸型号大全其实主要从分类方面去介绍,型号多种多样,但万变不离其宗。液压缸是将液压能转变为机械能的、做直线往复运动(或摆动运动)的液压执行件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。下面小编介绍下液压油缸型号大全。 液压缸的结构形式多种多样,其分类方法也有多种:按运动方式可分为直线往复运动式和回转摆动式;按受液压力作用情况可分为单作用式、双作用式;按结构形式可分为活塞式、柱塞式、多级伸缩套筒式,齿轮齿条式等;按安装形式可分为拉杆、耳环、底脚、铰轴等;按压力等级可分为16Mpa、25Mpa、31.5Mpa 等。 活塞式 单活塞杆液压缸只有一端有活塞杆。其两端进出口油口A和B都可通压力油或回油,以实现双向运动,故称为双作用缸。 活塞仅能单向运动,其反方向运动需由外力来完成。但其行程一般较活塞式液压缸大。 活塞式液压缸可分为单杆式和双杆式两种结构,其固定方式由缸体固定和活塞杆固定两种,按液压力的作用情况有单作用式和双作用式。在单作用式液压缸中,压力油只供液压缸的一腔,靠液压力使缸实现单方向运动,反方向运动则靠外力(如弹簧力、自重或外部载荷等)来实现;而双作用液压缸活塞两个方向的运动则通过两腔交替进油,靠液压力的作用来完成。

它只在活塞的一侧设有活塞杆,因而两腔的有效作用面积不同。在供油量相同时,不同腔进油,活塞的运动速度不同;在需克服的负载力相同时,不同腔进油,所需要的供油压力不同,或者说在系统压力调定后,环卫垃圾车液压缸两个方向运动所能克服的负载力不同。 柱塞式 (1)柱塞式液压缸是一种单作用式液压缸,靠液压力只能实现一个方向的运动,柱塞回程要靠其它外力或柱塞的自重; (2)柱塞只靠缸套支承而不与缸套接触,这样缸套极易加工,故适于做长行程液压缸; (3)工作时柱塞总受压,因而它必须有足够的刚度; (4)柱塞重量往往较大,水平放置时容易因自重而下垂,造成密封件和导向单边磨损,故其垂直使用更有利。 伸缩式 伸缩式液压缸具有二级或多级活塞,伸缩式液压缸中活塞伸出的顺序式从大到小,而空载缩回的顺序则一般是从小到大。伸缩缸可实现较长的行程,而缩回时长度较短,结构较为紧凑。此种液压缸常用于工程机械和农业机械上。有多个一次运动的活塞,各活塞逐次运动时,其输出速度和输出力均是变化的。

液压缸主要尺寸的确定

液压缸主要尺寸的确定 液压缸就是液压传动的执行元件,它与主机工作机构有直接的联系,对于不同的机种与机构,液压缸具有不同的用途与工作要求。因此,在设计液压缸之前,必须对整个液压系统进行工况分析,编制负载图,选定系统的工作压力(详见第九章),然后根据使用要求选择结构类型,按负载情况、运动要求、最大行程等确定其主要工作尺寸,进行强度、稳定性与缓冲验算,最后再进行结构设计。 1、液压缸的设计内容与步骤 (1)选择液压缸的类型与各部分结构形式。 (2)确定液压缸的工作参数与结构尺寸。 (3)结构强度、刚度的计算与校核。 (4)导向、密封、防尘、排气与缓冲等装置的设计。 (5)绘制装配图、零件图、编写设计说明书。 下面只着重介绍几项设计工作。 2、计算液压缸的结构尺寸液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d与缸筒长度L。 (1)缸筒内径D。液压缸的缸筒内径D就是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348—80标准中选取最近的标准值作为所设计的缸筒内径。 根据负载与工作压力的大小确定D: ①以无杆腔作工作腔时? (4-32) ②以有杆腔作工作腔时? (4-33)

式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax为最大作用负载。 (2)活塞杆外径d。活塞杆外径d通常先从满足速度或速度比的要求来选择,然后再校核其结构强度与稳定性。若速度比为λv,则该处应有一个带根号的式子: (4-34) 也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0、3~0、5D。 受压力作用时: pI<5MPa时,d=0、5~0、55D 5MPa<pI<7MPa时,d=0、6~0、7D pI>7MPa时,d=0、7D (3)缸筒长度L。缸筒长度L由最大工作行程长度加上各种结构需要来确定,即: L=l+B+A+M+C 式中:l为活塞的最大工作行程;B为活塞宽度,一般为(0、6-1)D;A为活塞杆导向长度,取(0、6-1、5)D;M为活塞杆密封长度,由密封方式定;C为其她长度。 一般缸筒的长度最好不超过内径的20倍。 另外,液压缸的结构尺寸还有最小导向长度H。 (4)最小导向长度的确定。 当活塞杆全部外伸时,从活塞支承面中点到导向套滑动面中点的距离称为最小导向长度H(如图4-19所示)。如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一最小导向长度。 图4-19油缸的导向长度

如何确定液压油缸规格型号(液压油缸选型参考)

如何确定液压油缸规格型号(液压油缸选型参考)

目录 程序 1:初选缸径/杆径 ★条件一 已知设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 及其工况需要液压缸对负载输出 力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力 F2、推力 F1 和拉力 F2)的大小(应考虑 负载可能存在的额外阻力)。针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)输出力的作用方式为推力 F1 的工况: 初定缸径 D:由条件给定的系统油压 P(注意系统的流道压力损失),满足推力 F1 的要求对缸径 D 进行理论计算,参选标准缸径系列圆整后初定缸径 D; 初定杆径 d:由条件给定的输出力的作用方式为推力 F1 的工况,选择原则要求杆径在速比 1.46~2 (速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径 d 的选择。

(2)输出力的作用方式为拉力 F2 的工况: 假定缸径 D,由条件给定的系统油压 P(注意系统的沿程压力损失),满足拉力 F2 的要求对杆径 d 进行理论计算,参选标准杆径系列后初定杆径 d,再对初定杆径 d 进行相关强度校验后确定。(3)输出力的作用方式为推力 F1 和拉力 F2 的工况: 参照以上(1)、(2)两种方式对缸径 D 和杆径 d 进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。 ★条件二 已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力 F1、拉力F2、推力 F1 和拉力 F2)大小(应考虑负载可能存在的额外阻力)。但其设备或装置液压系统控制回路供给液压缸的油压 P、流量 Q 等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下: (1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力 P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。 (2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。 (3)参照“条件一”缸径/杆径的初选方法进行选择。 注:缸径 D、杆径 d 可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。 不同压力等级下各种缸径/杆径对应理论推(拉)力表

标准液压缸参数

液压缸 一. Y HG型冶金设备标准液压缸: 1.压力:本标准缸分为E、G两种压力级。E级适用于>6.3-16MPa压力范围的液压缸(简称E级缸)。G级适用于>16-25MPa压力范围的液压缸(简称G 级缸)。 2.密封:E级封缸采用结构简单,耐磨性好的Yx型密封圈。G级缸采用耐高压,密封可靠的V型组合密封圈。 3.防尘:本液压缸均采用聚胺脂或丁腈橡胶无骨架式防尘圈。 4.适用介质:液压油、机械油、乳化液。不适用于磷酸脂。 5.适用温度:-40℃~+80℃,不适用于低于-40℃低温或超过+80℃高温。6.结构:本标准缸备有17种缸径(40、50、63、80、90、100、110、125、140、、150、160、180、200、220、250、280、320)按两种速比(1.46、2)组成34种规格。分成带间隙缓冲和不带缓冲两种结构,与上述34种规格组成68个品种,便于用户任意选用。 缸头、缸尾均设有单向放气阀,既可作带间隙缓冲液压缸的快速启动用,又可作放气用。 杆部防尘密封采用可换式结构,便于现场维修。 活塞杆镀保护性硬铬,具有防尘、防锈、防腐、耐磨等特性。 缸径≤220mm的液压缸油口采用公制细牙螺纹。 缸径≥250mm的液压缸油口采用对开式法兰。 7.安装连接:符合国际标准中系列液压缸安装接尺寸。不同缸径均有基本型,

前、后长方法兰,前、后圆法兰,前、中、后销轴,头部单耳环,轴向、径向脚架共13种安装型式。(详见型号说明及表5-17)除轴向脚架型外,安装连接尺寸符合标准。杆端螺纹亦符合BG2350-80。 二. 选用订货须知 1.型号说明中凡标有▲号的目前暂按非标处理。 2.压力分级E16MPa可适用6.3-16MPa的工作压力。选型时压力在6.3-16MPa 之间使用者只需填写E即可。 3.安装连接形式除中间销轴需在型号上注明1的具体尺寸外,其余按表上符号填写即可,外连按尺寸请参考表5-17。 4.如需要间隙缓冲请填写H符号,如不填H符号则按无缓冲交货。 5.行程请按行程系列表4中的分档填写。 6.对液压缸的工作介质、适用温度、试验、外表涂漆、包装等特殊要求者务请注明,未注明特殊要求者一律按标准交货。 7.杆端耳环由用户自定。 三. 型号说明:

相关文档
最新文档