最新初中数学二次根式难题汇编及答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.在下列算式中:① ;② ;③ ;④ ,其中正确的是()
A.①③B.②④C.③④D.①④
【答案】B
【解析】
【分析】
根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.
【详解】
解: 与 不能合并,故①错误;
,故②正确;
,故③错误;
,故④正确;
故选:B.
【点睛】
本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.
【详解】
由题意得:a﹣1≥0,
解得:a≥1,
故选:B.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
17.下列各式中,运算正确的是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据 =|a|, (a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.
∴ - <k< + ,
∴3<k<4,
-|2k-5|,
= -|2k-5|,
=6-k-(2k-5),
=-3k+11,
=11-3k,
故选D.
【点睛】
本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.
13.如果代数式 有意义,那么直角坐标系中P(m,n)的位置在()
11.下列二次根式中的最简二次根式是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据最简二次根式的概念判断即可.
【详解】
A、 是最简二次根式;
B、 ,不是最简二次根式;
C、 ,不是最简二次根式;
D、 ,不是最简二次根式;
故选:A.
【点睛】
此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
【详解】
A、 ,故原题计算错误;
B、 =4,故原题计算正确;
C、 ,故原题计算错误;
D、2和 不能合并,故原题计算错误;
故选B.
【点睛】
此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.
18.下列计算正确的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据二次根式的加减乘除运算法则逐一计算可得.
8.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简 的结果为()
A.2a+bB.-2a+bC.bD.2a-b
【答案】C
【解析】
试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:
∵由数轴可知,b>0>a,且|a|>|b|,
∴ .
故选C.
考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.
14.使代数式 有意义的a的取值范围为
A. B. C. D.不存在
【答案】C
【解析】
试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0.
所以a=0.故选C.
15.估算 在哪两个整数之间()
A.4和5B.5和6C.6和7D.7和8
【答案】C
【解析】
【分析】
由 ,先估算 ,即可解答.
故选:C
【点睛】
此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.
3.把 根号外的因式移到根号内的结果为().
A. B. C. D.
【答案】C
【解析】
【分析】
先判断出a-b的符号,然后解答即可.
【详解】
∵被开方数 ,分母 ,∴ ,∴ ,∴原式 .
故选C.
【点睛】
本题考查了二次根式的性质与化简: |a|.也考查了二次根式的成立的条件以及二次根式的乘法.
5.式子 在实数范围内有意义,则x的取值范围是( )
A.x<1B.x≥1C.x≤﹣1D.x<﹣1
【答案】B
【解析】
【分析】
根据二次根式有意义的条件判断即可.
【详解】
解:由题意得,x﹣1≥0,
解得,x≥1,
故选:B.
【点睛】
本题主要考查二次根式有意义的条件,熟悉掌握是关键.
6.若式子 在实数范围内有意义,则x的取值范围是()
【详解】
解:∵ , ,
∴ ,即介于6和7,
故选:C.
【点睛】
本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 .
16.若二次根式 在实数范围内有意义,则a的取值范围是( )
A.a>1B.a≥1C.a=1D.a≤1
【答案】B
【解析】
【分析】
根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.
A. B. C. D.
【答案】A
【解析】
试题解析:由 ,得
,
解得 .
2xy=2×2.5×(-3)=-15,
故选A.
9.如果 ,那么给出下列各式① ;② ③ ;正确的是()
A.①②B.②③C.①③D.①②③
【答案】B
【解析】
【分析】
由题意得 , ,然后根据二次根式的性质和乘法法则逐个判断即可.
【详解】
解:∵ , ,∴ ຫໍສະໝຸດ ,∴ 和 无意义,故①错误;
,故②正确;
,故③正确;
故选:B.
【点睛】
本题考查了二次根式的性质和乘法运算,熟练掌握运算法则是解题的关键.
7.下列计算结果正确的是()
A. =3
B. =±6
C. + =
D.3+2 =5
【答案】A
【解析】
【分析】
原式各项计算得到结果,即可做出判断.
【详解】
A、原式=|-3|=3,正确;
B、原式=6,错误;
C、原式不能合并,错误;
D、原式不能合并,错误.
故选A.
【点睛】
考查了实数的运算,熟练掌握运算法则是解本题的关键.
12.如果一个三角形的三边长分别为 、k、 ,则化简 ﹣|2k﹣5|的结果是()
A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k
【答案】D
【解析】
【分析】
求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.
【详解】
∵一个三角形的三边长分别为 、k、 ,
【详解】
A、 与 不是同类二次根式,不能合并,此选项错误;
B、 = = = ,此选项正确;
C、 =(5 - )÷ =5- ,此选项错误;
D、 = ,此选项错误;
故选B
【点睛】
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.
19.若 ,则化简二次根式 的正确结果是()
A. B. C. D.
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】C
【解析】
【分析】
先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.
【详解】
依题意的-m≥0,mn>0,解得m<0,n<0,
故P(m,n)的位置在第三象限,
故选C.
【点睛】
此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.
故选:A.
【点睛】
本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.
2.下列式子正确的是()
A. B. =- C. D.
【答案】C
【解析】
【分析】
根据算术平方根、立方根的定义和性质求解即可.
【详解】
解:A. ,故A错误.
B. = ,故B错误.
C. ,故C正确.
D. ,故D错误.
最新初中数学二次根式难题汇编及答案
一、选择题
1.如图,数轴上的点可近似表示(4 ) 的值是()
A.点AB.点BC.点CD.点D
【答案】A
【解析】
【分析】
先化简原式得4 ,再对 进行估算,确定 在哪两个相邻的整数之间,继而确定4 在哪两个相邻的整数之间即可.
【详解】
原式=4 ,
由于2 3,
∴1<4 2.
A.x≥ B.x> C.x≤ D.x<
【答案】B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
∵ 是被开方数,∴ ,
又∵分母不能为零,
∴ ,解得,x> ;
故答案为:B.
【点睛】
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.
10.已知 是正偶数,则实数 的最大值为( )
A. B. C. D.
【答案】C
【解析】
【分析】
如果实数n取最大值,那么12-n有最小值,又知 是正偶数,而最小的正偶数是2,则 =2,从而得出结果.
【详解】
解:当 等于最小的正偶数2时,
n取最大值,则n=8,
故选:C
【点睛】
本题考查二次根式的有关知识,解题的关键是理解“ 是正偶数”的含义.
【答案】D
【解析】
【分析】
首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;
【详解】
解:∵二次根式 有意义,
∴-a3b≥0
∵a>b,
∴a>0,b<0
∴ ,
故选:D.
【点睛】
此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.
20.已知 ,则 的值为()
A.①③B.②④C.③④D.①④
【答案】B
【解析】
【分析】
根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.
【详解】
解: 与 不能合并,故①错误;
,故②正确;
,故③错误;
,故④正确;
故选:B.
【点睛】
本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.
【详解】
由题意得:a﹣1≥0,
解得:a≥1,
故选:B.
【点睛】
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
17.下列各式中,运算正确的是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据 =|a|, (a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.
∴ - <k< + ,
∴3<k<4,
-|2k-5|,
= -|2k-5|,
=6-k-(2k-5),
=-3k+11,
=11-3k,
故选D.
【点睛】
本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.
13.如果代数式 有意义,那么直角坐标系中P(m,n)的位置在()
11.下列二次根式中的最简二次根式是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据最简二次根式的概念判断即可.
【详解】
A、 是最简二次根式;
B、 ,不是最简二次根式;
C、 ,不是最简二次根式;
D、 ,不是最简二次根式;
故选:A.
【点睛】
此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
【详解】
A、 ,故原题计算错误;
B、 =4,故原题计算正确;
C、 ,故原题计算错误;
D、2和 不能合并,故原题计算错误;
故选B.
【点睛】
此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.
18.下列计算正确的是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据二次根式的加减乘除运算法则逐一计算可得.
8.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简 的结果为()
A.2a+bB.-2a+bC.bD.2a-b
【答案】C
【解析】
试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:
∵由数轴可知,b>0>a,且|a|>|b|,
∴ .
故选C.
考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.
14.使代数式 有意义的a的取值范围为
A. B. C. D.不存在
【答案】C
【解析】
试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0.
所以a=0.故选C.
15.估算 在哪两个整数之间()
A.4和5B.5和6C.6和7D.7和8
【答案】C
【解析】
【分析】
由 ,先估算 ,即可解答.
故选:C
【点睛】
此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.
3.把 根号外的因式移到根号内的结果为().
A. B. C. D.
【答案】C
【解析】
【分析】
先判断出a-b的符号,然后解答即可.
【详解】
∵被开方数 ,分母 ,∴ ,∴ ,∴原式 .
故选C.
【点睛】
本题考查了二次根式的性质与化简: |a|.也考查了二次根式的成立的条件以及二次根式的乘法.
5.式子 在实数范围内有意义,则x的取值范围是( )
A.x<1B.x≥1C.x≤﹣1D.x<﹣1
【答案】B
【解析】
【分析】
根据二次根式有意义的条件判断即可.
【详解】
解:由题意得,x﹣1≥0,
解得,x≥1,
故选:B.
【点睛】
本题主要考查二次根式有意义的条件,熟悉掌握是关键.
6.若式子 在实数范围内有意义,则x的取值范围是()
【详解】
解:∵ , ,
∴ ,即介于6和7,
故选:C.
【点睛】
本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 .
16.若二次根式 在实数范围内有意义,则a的取值范围是( )
A.a>1B.a≥1C.a=1D.a≤1
【答案】B
【解析】
【分析】
根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.
A. B. C. D.
【答案】A
【解析】
试题解析:由 ,得
,
解得 .
2xy=2×2.5×(-3)=-15,
故选A.
9.如果 ,那么给出下列各式① ;② ③ ;正确的是()
A.①②B.②③C.①③D.①②③
【答案】B
【解析】
【分析】
由题意得 , ,然后根据二次根式的性质和乘法法则逐个判断即可.
【详解】
解:∵ , ,∴ ຫໍສະໝຸດ ,∴ 和 无意义,故①错误;
,故②正确;
,故③正确;
故选:B.
【点睛】
本题考查了二次根式的性质和乘法运算,熟练掌握运算法则是解题的关键.
7.下列计算结果正确的是()
A. =3
B. =±6
C. + =
D.3+2 =5
【答案】A
【解析】
【分析】
原式各项计算得到结果,即可做出判断.
【详解】
A、原式=|-3|=3,正确;
B、原式=6,错误;
C、原式不能合并,错误;
D、原式不能合并,错误.
故选A.
【点睛】
考查了实数的运算,熟练掌握运算法则是解本题的关键.
12.如果一个三角形的三边长分别为 、k、 ,则化简 ﹣|2k﹣5|的结果是()
A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k
【答案】D
【解析】
【分析】
求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.
【详解】
∵一个三角形的三边长分别为 、k、 ,
【详解】
A、 与 不是同类二次根式,不能合并,此选项错误;
B、 = = = ,此选项正确;
C、 =(5 - )÷ =5- ,此选项错误;
D、 = ,此选项错误;
故选B
【点睛】
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.
19.若 ,则化简二次根式 的正确结果是()
A. B. C. D.
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】C
【解析】
【分析】
先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.
【详解】
依题意的-m≥0,mn>0,解得m<0,n<0,
故P(m,n)的位置在第三象限,
故选C.
【点睛】
此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.
故选:A.
【点睛】
本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.
2.下列式子正确的是()
A. B. =- C. D.
【答案】C
【解析】
【分析】
根据算术平方根、立方根的定义和性质求解即可.
【详解】
解:A. ,故A错误.
B. = ,故B错误.
C. ,故C正确.
D. ,故D错误.
最新初中数学二次根式难题汇编及答案
一、选择题
1.如图,数轴上的点可近似表示(4 ) 的值是()
A.点AB.点BC.点CD.点D
【答案】A
【解析】
【分析】
先化简原式得4 ,再对 进行估算,确定 在哪两个相邻的整数之间,继而确定4 在哪两个相邻的整数之间即可.
【详解】
原式=4 ,
由于2 3,
∴1<4 2.
A.x≥ B.x> C.x≤ D.x<
【答案】B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
∵ 是被开方数,∴ ,
又∵分母不能为零,
∴ ,解得,x> ;
故答案为:B.
【点睛】
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.
10.已知 是正偶数,则实数 的最大值为( )
A. B. C. D.
【答案】C
【解析】
【分析】
如果实数n取最大值,那么12-n有最小值,又知 是正偶数,而最小的正偶数是2,则 =2,从而得出结果.
【详解】
解:当 等于最小的正偶数2时,
n取最大值,则n=8,
故选:C
【点睛】
本题考查二次根式的有关知识,解题的关键是理解“ 是正偶数”的含义.
【答案】D
【解析】
【分析】
首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;
【详解】
解:∵二次根式 有意义,
∴-a3b≥0
∵a>b,
∴a>0,b<0
∴ ,
故选:D.
【点睛】
此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.
20.已知 ,则 的值为()