考研数学强化阶段该如何做题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学强化阶段该如何做题

在考研的时候,强化阶段的主要任务是归纳题型,总结方法,因为题型的重复率的确太高了。小编为大家精心准备了考研数学强化阶段做题指导,欢迎大家前来阅读。

考研数学强化阶段做题详解

第一,读题

做题要从题目的叙述开始。拿到一个题目,做题的第一步是要仔细阅读题目,把握题目的主要含义。阅读题目直到即使不看题目,也能记住题目的意思。

第二,找出切入点

仔细考虑题目的各主要部分,将它们以不同的方式进行组合,再调动已有知识,寻求其与题目之间的联系,试着认清题目中所隐含的你熟悉的东西。

第三,分析题目要求

分析下题目所求需要哪些条件,然后寻找这些条件与第二问找出的思路的关系,这样就能找到解题点了!

如果你有意识地使用这种方式解题,那么一段时间过后,你会发现自己的解题能力、解题技巧、解题速度与正确性都会大大提高。

考研数学做题的技巧

▶1.思考着去做题,去总结

很多学生都有这样的困惑,做了很多题但不会的题还是很多,最可气的就是很多题明明做过,但是再遇到还是不会做!这就是很多同学存在的通病,不求甚解。总以为不会做了,看看答案就会了,并不会认真的思考为什么不会,解题技巧是什么,和它同类型的题我能不能会做等等。其实,这些都是很重要的,提醒大家要学着思考,学着“记忆”,最重要是要会举一反三,这样,我们才能脱离题海的浮沉,能够做到有效做题,高效提升!

▶2.侧重基础,培养逆向思维

很多时候,备考者会陷入盲目的题海中,这也是很多考生对数学感到头痛的原因所在。其实在前期复习知识点的时候,就应该把定义、定理的推导作为一个重点内容,重视推导和例题中的方法与技巧,认真分析这些方法,将它们套用到相应的练习题中,比做大量的重复练习要高效得多。

同时,思维习惯大大影响着学习效果。当进入考研数学复习备考的时候,大多数人继承了以往学习的习惯,思维也

基本上定型了,也就是进入了定势思维。习惯性思考方式在一方面有优势,另一方面也制约着学习成绩的提高,我们现在要做的就是打破惯性思维!

▶3.做题有始有终,提高计算能力

数学不等于做题,但是不可避免的是学好数学一定要做题,那么如何做题?我们说基础的扎实巩固是根本,再这个基础上进行做题。同时,提醒大家的是复习一定要养成一个好的习惯,拿到的数学题一定要有始有终把它算出来,这是一种计算能力的训练,尤其是计算量大的时候,如果没有平常这样一个训练,在实际考试的时候在短时间内是很难心有余力也足的。

▶4.深入思考,善于总结

考试里不仅仅是考察我们基本概念、基本理论、基本方法的问题,还涉及到我们灵活运用知识的能力问题,所以仅仅是依靠教材很难把它这种考试命题的特点归纳总结出来,因此要了解考试,历年考试的真题作为准备去参加研究生考试的同学是必备的。

大家选真题的时候应该考虑到能不能通过真题的分析帮助我们真正的归纳总结这样一些题型出来,针对每一个问题我们应该如何去分析和讨论在分析讨论过程中间,有没有一些可能的变化情况,这些变化情况到现在为止,考到了哪一些,那一些就是我们下一步复习应该注意的,这样每一部分你都能

够这样去归纳、总结或通过这种相关的辅导书帮助你归纳总结出来了,复习就更有针对性。

▶5.揣摩真题,把握方向

真题的作用是不容忽视的,经过十几年的考试,相当多的题目模式已经定了下来,很多考研题目都是类似的。考研真题经过千锤百炼,在思想性上有较高的参考价值,需要多加揣摩。尤其是近两年的考题,反映了命题者出题的方式和思路,更要注意。所以,同学们一定要把真题重视起来!

考研数学复习构建网络的方法

举例而言,极限一节,基础阶段,我们沿着知识脉络,依次回顾概念、性质、四则运算法则、两个存在准则、两个重要极限、无穷小的概念比阶与等价无穷小代换,这里面,哪些能应用于求极限(比如无穷小代换),哪些是证明极限存在的(单调有界准则),那些用于函数极限计算,哪些用于数列极限计算,大家有所接触但还朦朦胧胧,缺少系统总结。更别说,导数定义求极限和利用定积分定义求极限——这是一元函数微分学和一元函数积分学部分才能接触到的,第一轮复习时,一般都会放到后续章节而非第一章介绍。这样,其实大家对求极限的方法,是支离破碎不成体系的,这是第一轮仅仅沿着知识脉络学习的不可克服的结果。

而到了强化阶段,你必须做到,一见到求极限的题目立即反映出如下方法:

函数极限:1)等价无穷小代换;2)罗比达法则;3)泰勒公式法;4)利用导数定义;5)两个重要极限(1∞型的公式)

数列极限:6)单调有界准则(证明极限存在性);7)夹

逼准则;8)定积分定义;9)把数列极限转化为函数极限

整个考研数学可能用到的解决极限问题的方法,清晰地总结在一起。

有了框架,往里面填充各种细节,比如罗比达法则,什么时候能用,什么时候不能用;比如泰勒公式,展开时展到

几阶,常用的泰勒公式有哪些,自己是否把该记住的公式记住了,该注意的细节透彻了。

学数学一要刷题,二要总结,盲目刷题,事倍功半,要在做题中体会解题技巧与方法,归纳总结。

上面说的,是一类题目可能对应多出知识,那么,也可能出现一个知识点,用在不同题目里,就像上面提到的泰勒公式,除了用于求极限,还有什么地方有可能考到泰勒公式?

无非就是中值定理证明题可能用到,函数展为幂级数(数一)用到,利用泰勒级数求高阶导用到。在可能考察到该知识点的各类题型中,定理、概念、方法怎么用,怎么去解决问题,要认真总结,比如泰勒公式有带皮亚诺余项的公式,也有带拉格朗日余项的,求极限时显然用前者,中值定理证明题当然用后者,求极限时展到几阶,中值定理证明题什么时候选用泰勒公式而

不选用其他中值定理(比如拉格朗日定理)——你会发现,一个点延展开,会与其他好多知识、题型交叉,在你心里,应该是一张清晰的“知识——题型”网络。

强化阶段的做题,考生应该逐步实现自发到自觉的转变,不再是“朦胧式”的做题,渐渐练习着思考与总结,清楚地知道,一道题,考了什么,做完它需要掌握什么——哪些概念、性质、定理、公式,这些定理公式怎么用,需要什么条件,有没有不能用的时候但命题人挖坑引诱你用,可能出现哪些错解。做题做透,是少做题却收益大的有效手段。

这样的做题习惯也并非一日之功,大家可以慢慢适应,我认为比较有效的培养方式是:对待错题,用虐待敌人的态度拷问自己。如果一道题,你写了3行做不下去了,看了解析,一共6行,你一定要问自己,第3行到第4行用了什么方法,依据什么定理,还是考了什么概念,自己为啥没想到,卡死在第三行,究竟是为什么,自己回忆自己做题时的所思所想,和正解偏差何在,这样的拷问,有助于迅速补齐自己的弱点。学习就是这样,把自己弱点变强,整体就强了,会的地方再做

100遍,无非是提高一点熟练度,不会的搞懂了,会了,那是

显著提升。当然,如果你发现自己每次都是卡死在计算上,纯粹是计算力弱,那还是要多刷题增加熟练度的。

建议同学们,在暑期复习中,逐步钩织“知识——题型”网络,做题时逐步由朦胧而清晰,化弱点为强点,必然可以取得显著地进步。

相关文档
最新文档