传送带模型与板块模型

合集下载

人教版高中物理必修第一册第4章素养提升课6传送带模型和板—块模型课件

人教版高中物理必修第一册第4章素养提升课6传送带模型和板—块模型课件

(1)当煤块与传送带速度相等时,它们能否相对静止; [解析] 煤块与传送带之间的动摩擦因数为μ=0.5,当煤块与传送 带速度相等时,对煤块分析有mgsin 37°>μmgcos 37°,所以它们 不能相对静止。 [答案] 不能
规律方法 传送带模型的求解思路
[跟进训练] 1.如图所示,一条足够长的浅色水平传送带自左向右匀速运行。 现将一个木炭包无初速度地放在传送带的最左端,木炭包在传送带 上将会留下一段黑色的径迹。下列说法中正确的是( ) A.黑色的径迹将出现在木炭包的左侧 B.木炭包的质量越大,径迹的长度越短 C.传送带运动的速度越大,径迹的长度越短
(2)倾斜传送带问题的两种类型。(物体从静止开始,传送带匀速运
பைடு நூலகம்
动且足够长)。
项目 条件
运动性质
向上 传送
物体先沿传送带做向上的加速直线运动,速度 μ>tan θ 相同以后二者相对静止,一起做匀速运动 μ=tan θ 物体保持静止
物体
不可能向上传送物体,物体沿传送带做向下的 μ<tan θ 加速直线运动
命题角度1 水平传送带模型 【典例1】 如图所示,水平传送带以不变的速度v=10 m/s向右运 动,将工件(可视为质点)轻轻放在传送带的左端,由于摩擦力的作 用,工件做匀加速运动,经过时间t=2 s,速度达到v;再经过时间 t′=4 s,工件到达传送带的右端,g取10 m/s2,求:
命题角度2 倾斜传送带模型 【典例2】 (2022·福建福州八县一中联考)如图所示,传送带与水平地 面夹角θ=37°,从A到B长度为L=10.25 m,传送带以v0=10 m/s的速率 逆时针转动。在传送带上端A无初速地放一个质量为m=0.5 kg的黑色煤 块,它与传送带之间的动摩擦因数为μ=0.5。煤块在传送带上经过会留 下黑色痕迹。已知sin 37°=0.6,g=10 m/s2,求:

高考物理一轮复习课件:传送带与板块模型

高考物理一轮复习课件:传送带与板块模型

共速后加速
异向Байду номын сангаас坡
>
0 ≤
减速至0,后反向加速
至0
0 >
减速至0,后反向加速

=
<


一直匀速
一直加速
板—块模型
1、概述:两个或多个物体上、下叠放在一起,物体之间通过
摩擦力产生联系。
2、三个基本关系
加速度关系
注意:通过受力
分析判断加速度
同向上坡
0 >
0 =
0 <
减速至共速



<

共速后匀速
共速后继续
减速
一直匀速
<
>
减速至0, 加速至共速,
后反向加速
后匀速
=
<
一直匀速
减速至0,
后反向加速
同向下坡
0 >
0 =
传送带模型
1、明确滑块相对传送带的运动方向,正确判断摩擦力的方向

2、判断滑块与传送带共速前是否滑出传送带。
3、滑块在传送带上的划痕长度是滑块与传送带的相对位移。
4、在水平传送带上,滑块与传送带共速时,二者相对静止做匀
速运动。
5、共速时刻一般是摩擦力发生突变的时刻。在倾斜传送带上,
滑块与传送带共速时,需比较mgsin与μmgcos的大小才能
确定运动情况。
①水平传送带
①0 >时,可能一直减速(不够长),
也可能先减速后匀速(足够长)
同向进入
②0 =时,一直匀速
③0 < 时,可能一直加速(不够长),

传送带模型和板块模型

传送带模型和板块模型

传送带模型和板块模型一.“传送带模型”问题的分析思路1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图6(a)、(b)、(c)所示.图62.建模指导传送带模型问题包括水平传送带问题和倾斜传送带问题.(1)水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.(2)倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.例1如图7所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m=0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2.求:(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.突破训练1如图8所示,水平传送带AB长L=10 m,向右匀速运动的速度v0=4 m/s,一质量为1 kg的小物块(可视为质点)以v1=6 m/s的初速度从传送带右端B点冲上传送带,物块与传送;带间的动摩擦因数μ=0.4,g取10 m/s2.求:(1)物块相对地面向左运动的最大距离;(2)物块从B点冲上传送带到再次回到B点所用的时间.二.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例2如图所示,质量为M,长度为L的长木板放在水平桌面上,木板右端放有一质量为m长度可忽略的小木块,木块与木板之间、木板与桌面之间的动摩擦因数均为μ。

牛顿第二定律的综合应用——动力学中的“板块”和“传送带”模型

牛顿第二定律的综合应用——动力学中的“板块”和“传送带”模型

动力学中的“板块”和“传送带”模型一.“滑块—滑板”模型1. 模型特点:上下叠放两个物体,在摩擦力的相互作用下发生相对滑动。

2. 两种位移关系①物体的位移:各个物体对地的位移,即物体的实际位移。

②相对位移:一物体相对另一的物体的位移。

两种情况。

(1)滑块和滑板同向运动时,相对位移等两物体位移之差,即.21x x x -=∆相 (2)滑块和滑板反向运动时,相对位移等两物体位移之和,即.21x x x +=∆相 这是计算摩擦热的主要依据,.相滑x f Q ∆=3. 解题思路:(1)初始阶段必对各物体受力分析,目的判断以后两物体的运动情况。

(2)二者共速时必对各物体受力分析,目的判断以后两物体的运动情况。

二者等速是滑块和滑板间摩擦力发生突变的临界条件,是二者相对位移最大的临界点。

(3)物体速度减小到0时,受力分析,判断两物体以后是相对滑动还是相对静止。

相对静止二者的加速度a 相同;相对滑动二者的加速度a 不同。

(4)明确速度关系:弄清各物体的速度大小和方向,判断两物体的相对运动方向,从而弄清摩擦力的方向,正确对物体受力分析。

例.如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求:(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离.〖思路指导〗(1)AB 开始运动时,相向均做减速运动,二者初速等大,加速度等大,则经历相等时间,v ∆相等.即相同时刻速度等大.对A 、B 、木板分析B 和木板同向向右运动,A 和木板反向运动,故B 和木板先相对静止,A 减速到0后,反向加速再与木板共速. (2)B 和木板共速后是相对滑动还是相对静止,假设法讨论.相对静止的条件:f<f max . 解析:(1)B 和木板共速前,AB 加速度分别为a A 、a B ,木板加速度为a 1.经t 1木板和B 共速. 对A 向左减速,加速度大小:../5,211向右解得s m a a m g m A A A ==μ 对B 向右减速,加速度大小:.m /s 5,21==B B B B a a m g m 解得μ对木板,由于g m m m g m g B A A B )(m 211++>-μμμ,则合外力向右,向右加速运动../5.2,)(-m 211211s m a ma g m m m g m g B A A B ==++-解得μμμB 和木板共速有:,1110t a t a v B =-解得t 1=0.4s../110s m t a v v B B =-=0.8m.t 2v v x 1Bo B =+= A 的速度大小v A =v B =1m/s.(2)设B 和木板共速后相对静止,对B 和木板:./m 35,)m 22212s a a m m g m g m m B A B A =+=+++解得)((μμ向右减速运动. 对B 有,木板和A相对静止.假设正确,设再经t g,m μN 320a m f 2B 12B B <== A 全程加速度不变.对B 和木板:,222t a v v B -=对A 有:,222t a v v A +-=解得t 2=0.3s.v 2=0.5m/s.0.225m,m 409t 2v v x 22B /B ==+=0.875m.)t (t a 21)t (t v x 221A 210A =+-+= 故 1.9m.x x x L /B B A =++= 练习1. (水平面光滑的“滑块—滑板”模)如图所示,质量M =8 kg 的小车静止在光滑水平面上,在小车右端施加一水平拉力F =8 N .当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m =2 kg 的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t =1.5 s 的时间,物体相对地面的位移为(g 取10 m/s 2)( )A .1 mB .2.1 mC .2.25 mD .3.1 m解析:(1)刚放上物体时,对物体:.2m/s解得a ,ma μmg 211== 对小车:,/5.0,222s m a Ma mg F ==-解得μv 0=1.5m/s.设经t 1二者等速v 1.则2m/s.1s,v 解得t ,t a v t a v 11120111==+==此时物体运动:1m.t v 21x 111==故A 错.(2)共速后,设二者相对静止,整体:.0.8m/s,解得a m)a (M F 233=+= 对物体:μmg,<1.6N =ma =f 3假设正确.再经0.5s 物体运动:.1.2,1.12121223212m x x x m t a t v x =+==+=故故B 对CD 错.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t =0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的( )解析:(1)物体刚放上木板,对木板:.a ,mg g )1121向左,减速运动(Ma M m =++μμ (2)共速后若二者相对静止:错,,则(BC a a Ma g M 2121,)m >=+μ 由于地面有摩擦,共速后木板做减速运动,故D 错。

传送带和板块模型

传送带和板块模型

传送带模型1.水平传送带模型2.3.1.物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,再把物块放到P 点自由滑下,则:( )A. 物块将仍落在Q 点B. 物块将会落在Q 点的左边C. 物块将会落在Q 点的右边D. 物块有可能落不到地面上2、 如图示,物体从Q 点开始自由下滑,通过粗糙的静止水平传送带后,落在地面P 点,若传送带按顺时针方向转动。

物体仍从Q 点开始自由下滑,则物体通过传送带后:( )A.一定仍落在P 点B.可能落在P 点左方C.一定落在P 点右方D.可能落在P 点也可能落在P 点右方3、如图,传送带与水平方向夹37°角,AB 长为L =16m 的传送带 以恒定速度v =10m/s 运动,在传送带上端A 处无初速释放质量为m =0.5kg 的物块,物块与带面间的动摩擦因数μ=0.5,(sin37°=0.6,cos37°=0.8,取g =10 m /s2)求:(1)当传送带顺时针转动时,物块从A 到B 所经历的时间为多少? (2)当传送带逆时针转动时,物块从A 到B 所经历的时间为多少?4、某快递公司分拣邮件的水平传输装置示意如图,皮带在电动机的带动下保持v=1m/s 的恒定速度向右运动,现将一质量为m=2kg 的邮件轻放在皮带上,邮件和皮带间的动摩擦因数μ=0.5。

设皮带足够长,取g=10m/s2,在邮件与皮带发生相对滑动的过程中,求:(1)邮件滑动的时间t;(2)邮件对地的位移大小x;(3)邮件与皮带间的摩擦力对皮带做的功W 。

板块模型整体分析:板块模型是高中物理中一个很经典的物理模型,该模型是动量守恒定律应用的典范,板和块借助于相互之间的摩擦力而发生作用,引起速度、位移、加速度、能量等一系列物理量的变化,因此也成为一类很重要的综合问题。

解决此类问题的关键,就是要明确板和块之间的位移关系,抓住系统动量守恒的特征,配合能量守恒、功能关系、摩擦力与最大静摩擦力的知识。

传送带与板块模型

传送带与板块模型

模型1 传送带模型
[审题指导]
模型1 解体传送带题型的思维模板
传送带与板块模型
模型1 传送带模型
对于传送带问题,分析清楚物体在传送带上的运动情况是解题关键,分析思路 是:
弄清物体与传送带的相对运动——确定所受摩擦力的方向——确定物体的运动 情况,具体分析见下表:
1.水平传送带问题
运动图示
滑块可能的运动情况
(1)可能一直加速
(2)可能先加速后匀速
模型1 传送带模型
vvv
再经过时间t′=4s 工件到达传送带的右端,g取10 m/s2,求: s
(1)工件在水平传送带上滑动时的加速度的大小;
解析 工件的加速度 a=v
解得a=5 m/s2
t
(2)工件与水平传送带间的动摩擦因数;
解析 设工件的质量为m,则由牛顿第二定律得:
图4
μmg=ma
所以动摩擦因数 μ=mmga=ag=0.5
(3)解工析件从工水件平加传速送运带动的距左离端到x1=达v2右t 端通过的距离.
工件匀速运动距离x2=vt′
工件从左端到达右端通过的距离x=x1+x2
联立解得x=50 m.
模型1 传送带模型
水平传送带
(1) 当传送带水平转动时,应特别注意摩擦力的突变和物体运动状态的变化。 (2) 求解的关键在于对物体所受的摩擦力进行正确的分析判断。静摩擦力达 到最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力只存在于发 生相对运动的物体之间,因此两物体的速度相同时,滑动摩擦力要发生突 变(滑动摩擦力变为零或变为静摩擦力)。
(1)v0>v 时,可能一直减速,(1)传送带较短时,滑块一直减速到 达左端 (2)传送带较长时,滑块还要被传送 带传回右端,其中 v0>v 返回时速 度为 v,当 v0<v 返回时速度为 v0

传送带模型和板块模型

传送带模型和板块模型

3 板块界限
板块之间的界限是地震空间分布、中深度地 震机制、热流、地球磁场和岩石变形数据的 主要指标。
4 板块类型
板块主要有大陆板块、海洋板块、半洋板块 和微板块等几种类型。
传送带模型的特点
1
影响地球内部
传送带模型能够影响地球内部的热量和物质的上升或下降,进而推动板块的运动。
2
不同于板块模型
传送带模型是一种在地球内部的岩石上发生的运动方式,所以它与板块模型有本 质区别。
动力来源
这种运动主要是由地球内部运动 的热对流引起的。
实例
大西洋海底中央脊就是传送带模 型的一个例子,新生的岩石从中 央脊上升并排放在两侧。
板块模型
1 板块构造
地球最外层的岩石被分成若干个板块,每个 板块都有不同的构成和性质。
2 板块运动
板块在地球表面运动,可以相互接触和相对 运动,产生地震、火山、积雪、沉积等现象。
传送带模型和板块模型
深入探讨传送带模型和板块模型,从概述到应用场景,让你全面了解这些模 型。
概述
传送带模型
是指岩石在地球内部通过类似于传送带的方式运动。
板块模型
是指地球最外层的岩石层被分成了若干个大板块,这些板块在地球表面运动,产生地震、火 山、山脉等地质现象。
传送带模型
岩石运动
内部岩石通过类似于传送带的方 式运动,向上或向下运动,导致 地球内部的热量和物质的上升或 下降。
3
只是单一模型
传送带模型只是一个基础模型,没有板块模型的复杂和多样性。
板块模型的特点
灾害性强
板块模型的相互运动导致了地 球表面的地震、火山等自然灾 害。地震和火山灾害可能会给 人们带来巨大的破坏。
多样性

秘籍04 滑块板块模型和传送带模型(教师版)-备战2024年高考物理抢分秘籍

秘籍04 滑块板块模型和传送带模型(教师版)-备战2024年高考物理抢分秘籍

秘籍04滑块木板模型和传送带模型一、滑块木板模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,设板长为L ,滑块(可视为质点)位移大小为x 块,滑板位移大小为x 板。

同向运动时:L =x 块-x 板.反向运动时:L =x 块+x 板.不再有摩擦力(水平面上共同匀速运动).5.分析板块模型的思路二、传送带模型(摩擦力方向一定沿斜面向上)3.划痕问题:滑块与传送带的划痕长度Δx等于滑块与传送带的相对位移的大小,若有两次相对运动且两次相对运动方向相同,Δx=Δx1+Δx2(图甲);若两次相对运动方向相反,Δx等于较长的相对位移大小.(图乙)4.功能关系分析:(1)功能关系分析:W=ΔE k+ΔE p+Q。

(2)对W和Q的理解传送带克服摩擦力做的功:W=fx;传。

产生的内能:Q=fx相对【题型一】滑块木板模型A.地面对木板的摩擦力方向水平向右B.地面对木板的摩擦力大小为9NA.小滑块与长木板之间的动摩擦因数为0.6B.当水平拉力增大时,小滑块比长木板先相对地面发生滑动C.小滑块的质量为2kgF=时,长木板的加速度大小为2m/s D.当水平拉力12N【答案】AC【详解】A.设小滑块质量为m,小滑块与长木板之间的动摩擦数为A.若只增大M,则小滑块能滑离木板B.若只增大v0,则小滑块在木板上运动的时间变长【答案】(1)15 4a g=,方向沿斜面向下,【详解】(1)A第一次碰挡板前,系统相对静止,之间无摩擦。

碰后,对A.木板的长度为2mB.木板的质量为1kgC.木板运动的最大距离为2mD.整个过程中滑块B的位移为0【答案】D【详解】B.对两滑块受力分析,根据牛顿第二定律可得a=A依题意,相遇前木板匀加速,由牛顿第二定律,有μm g由图可知,木板的长度为A.滑块Q与长木板P之间的动摩擦因数是0.5B.长木板C.t=9s时长木板P停下来D.长木板P 【答案】C【详解】A.由乙图可知,力F在5s时撤去,此时长木板PA .122v v =B .弹簧弹性势能的最大值为2118mv C .图甲所示的情况,滑块压缩弹簧被弹回后回到长木板右端时,滑块的速度为D .图甲所示的情况,滑块压缩弹簧被弹回后回到长木板右端时,滑块的速度大小为【答案】BD【详解】CD .如图甲,设滑块被弹簧弹开,运动到长木板右端时的速度为v 3,系统的合外力为零,系统动量守恒,滑块压缩弹簧被弹回后恰好可以到达A 的右端,由动量守恒定律得132mv mv =解得3112v v =故C 错误,D 正确;AB .如图甲,弹簧被压缩到最短时两者速度相同,设为v ,弹簧最大弹性势能为长木板到弹簧被压缩到最短的过程,由动量守恒定律和能量守恒定律12mv mv=()22112p 11222mv mv mg x x E μ=⨯+++A .滑块A 的质量为4kgB .木板B 的质量为1kgC .当10N F =时木板B 加速度为24m/sD .滑块A 与木板B 间动摩擦因数为0.1【答案】BC【详解】ABD .根据题意,由图乙可知,当拉力等于8N ,滑块【答案】(1)1.5m/s;1.5m/s;(2【详解】(1)由于A与B之间的动摩擦因数及均相对斜面静止,小球在由释放到碰【答案】(1)3m/s;(2)2m/s;(3)不能与1A B【典例1】如图所示,某快递公司为提高工作效率,利用传送带传输包裹,水平传送带长为4m ,由电动机驱动以4m/s 的速度顺时针转动。

传送带模型和板块模型

传送带模型和板块模型

传送带模型1.水平传送带模型(1)(2)(1)(2)(1)(2)返回时速度为2.(1)(2)(1)(2)(3)解传送带问题的思维模板1.无初速度的滑块在水平传送带上的运动情况分析3.无初速度的滑块在倾斜传送带上的运动情况分析4.有初速度的滑块在倾斜传送带上的运动情况分析1.传送带模型(1)模型分类:水平传送带问题和倾斜传送带问题。

(2)传送带的转动方向:可以与物体运动方向相同或与物体运动方向相反。

(3)物体相对于传送带可以是静止、匀速运动、加速运动或减速运动。

2.处理方法求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。

如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况。

当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。

[多维展示]多维角度1 水平同向加速[例1] (2017·安徽师大附中模拟)(多选)如图所示,质量m =1 kg 的物体从高为h =0.2 m 的光滑轨道上P 点由静止开始下滑,滑到水平传送带上的A 点,物体和传送带之间的动摩擦因数为μ=0.2,传送带AB 之间的距离为L =5 m ,传送带一直以v =4 m/s 的速度匀速运动,则( )A .物体从A 运动到B 的时间是1.5 sB .物体从A 运动到B 的过程中,摩擦力对物体做功为2 JC .物体从A 运动到B 的过程中,产生的热量为2 JD .物体从A 运动到B 的过程中,带动传送带转动的电动机多做的功为10 J解析 设物体下滑到A 点的速度为v 0,对PA 过程,由机械能守恒定律有:12mv 20=mgh ,代入数据得:v 0=2gh=2 m/s<v =4 m/s ,则物体滑上传送带后,在滑动摩擦力的作用下做匀加速运动,加速度大小为a =μmgm=μg =2m/s 2;当物体的速度与传送带的速度相等时用时:t 1=v -v 0a =4-22 s =1 s ,匀加速运动的位移x 1=v 0+v 2t 1=2+42×1 m =3 m<L =5 m ,所以物体与传送带共速后向右做匀速运动,匀速运动的时间为t 2=L -x 1v =5-34s =0.5 s ,故物体从A 运动到B 的时间为:t =t 1+t 2=1.5 s ,A 正确;物体运动到B 的速度是v =4 m/s ,根据动能定理得:摩擦力对物体做功W f =12mv 2-12mv 20=⎝ ⎛⎭⎪⎫12×1×42-12×1×22 J =6 J ,B 错误;在t 1时间内,传送带做匀速运动的位移为x 带=vt 1=4 m ,故产生热量Q =μmg Δx =μmg (x 带-x 1),代入数据得:Q =2 J ,C 正确;电动机多做的功一部分转化成了物体的动能,另一部分转化为内能,则电动机多做的功W =⎝ ⎛⎭⎪⎫12mv 2-12mv 20+Q =⎣⎢⎡⎦⎥⎤12×1×(42-22)+2 J = 8J ,D 错误。

4.5 牛顿运动定律的应用(连接体、传送带、板块模型) 课件 必修第一册

4.5 牛顿运动定律的应用(连接体、传送带、板块模型) 课件   必修第一册
(2)将木块换成墨块,在水平传送带上留下的痕迹有多长?
v0=2m/s
v
连接体模型
板块模型
F
N
解:(1)木块从左端到达右端所需的时间t.
木块向右做匀加速直线运动,由牛顿第二定律得:
Ff
设经时间t1木块的速度与传送带速度相等
G
经3米木块的速度就增加到与传送带的速度相等。此时摩擦力消失,
只剩下重力和支持力,木块向右与传送带共速做匀速直线运动。
(2)木板至少多长,物块才能与木板最终保持相对静止?
(3)物块与木板相对静止后,物块受到的摩擦力为多大?
答案:(1)a1=2m/s2 a2=1m/s2 (2)0.5m (3)6.29N
B.10 m/s2,8 N
C.8 m/s2,6 N
D.6 m/s2,9 N
总结:(1)先整体,后隔离。
)
传送带模型
板块模型
例 5 、 如图所示,物块A、B用一条绕过轻质定滑轮的轻绳相连,轻绳两部分分别处于
竖直和水平状态,A、B的质量分别为M、m,重力加速度为g,不计一切摩擦.现将系
统由静止释放,B向左运动。
v0<v
μ>tan
(a g cos g sin )
匀加速
A
θ
先匀加到v,后匀速
μ<tan
v0>v
μ>tan
(g sin g cos )】
匀减速 【a
先【a1
(g sin g cos )】匀减,当(v物 v传 )后再以 a2匀减
(g sin g cos )】
的张力大小为( D )
A.F-2μmg
1
B.3F+μmg
1
C.3F-μmg

高考物理一轮总复习 第三章 链接高考3 两类动力学模型:“板块模型”和“传送带模型”(含解析)

高考物理一轮总复习 第三章 链接高考3 两类动力学模型:“板块模型”和“传送带模型”(含解析)

两类动力学模型:“板块模型”和“传送带模型”模型1 板块模型[模型解读]1.模型特点涉及两个物体,并且物体间存在相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长.设板长为L,滑块位移大小为x1,滑板位移大小为x2同向运动时:L=x1-x2反向运动时:L=x1+x23.解题步骤[典例赏析][典例1] (2017·全国卷Ⅲ)如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.[审题指导] 如何建立物理情景,构建解题路径①首先分别计算出B与板、A与板、板与地面间的滑动摩擦力大小,判断出A、B及木板的运动情况.②把握好几个运动节点.③由各自加速度大小可以判断出B与木板首先达到共速,此后B与木板共同运动.④A与木板存在相对运动,且A运动过程中加速度始终不变.⑤木板先加速后减速,存在两个过程.[解析](1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B与木板间的摩擦力的大小分别为f1、f2,木板与地面间的摩擦力的大小为f3,A、B、木板相对于地面的加速度大小分别是a A、a B和a1.在物块B与木板达到共同速度前有:f1=μ1m A g①f2=μ1m B g②f3=μ2(m A+m B+m)g③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f 2-f 1-f 3=ma 1⑥设在t 1时刻,B 与木板达到共同速度,设大小为v 1.由运动学公式有v 1=v 0-a B t 1⑦v 1=a 1t 1⑧联立①②③④⑤⑥⑦⑧式,代入数据解得:v 1=1 m/s(2)在t 1时间间隔内,B 相对于地面移动的距离为s B =v 0t 1-12a B t 21⑨ 设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2,对于B 与木板组成的体系,由牛顿第二定律有:f 1+f 3=(m B +m )a 2⑩由①②④⑤式知,a A =a B ;再由⑦⑧可知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反.由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2.设A 的速度大小从v 1变到v 2所用时间为t 2,根据运动学公式,对木板有v 2=v 1-a 2t 2⑪对A 有v 2=-v 1+a A t 2⑫在t 2时间间隔内,B (以及木板)相对地面移动的距离为 s 1=v 1t 2-12a 2t 22⑬在(t 1+t 2)时间间隔内,A 相对地面移动的距离为s A =v 0(t 1+t 2)-12a A (t 1+t 2)2⑭ A 和B 相遇时,A 与木板的速度也恰好相同,因此A 和B 开始运动时,两者之间的距离为s 0=s A +s 1+s B ⑮联立以上各式,代入数据得s 0=1.9 m(也可以用下图的速度-时间图象做)[答案] (1)1 m/s (2)1.9 m滑块滑板类模型的思维模板[题组巩固]1.(2019·吉林调研)(多选)如图所示,在光滑的水平面上放置质量为m 0的木板,在木板的左端有一质量为m 的木块,在木块上施加一水平向右的恒力F ,木块与木板由静止开始运动,经过时间t 分离.下列说法正确的是( )A .若仅增大木板的质量m 0,则时间t 增大B .若仅增大木块的质量m ,则时间t 增大C .若仅增大恒力F ,则时间t 增大D .若仅增大木块与木板间的动摩擦因数μ,则时间t 增大 解析:BD [根据牛顿第二定律得,木块的加速度a 1=F -μmg m =F m -μg ,木板的加速度a 2=μmg m 0,木块与木板分离,则有l =12a 1t 2-12a 2t 2得t =2l a 1-a 2.若仅增大木板的质量m 0,木块的加速度不变,木板的加速度减小,则时间t 减小,故A 错误;若仅增大木块的质量m ,则木块的加速度减小,木板的加速度增大,则t 变大,故B 正确;若仅增大恒力F ,则木块的加速度变大,木板的加速度不变,则t 变小,故C 错误;若仅增大木块与木板间的动摩擦因数,则木块的加速度减小,木板的加速度增大,则t 变大,故D 正确.]2.(2019·黑龙江大庆一模)如图,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m =1 kg ,木板的质量m 0=4 kg ,长l =2.5 m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F =20 N 拉木板,g 取10 m/s 2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间. 解析:(1)木板受到的摩擦力为F f =μ(m 0+m )g =10 N 木板的加速度为a =F -F f m 0=2.5 m/s 2. (2)设拉力F 作用t 时间后撤去,木板的加速度为a ′=-F f m 0木板先做匀加速运动,后做匀减速运动,且有a =-a ′=2.5 m/s 2则有2×12at 2=l 联立并代入数据解得t =1 s ,即F 作用的最短时间是1 s. 答案:(1)2.5 m/s 2 (2)1 s3.(2019·河南中原名校联考)如图所示,质量M =1 kg 的木板静置于倾角θ=37°、足够长的固定光滑斜面底端.质量m =1 kg 的小物块(可视为质点)以初速度v 0=4 m/s 从木板的下端冲上木板,同时在木板上端施加一个沿斜面向上的F =3.2 N 的恒力.若小物块恰好不从木板的上端滑下,求木板的长度l 为多少?已知小物块与木板之间的动摩擦因数μ=0.8,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.解析:由题意,小物块向上做匀减速运动,木板向上做匀加速运动,当小物块运动到木板的上端时,恰好和木板共速.设小物块的加速度为a ,由牛顿第二定律得,mg sin θ+μmg cos θ=ma ,设木板的加速度为a ′,由牛顿第二定律得,F +μmg cos θ-Mg sin θ=Ma ′,设二者共速时的速度为v ,经历的时间为t ,由运动学公式得v =v 0-at ,v =a ′t ;小物块的位移为s ,木板的位移为s ′,由运动学公式得,s =v 0t -12at 2,s ′=12a ′t 2;小物块恰好不从木板上端滑下,有s -s ′=l ,联立解得l =0.5 m.答案:0.5 m模型2 传送带模型[模型解读]对于传送带问题,分析清楚物体在传送带上的运动情况是解题关键,分析思路是:弄清物体与传送带的相对运动——确定所受摩擦力的方向——确定物体的运动情况,具体分析见下表:1.水平传送带问题运动图示滑块可能的运动情况(1)可能一直加速(2)可能先加速后匀速(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端,其中v0>v返回时速度为v,当v0<v返回时速度为v02.倾斜传送带问题运动图示滑块可能的运动情况(1)可能一直加速(2)可能先加速后匀速(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速(1)可能一直加速(2)可能先加速后匀速(3)可能一直匀速(4)可能先以a1加速后以a2加速(1)可能一直加速(2)可能一直匀速[典例2] 如图所示为某工厂的货物传送装置,倾斜运输带AB (与水平面成α=37°)与一斜面BC (与水平面成θ=30°)平滑连接,B 点到C 点的距离为L =0.6 m ,运输带运行速度恒为v 0=5 m/s ,A 点到B 点的距离为x =4.5 m ,现将一质量为m =0.4 kg 的小物体轻轻放于A 点,物体恰好能到达最高点C 点,已知物体与斜面间的动摩擦因数μ1=36,(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,空气阻力不计)求:(1)小物体运动到B 点时的速度v 的大小;(2)小物体与运输带间的动摩擦因数μ;(3)小物体从A 点运动到C 点所经历的时间t .[审题指导][解析] (1)设小物体在斜面上的加速度为a 1,运动到B 点的速度为v ,由牛顿第二定律得mg sin θ+ μ1mg cos θ=ma 1由运动学公式知v 2=2a 1L ,联立解得v =3 m/s.(2)因为v <v 0,所以小物体在运输带上一直做匀加速运动,设加速度为a 2,则由牛顿第二定律知 μmg cos α-mg sin α=ma 2又因为v 2=2a 2x ,联立解得μ=78.(3)小物体从A 点运动到B 点经历的时间t 1=v a 2, 从B 点运动到C 点经历的时间t 2=v 1a 1联立并代入数据得小物体从A 点运动到C 点所经历的时间t =t 1+t 2=3.4 s.[答案] (1)3 m/s (2)78(3)3.4 s 解传送带问题的思维模板[题组巩固]1.(2019·山东临沂高三上学期期中)(多选)如图所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2(v 1<v 2)的小物块从与传送带等高的光滑水平地面上滑上传送带,从小物块滑上传送带开始计时,物块在传送带上运动的v -t 图象可能是( )解析:AC [物块滑上传送带,由于速度大于传送带速度,物块做匀减速直线运动,可能会滑到另一端一直做匀减速直线运动,到达另一端时恰好与传送带速度相等,故C 正确.物块滑上传送带后,物块可能先做匀减速直线运动,当速度达到传送带速度后一起做匀速直线运动,速度的方向保持不变,故B 、D 错误,A 正确.]2.如图所示为粮袋的传送装置,已知A 、B 两端间的距离为L ,传送带与水平方向的夹角为θ,工作时运行速度为v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是( )A.粮袋到达B端的速度与v比较,可能大,可能小,也可能相等B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度v做匀速运动C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动D.不论μ大小如何,粮袋从A到B端一直做匀加速运动,且加速度a≥g sin θ解析:A [若传送带较短,粮袋在传送带上可能一直做匀加速运动,到达B端时的速度小于v;μ≥tan θ,则粮袋先做匀加速运动,当速度与传送带的速度相同后,做匀速运动,到达B 端时速度与v相同;若μ<tan θ,则粮袋先做加速度为g(sin θ+μcos θ)的匀加速运动,当速度与传送带相同后做加速度为g(sin θ-μcos θ)的匀加速运动,到达B端时的速度大于v,选项A正确;粮袋开始时速度小于传送带的速度,相对传送带的运动方向是沿传送带向上,所以受到沿传送带向下的滑动摩擦力,大小为μmg cos θ,根据牛顿第二定律得加速度a=mg sin θ+μmg cos θ=g(sin θ+μcos θ),选项B错误;若mμ≥tan θ,粮袋从A 到B 可能一直是做匀加速运动,也可能先匀加速运动,当速度与传送带的速度相同后,做匀速运动,选项C 、D 均错误.]3.(2019·湖北宜昌高三一模)如图为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距 3 m ,另一台倾斜,传送带与地面的倾角θ=37°,C 、D 两端相距4.45 m ,B 、C 相距很近,水平部分AB 以5 m s 的速率顺时针转动.将质量为10 kg 的一袋大米放在A 端,到达B 端后,速度大小不变地传到倾斜的CD 部分,米袋与传送带间的动摩擦因数均为0.5.试求:(1)若CD 部分传送带不运转,求米袋沿传送带所能上升的最大距离.(2)若要将米袋送到D 端,求CD 部分顺时针运转的速度应满足的条件及米袋从C 端到D 端所用时间的取值范围.解析:(1)米袋在AB 上加速时的加速度a 0=μmg m=μg =5 m/s 2 米袋的速度达到v 0=5 m/s 时,滑行距离:s 0=v 202a 0=2.5 m <AB =3 m 因此米袋在到达B 点之前就有了与传送带相同的速度. 设米袋在CD 上运动的加速度大小为a ,由牛顿第二定律得: mg sin θ+μmg cos θ=ma ,代入数据得:a =10 m/s 2所以能上升的最大距离:s =v 202a=1.25 m. (2)设CD 部分运转速度为v 1时米袋恰能达到D 点,则米袋速度减为v 1之前的加速度为:a 1=-g (sin θ+μcos θ)=-10 m/s 2米袋速度小于v 1至减为0前的加速度为a 2=-g (sin θ-μcos θ)=-2 m/s 2由v 21-v 202a 1+0-v 212a 2=4.45 m. 解得:v 1=4 m/s.即要把米袋送到D 点,CD 部分的速度v CD ≥v 1=4 m/s米袋恰能运动到D 点所用时间最长为:t max =v 1-v 0a 1+0-v 1a 2=2.1 s 若CD 部分传送带的速度较大,使米袋沿CD 上滑时所受摩擦力一直沿皮带向上,则所用时间最短,此种情况米袋加速度一直为a 2,由s CD =v 0t min +12a 2t 2min 得:t min =1.16 s所以,所求的时间t 的范围为1.16 s≤t ≤2.1 s答案:(1)1.25 m (2)v CD ≥4 m/s 1.16 s≤t ≤2.1 s。

ER08专题02-第5讲传送带和板块模型JSB副本

ER08专题02-第5讲传送带和板块模型JSB副本

微专题02 力与直线运动第5讲传送带、板块等模型2024 .01. 211. 理解板块模型和传送带模型的特点;2.会应用牛顿定律解决常规的板块模型和传送带模型问题。

考向1 传送带模型1.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向.2.解题关键00.2s货物的加速度为0.2 1.2s货物的加速度为根据动力学公式有代入数据计算可得θ=,μ=37 A错误;00.2s货物的位移为末货物的速度为0.2 1.2s货物的位移为货物从A运动到传送带对物块做的功为B错误;.货物从A00.2s皮带运动的距离为0.2 1.2s皮带运动的距离为货物对传送带做功为C正确;.货物从A过程中,货物与传送带的相对位移为货物与传送带摩擦产生的热量为考向2 板块模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题方法:整体法、隔离法.4.解题思路(1)求加速度:因题目所给的情境中至少涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变)。

(2)明确关系:对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程。

这是解题的突破口。

特别注意滑块和滑板的位移都是相对地的位移。

求解中更应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。

[例3]如图所示,在水平桌面上叠放着质量均为M的A、B两块木板,在木板A的上面放着一个质量为m的物块C,木板和物块均处于静止状态.A、B、C之间以及B与地面之间的动摩擦因数都为μ.若用水平恒力F向右拉动木板A,使之从C、B之间抽出来,已知重力加速度为g,则拉力F的大小应该满足的条件是(已知最大静摩擦力的大小等于滑动摩擦力)()A.F>μ(2m+M)g B.F>μ(m+2M)gC.F>2μ(m+M)g D.F>2μmg解析:选C. 无论F多大,摩擦力都不能使B向右滑动,而滑动摩擦力能使C产生的最大加速度为μg,故F-μmg-μ(m+M)gM>μg时,即F>2μ(m+M)g时A可从B、C之间抽出,选项C正确.考向3[例3]考向4[例4]1.传送带的摩擦力分析(1)关注两个时刻①初始时刻:物体相对于传送带的速度或滑动方向决定了该时刻的摩擦力方向。

高中物理【传送带模型和板块模型】

高中物理【传送带模型和板块模型】

专题课7传送带模型和板块模型题型一传送带模型1.基本类型传送带运输是利用货物和传送带之间的摩擦力将货物运送到其他地方去,有水平传送带和倾斜传送带两种基本模型。

2.分析流程3.注意问题求解的关键在于根据物体和传送带之间的相对运动情况,确定摩擦力的大小和方向。

当物体的速度与传送带的速度相同时,物体所受的摩擦力有可能发生突变。

如图所示,水平传送带两端相距x=8 m,工件与传送带间的动摩擦因数μ=0.6,工件滑上A端时速度v A=10 m/s,设工件到达B端时的速度为v B。

(g 取10 m/s2)(1)若传送带静止不动,求v B的大小;(2)若传送带顺时针转动,工件还能到达B端吗?若不能,说明理由;若能,求到达B点的速度v B′的大小;(3)若传送带以v=13 m/s逆时针匀速转动,求物块在传送带上划痕的长度。

[解析](1)根据牛顿第二定律可知加速度大小μmg=ma则a =μg =6 m/s 2且v 2A -v 2B =2ax ,故v B =2 m/s 。

(2)能,当传送带顺时针转动时,工件受力不变,其加速度不发生变化,仍然始终减速,故工件到达B 端的速度v B ′=v B =2 m/s 。

(3)物体速度达到13 m/s 时所用时间为t 1=v -v A a =0.5 s运动的位移为x 1=v A t 1+12at 21=5.75 m传送带的位移x 2=v t =6.5 m此后工件与传送带相对静止,所以划痕的长度x =x 2-x 1=0.75 m 。

[答案] (1)2 m/s (2)能 2 m/s (3)0.75 m如图所示,传送带与地面的夹角θ=37°,A 、B 两端间距L =16 m ,传送带以速度v =10 m/s 沿顺时针方向运动,物体质量m =1 kg 无初速度地放置于A 端,它与传送带间的动摩擦因数μ=0.5,sin 37°=0.6,g 取10 m/s 2,试求:(1)物体由A 端运动到B 端的时间;(2)物体与传送带共速前的相对位移。

核心素养微专题1 动力学两大模型——“传送带模型”和“板—块”模型

核心素养微专题1  动力学两大模型——“传送带模型”和“板—块”模型
6
二轮 ·物理
(1)工件从A点第一次被传送到CD传送带沿传送带上升的最大高度和所用 的总时间; (2)要使工件恰好被传送到CD传送带最上端,CD传送带沿顺时针方向运 转的速度v2的大小(v2<v1)。 [思路探究] (1)工件在水平传送带上运动时受到哪几个力作用?工件在 水平传送带上做什么运动? (2)工件到达B点的速度是多少? (3)工件在倾斜传送带上运动时受到哪几个力作用? (4)工件在倾斜传送带上做什么运动?如何理解第(2)问中的“恰好”?
8
二轮 ·物理
由于x1<LAB,工件随后在传送带AB上做匀速直线运动直到B端,则匀速 运动的时间为t2=LABv-1 x1=0.3 s 工件滑上CD传送带后在重力和滑动摩擦力作用下 做匀减速运动,设其加速度大小为a2,速度减小到 零时所用时间为t3,位移大小为x2,受力分析如图 乙所示,则FN2=mgcos θ
4
二轮 ·物理
(3)关注临界:传送带问题还常常涉及到临界问题,即物体与传送带速度 相同,这时会出现摩擦力改变的临界状态,具体如何改变要根据具体情 况判断。注意倾斜传送带问题,一定要比较斜面倾角的正切值与动摩擦 因数的大小关系。
5
二轮 ·物理
[示例1] 某工厂为实现自动传送工件设计了如图所示的传送装置,它由 一个水平传送带AB和倾斜传送带CD组成,水平传送带长度LAB=4 m, 倾斜传送带长度LCD=4.45 m,倾角为θ=37°,AB和CD通过一段极短 的光滑圆弧板过渡,AB传送带以v1=5 m/s的恒定速率顺时针运转,CD 传送带静止。已知工件与传送带间的动摩擦因数均为μ=0.5,重力加速 度g取10 m/s2。现将一个工件(可看作质点)无初速度地放在水平传送带 最左端A点处,求:
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传送带模型一、模型认识二、模型处理1.受力分析:重力、弹力、摩擦力、电场力、磁场力(其中摩擦力可能有也可能没有,可能是静摩擦力也可能是动摩擦力,还可能会发生突变。

)2.运动分析:合力为0,表明是静止或匀速;合力不为0,说明是变速,若a恒定则为匀变速。

(物块的运动类型可能是静止、匀速、匀变速,以匀变速为重点。

)三、物理规律观点一:动力学观点:牛顿第二定律与运动学公式观点二:能量观点:动能定理、机械能守恒、能量守恒、功能关系(7种功能关系)四、例题例1:如图所示,长为L=10m的传送带以V=4m/s的速度顺时针匀速转动,物块的质量为1kg,物块μ=。

与传送带之间的动摩擦因数为0.2①从左端静止释放,求物块在传送带上运动的时间,并求红色痕迹的长度。

②从左端以v=8m/s的初速度释放,求物块在传送带上运动的时间。

③从右端以v=6m/s的初速度释放,求物块在传送带上运动的时间。

④若物块从左端静止释放,要使物块运动的时间最短,传送带的速度至少为多大?(1)3.5s 4m (3)6.25s 25m (4)例2:已知传送带的长度为L=12m ,物块的质量为m=1kg ,物块与传送带之间的动摩擦因数为0.5μ= ①当传送带静止时,求时间。

②当传送带向上以V=4m/s 运动时,求时间。

③当传送带向下以V=4m/s 运动时,求时间。

④当传送带向下以V=4m/s 运动,物块从下端以V 0=8m/s 冲上传送带时,求时间。

例3:一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为,初始时,传送带与煤块都是静止的,现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动,求此黑色痕迹的长度。

2000()2v a g l a gμμ-=例4:一足够长传送带以8m/s,以22/m s 的加速度做匀减速运动至停止。

在其上面静放一支红粉笔,动摩擦因数为0.1。

求粉笔相对传送带滑动的时间及粉笔在传送带上留下红色痕迹的长度。

例5:10只相同的轮子并排水平排列,圆心分别为O 1、O 2、O 3…、O 10,已知O 1O 10=3.6 m ,水平转轴通过圆心,轮子均绕轴以4πr/s 的转速顺时针匀速转动.现将一根长0.8 m 、质量为2.0 kg 的匀质木板平放在这些轮子的左端,木板左端恰好与O 1竖直对齐(如图所示),木板与轮缘间的动摩擦因数为0.16,不计轴与轮间的摩擦,g 取10 m/s 2,试求:(1)木板在轮子上水平移动的总时间;(2)轮子因传送木板所消耗的机械能.(1)2.5 s (2)5.12 J板块模型一、模型认识二、模型处理1.受力分析:重力、弹力、摩擦力、电场力、磁场力(其中摩擦力可能有也可能没有,可能是静摩擦力也可能是动摩擦力,还可能会发生突变。

)2.运动分析:合力为0,表明是静止或匀速;合力不为0,说明是变速,若a 恒定则为匀变速。

(物块的运动类型可能是静止、匀速、匀变速,以匀变速为重点。

)三、物理规律观点一:动力学观点:牛顿第二定律与运动学公式观点二:能量观点:动能定理、机械能守恒、能量守恒、功能关系(7种功能关系)观点三:动量 的观点:动量定理、动量守恒定律四、例题例1:已知条件:0v =6m/s M=2kg m=1kg 0.2μ= 地面光滑①m 的速度减为0时需要的时间,此时M 的速度及M 、m 的位移。

②二者经过多长时间达到共速,共同速度为多大?③m 在M 上面留下的痕迹。

④为保证m 不从M 上掉下来,M 的长度至少为多少?例2:已知条件:开始二者均静止,拉力F=kt M、m之间的动摩擦因数为1μ,M与地面之间的动摩擦因数为2μ,试分析M、m的运动情况。

课后练习:1.如图所示,物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg,m B=2kg,A、B间动摩擦因数μ=0.2, A物上系一细线,细线能承受的最大拉力是20N,水平向右拉细线,假设最大静摩擦力等于滑动摩擦力.下述中正确的是(g=10m/s2)( AC )A.当拉力F<12N时,A相对B静止B.当拉力F>12N时,A相对B滑动C.当拉力F=16N时,B受A的摩擦力等于4ND.无论拉力F多大,A相对B始终静止2.如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2.下列反映a1和a2变化的图线中正确的是( A )3.如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。

在物块放到木板上之后,木板运动的速度-时间图象可能是下列选项中的( A )4.很薄的木板a 在水平地面上向右滑行,可视为质点的物块b 以水平速度0v 从右端向左滑上木板。

二者按原方向一直运动至分离,分离时木板的速度为a v ,物块的速度为b v ,所有接触面均粗糙,则( ABC )A 0v 越大,a v 越大B 木板下表面越粗糙,b v 越小C 物块质量越小,a v 越大D 木板质量越大,b v 越小5.子弹以某一速度水平击穿放置在光滑水平面上的木块,子弹与木块的速度—时间图象如图所示。

假设木块对子弹的阻力大小不变,且子弹仍能击穿木块,下列说法正确的是( BC )A .仅增大子弹入射的初速度,木块获得的动能增加B .仅增大子弹入射的初速度,子弹穿过木块的时间变短C .仅减小子弹的质量,木块获得的动能变大D .仅减小木块的质量,子弹和木块系统产生的热量变大6.一块长木板B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力F 拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参考系,A 、B 都 向前移动一段距离.在此过程中( BD )A .外力F 做的功等于A 和B 动能的增量B .B 对A 的摩擦力所做的功等于A 的动能增量C .A 对B 的摩擦力所做的功等于B 对A 的摩擦力所做的功D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和7.如图所示,质量为M 、长度为L 的木板静止在光滑的水平面上,质量为m 的小物体(可视为质点)放在木板上最左端,现用一水平恒力F 作用在小物体上,使物体从静止开始做匀加速直线运动。

已知物体和木板之间的摩擦力为f 。

当物体滑到木板的最右端时,木板运动的距离为x ,则在此过程中( A )A .物体到达木板最右端时具有的动能为(F -f )(L +x )B .物体到达木板最右端时,木板具有的动能为f (x +L )C .物体克服摩擦力所做的功为fLD .物体和木板增加的机械能为Fx8.如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块。

已知木块的质量m =1 kg ,木板的质量M =4 kg ,长L =2.5 m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2。

现用水平恒力F =20 N 拉木板,g 取10 m/s 2。

(1)求木板加速度的大小(2)要使木块能滑离木板,求水平恒力F 作用的最短时间(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为μ1=0.3,欲使木板能从木块的下方抽出,对木板施加的拉力应满足什么条件?(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30 N ,则木块滑离木板需要多长时间?(1)2.5 m/s 2 (2)1 s (3)F >25 N (4)2 s9.如图所示,质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度从左端冲上木板。

从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v -t 图象分别如图中的折线acd 和bcd 所示 ,a 、b 、c 、d 点的坐标为a (0,10)、b (0,0)、c (4,4)、d (12,0)。

根据v -t 图象,(g 取10 m/s 2),求:(1)物块冲上木板做匀减速直线运动的加速度大小a1,木板开始做匀加速直线运动的加速度大小a 2,达到相同速度后一起匀减速直线运动的加速度大小a(2)物块质量m 与长木板质量M 之比(3)物块相对长木板滑行的距离Δx答案 (1)1.5 m/s 2 1 m/s 2 0.5 m/s 2 (2)3∶2 (3)20 m10.一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图像如图所示。

己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦.物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。

取重力加速度的大小g =10m/s2求:(1)木板与地面间的动摩擦因数(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.1 =0.2 8911.如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。

变式1. 例1中若拉力F作用在A上呢?如图2所示。

变式2. 在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。

12.如图5所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数,取g=10m/s2,若在铁块上施加一个大小从零开始连续增加的水平向右的力F,通过分析和计算后,请在图6中画出铁块受到木板的摩擦力f2随拉力F大小变化的图象。

(设木板足够长)。

相关文档
最新文档