机械常见零件三视图画法

合集下载

机械制图-三视图

机械制图-三视图

三个视图
V
H
W
三投影面体系: 在两投影面
体系的基础上, 再增加一个同时 与V、H面都垂直 的W面。
三个视图
V
W
H 把物体放在三投影面体系中,用正投影法得到 物体的三个投影,称为三视图。
三个视图
V W
H
三个投影面的名称
V
主视图
左视图 W
450
H
俯视图
第三分角
第II分角
V
第I分角 W 第III分角
三视图
三视图的形成
视图的形成 用正投影法, 将物体投影到 某一投影面上, 称为视图。
一个视图 不能唯一确定物体的形状
两个视图
V
H
两投影面体系V/H: 两个投影面相互垂 直,物体在两投影 面体系中可得到物 体的两个投影。
投影面的展开: V面不动 H面向下转动90度
两个视图
两个视图 也不能唯一确定物体的形状
H
第V分角
第三分角
把三个视图展开
H 顶视图
前视图 V
右视图 W
三视图的投影规律
图和物 体方位 的关系
视图与 视图的 关系
2.三视图的投影规律
图和物体大小的关系
长 宽
V 主视图
左视图

W









俯视图

450

H
2.三视图的投影规律
图和物体方位的关系 左视图
V 主视图

上W
主俯分左右 主左看上下 俯左辨前后

右后 前
下 后


左 H 俯视图 前

机械制图基本体三视图

机械制图基本体三视图
(n)

k
由圆锥面和底面组成。
S
A
如何在圆锥面上作直线?
过锥顶作一条素线。
圆的半径?
3.圆球
三个视图分别为三 个和圆球的直径相等的 圆,它们分别是圆球三 个方向轮廓线的投影。
圆母线以它的直径为轴旋转而成。
⑵ 圆球的三视图
⑶ 轮廓线的投影与曲 面可见性的判断
左视图 —— 体的侧面投影
2.三视图之间的度量对应关系
三等关系
主视俯视长相等且对正
主视左视高相等且平齐
俯视左视宽相等且对应




长对正
宽相等
高平齐
视图就是将物体向投影面投射所得的图形。
3.三视图之间的方位对应关系
主视图反映:上、下 、左、右 俯视图反映:前、后 、左、右 左视图反映:上、下 、前、后












6.2 基本体的形成及其三视图
常见的基本几何体 平面基本体 曲面基本体
一、平面基本体
点的可见性规定: 若点所在的平面的投影可见,点的投影也可见;若平面的投影积聚成直线,点的投影也可见。
由于棱柱的表面都是平面,所以在棱柱的表面上取点与在平面上取点的方法相同。
⑷ 圆球面上取点
k
辅助纬圆法
k
k
⑴ 圆球的形成
圆的半径?
3.圆环
(1) 圆环的形成
(2) 圆环的三视图
小 结
重点掌握:
基本体的三视图画法及面上找点的方法。
⒈ 平面体表面找点,利用平面上找点的方法。
⒉ 圆柱体表面找点,利用投影的积聚性。

机械制图基本体的三视图和其截交线相贯线的画法专题培训课件

机械制图基本体的三视图和其截交线相贯线的画法专题培训课件

a (b)
点的可见性规定点:
b
若点所在的平面的投影可见, 点的投影也可见;若平面的投影 a
积聚成直线,点的投影也可见。
a
b
第一节 基本体的三视图
• 一、平面基本体的三视图
【例3-1】根据已知条件,补画第三视图,并求作形体 表面A、B、C三点的三面投影。
S
第一节 基本体的三视图
• 一、平面基本体的三视图
k(n) b′ d′
ns● b
k d
●(n) k b″
如何在圆锥面上作直线?
过锥顶作一条素线。
第一节 基本体的三视图
• 二、回转体的三视图
【例3-4】已知圆锥的三视图, M、N是圆锥表面上的点,给定 其单面投影,求作两点的三面投影。
第一节 基本体的三视图
• 二、回转体的三视图
圆球任何方向的投影都是等径的圆
第三节 相贯线的画法
• 一、相贯线概述
轴线相对位置变化对两圆柱相贯线的影响
第三节 相贯线的画法
• 一、相贯线概述
★ 相贯线一般为光滑封闭的空
间曲线,它是两回转体表面
的共有线。
★ 作图方法
• 表面取点法
• 辅助平面法 确定交线
★ 作图过程
的范围
• 先找特殊点 • 补充中间点
确定交线的 弯曲趋势
• 二、两圆柱正交的相贯线 例 :圆柱与圆柱相贯,求其相贯线。
例:求四棱锥被截切后的俯视图和左视图。
例:求八棱柱被平面P截切后的俯视图。
P 4≡5
2≡3≡6≡7
1≡8
8
7
5 6
3 4
1
2
5 7
8
6 3
4

2024版机械制图三视图PPT课件

2024版机械制图三视图PPT课件
公差要求
对于零件的重要尺寸,应给出相应的公差要求,以保证零件的加工精度和装配 精度。
简化画法应用场景探讨
简化画法的概念
在不引起误解的情况下,省略部分投影线或简化作图方法的画 法。
简化画法的应用场景
当零件的结构比较简单,或者某些结构在投影时会产生重影或 虚线时,可以采用简化画法。例如,对于肋板、轮辐等结构, 在投影时可以采用省略画法或规定画法进行简化。
斜投影法
投影线倾斜于投影面。
三视图之间关系解析
位置关系
以主视图为准,俯视图在主视图的正下方,左视图在主视图的正右方。
投影关系
主视图反映物体的长度和高度,俯视图反映物体的长度和宽度,左视图反映物体的高度和宽 度。
方位关系
主视图上物体的左、右方位与俯视图一致,而左视图上物体的左、右方位与主视图和俯视图 相反;主视图上物体的上、下方位与左视图一致,而俯视图上物体的上、下方位与主视图和 左视图相反。
盘盖类零件
盘盖类零件左视图呈现为 圆形或椭圆形,反映零件 的厚度和直径信息。
叉架类零件
叉架类零件结构较为复杂, 左视图能够反映其主要轮 廓和支撑部分的结构。
尺寸标注和公差要求说明
尺寸标注
在左视图中,需要标注物体的长度、宽度和高度等尺寸信息,以及必要的直径、半径等细节尺寸。
公差要求
根据零件的精度要求,在左视图中标注出相应的公差等级和数值,以确保加工和装配的精度。
01
轴套类零件
以轴线水平放置作为主视图,并 采用全剖视图画出其内部结构。
02
03
叉架类零件
叉架类零件形状不规则,结构比 较复杂,需要选择最能反映其形 状特征的方向作为主视图的投影 方向。
04
尺寸标注和公差要求说明

机械制图-三视图断面图(共42张PPT)可编辑全文

机械制图-三视图断面图(共42张PPT)可编辑全文

支架表达方案选择
❖ 方案一
动画演示1 动画演示2
动画演示3 动画演示4
❖ 方案二
❖ 方案三
方案一
方案二· 方案三
错 误
A—A
正确
但假设按横向(剖切平面垂直于肋、轮幅及薄壁厚度方向)剖切时 ,这些结构应按规定画出剖面符号。
A—A
〔2〕当物体回转体上均匀分布的肋、轮幅和孔等结构不处于剖切 平面上时,可将这些结构旋转到剖切平面上按对称形式画出。
正确
错误
〔3〕当物体具有假设干相同结构(孔、齿、槽等) ,并按一定 规律分布时,只需画出几个完整的结构,其余用细实线连接,或用对 称中心线表示孔的中心位置。
画在视图之内的断面图称为重合断面图。 重合断面图的轮廓线用细实线绘制。当视图
中轮廓线与重合断面图的图形重ห้องสมุดไป่ตู้时,视图中的 轮廓线仍应连续画出,不可间断。
图形对称的重合断面图
为了得到断面的真实形状,剖切平面一般应垂 直于物体上被剖切局部的轮廓线。
3 断面图的标注
移出断面图的标注
〔1〕配置在剖切符号延长线上的不对称移出断面图,可省略字母 。
当同一物体有几个被放大部位时,必须用罗马数字依次标明,并在上 方标注出相应的大写罗马数字和采用的比例。假设只有一处被放大时,在 局部放大图上方只需注明所采用的比例。
规定画法和简化画法
〔1〕对于物体上的肋、轮幅及薄壁等,如按纵向〔剖切平面 平行于它们的厚度方向〕剖切时,这些结构都不画剖面符号,而且 用粗实线将它与其相邻局部分开。
(13) 在不致引起误解时,零件图中的小圆角、锐边的小倒圆 或45°小倒角允许省略不画,但必须注明尺寸或在技术要求中加以说明

§13-5 表达方法综合应用

机械制图——画组合体零件三视图

机械制图——画组合体零件三视图

组合体零件三视图的应用与发展趋势
应用领域:机 械设计、制造、
维修等领域
发展趋势:数 字化、智能化、
自动化
技术进步:三 维建模、虚拟 现实等技术的
应用
挑战与机遇: 提高效率、降 低成本、提高
产品质量
感谢您的观看
汇报人:
组合体视图的画图步骤
确定组合体零 件的三视图位 置关系
画出组合体零 件的主视图
画出组合体零 件的俯视图
画出组合体零 件的左视图
检查三视图是 否正确并进行 修改和完善
组合体视图的尺寸标注
尺寸标注的位置:在视图的适当位置便于阅读和理解 尺寸标注的格式:采用国家标准如GB/T 14691-2008 尺寸标注的内容:包括长度、宽度、高度、直径、半径等 尺寸标注的精度:根据实际需要选择合适的精度等级
机械制图——画组合 体零件三视图
,
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
组合体零件三 视图的识读
02
机械制图基础 知识
05
组合体零件三 视图的绘制实 例
03
组合体零件三 视图的画法
06
组合体零件三 视图的绘制技 巧与提高
01 添加章节标题
02 机械制图基础知识
投影法分类
正投影法:将物体 投影到与视线垂直 的平面上得到物体 的正面、侧面和顶 面视图
04
组合体零件三视图的识 读
读图的基本要领
识别尺寸:注意尺寸标注的 位置和含义如长度、宽度、 高度等
观察视图:了解视图的种类 和特点如主视图、俯视图、 左视图等
分析结构:分析零件的结构 和组成如螺纹、键槽、孔等
理解技术要求:理解图纸中 的技术要求如公差、表面粗

机械制图正投影及三视图画法

机械制图正投影及三视图画法

• 二、投影法的分类
若投射光源为点光源或投 射线汇交于一点,这样的
投影法叫做中心投影法
用相互平行的投射线,在 投影面上作出物体投影的
方法叫做平行投影法
第一节 正投影法概述
• 二、投影法的分类
相对于中心投影法,平行投影法更能反映物体轮廓的 真实大小。平行投影法又可分为两类:
正投影法与斜投影法,一般用正投影法绘制机械图样
第二节 三视图的形成及其投影规律
• 一、三视图的形成
为了能够准确地反映物体的长、宽、高的形状及位置,通常用 三面投影体系来表达其形状与大小,基本表达方法是三视图
三面投 影体系 的建立 与展开
第二节 三视图的形成及其投影规律
• 一、三视图的形成
➢主视图:从工件的前方向后
投影,在V面上所得到的视图
➢俯视图:从工件的上方向下
• 二、直线的投影
直线与点的相对位置关系
a' c'
A X
V
b' C
0B
b
a' c' b'
X
0
b
ac
c
H
a
若点的投影分别在直线的三面同名投影上(会将线段的各个投影分 割成和空间相同的比例),则可判断点在线上;反之,若点的投影 有一个不在直线的同名投影上,则该点必不在此直线上。
第三节 立体表面几何元素投影分析
第三节 立体表面几何元素投影分析
• 一、点的投影
点的三 面投影 的形成
空间点A的三面投影仍为点,分别用对应的小写字 母a、a′、a〞来标记
第三节 立体表面几何元素投影分析
• 一、点的投影
点投影“宽相等” 的三种作法
第三节 立体表面几何元素投影分析

机械制图-基本体的三视图及其截交线、相贯线的画法

机械制图-基本体的三视图及其截交线、相贯线的画法

01
根据零件的结构特点,选择主视图、俯视图和左视图进行绘制。
绘制步骤
02
先绘制各基本体的三视图,再绘制它们之间的截交线和相贯线。
注意事项
03
确保零件的整体结构清晰,各部分之间的相对位置准确,符合
实际尺寸。
感谢您的观看
THANKS
曲面体的三视图
球体的三视图都是圆,圆锥体的 三视图是圆、椭圆加线段,圆台 体的三视图是圆、椭圆加圆弧。
02
截交线的画法
平面截切圆柱体的截交线画法
总结词
圆柱体被平面截切后,其截交线的形状取决于平面的位置。常见的截交线形状 有矩形、椭圆和抛物线等。
详细描述
当平面与圆柱体轴线平行时,截交线为矩形;当平面与圆柱体轴线垂直且经过 顶点时,截交线为椭圆;当平面与圆柱体轴线垂直且不经过顶点时,截交线为 抛物线。
注意事项
确保组合体的整体结构清 晰,各基本体之间的相对 位置准确。
截交线和相贯线的绘制实例
截交线
当一个平面与立体相交时,形成的交 线称为截交线。
相贯线
绘制方法
根据立体的形状和截平面或相交立体 的位置,使用投影法绘制截交线和相 贯线。
两个立体相交时,形成的交线称为相 贯线。
实际机械零件的绘制实例
选择合适的视图
相贯线的画法
01

02
ch, whose白发ch via The塍通过 re CA也 C. capture which长安Ch the
03
challenging st that ch以获得说话
相贯线的画法
01

02
E care which Coast highly changing that high mast Pyil C spr other mind CO to C.

三视图画法

三视图画法
选择适当的视图方向,以展示零件的主 要形状和特征。
装配图组成元素和表达要求
01
组成元素:装配图主要包括零件、连接件、紧固件等,以 及相关的尺寸、公差、技术要求等标注。
02
表达要求:装配图的表达要求如下
03
清晰表达各零件之间的相对位置和连接关系。
04
标注必要的尺寸,如配合尺寸、安装尺寸等。
05
注明公差、配合性质、表面粗糙度等技术要求。
对于复杂的物体,可以使用辅助线、剖面图等辅助手段来检查视图的正确性。
如果发现错误或遗漏部分,应及时进行修正,以确保三视图的准确性和完整性。
04
常见几何体三视图画法举例
长方体、正方体等规则几何体
01
02
03
观察方向
选择正面、侧面和上面三 个方向作为观察面。
轮廓线绘制
根据几何体的形状和大小 ,在三个观察面上分别绘 制出对应的轮廓线。
三视图画法
汇报人:XX 2024-01-23
contents
目录
• 三视图基本概念与原理 • 正投影法与三视图形成 • 绘制三视图方法与步骤 • 常见几何体三视图画法举例 • 组合体三视图画法探讨 • 复杂零件或装配图三视图画法
01
三视图基本概念与原理
三视图定义及作用
定义
三视图是主视图、俯视图、左视 图的总称,分别是从物体正面、 上面和侧面投影得到的视图。
隐藏线处理
判断轮廓线之间的遮挡关 系,用虚线表示被遮挡的 部分。
圆柱、圆锥等旋转体
观察方向
隐藏线处理
同样选择正面、侧面和上面三个方向 作为观察面。
根据旋转体的形状和观察角度,判断 并处理被遮挡的轮廓线。
轮廓线绘制

《机械制图》组合体三视图的画法

《机械制图》组合体三视图的画法

选择原则: 1)安放平稳; 2)反映形状特征及其相对位置; 3)其余视图虚线少。
B C
D A
综合考虑,选择A向作为主视图的投射方向。
6
组合体三视图的画法
3.选比例、定图幅
视图尽量选择1:1的比例,根据 物体三个视图所占面积,视图间标 注尺寸的位置、间距,标题栏所占 位置选用合适的标准图幅。
4.布图、画基准线
机械制图
MECHANICAL DRAWING
目录
CONTENTS
组合体三视图的画法
组合体三视图的画法 以轴承座为例绘制三视图
3
组合体三视图的画法
1.形体分析
组成 位置关系 相邻表面连接方式
4
组合体三视图的画法
1.形体分析
该轴承座可以分解成四 部分。
支撑板
底板
圆筒 肋板
5
组合体三视图的画法
2.选择主视图
组合体三视图的画法
组合体三视图的画法步骤
1、形体分析 2、选择主视图 3、选择比例、定图幅 4、布图、画基准线 5、画底稿 6、检查、描深 7、标注尺寸 8、填写标题栏
22
组合体三视图的画法 练习
画下面组合体的三视图,尺寸自定。
23
谢谢观看
Thanks for looking
2 6
圆筒的转向轮 廓线在支撑板 内,不再画线
2 13 13
16
组合体三视图的画法
5.画底稿
1)画底板 2)画圆筒 3)画支撑板 4)画肋板
17
圆筒的转向轮 廓线已在肋板 内,不再画线
组合体三视图的画法
5.画底稿
1)画底板 2)画圆筒 3)画支撑板 4)画肋板
18
支撑板与肋板结合面 已融在组合体内,不 再画线

机械制图课程--三视图的画法

机械制图课程--三视图的画法

机械制图课程–三视图的画法引言在机械制图课程中,学习三视图的画法是非常重要的一部分。

通过正确绘制三视图,我们可以描述一个物体的外观和尺寸,为制造和加工提供准确的依据。

本文将介绍三视图的基本概念和画法,并提供一些实用的技巧和注意事项。

什么是三视图三视图是指一个物体的正视图、俯视图和侧视图,通过这三个视图可以全面而准确地描述物体的外观和尺寸。

•正视图:从物体的正面观察,以垂直于物体的视角绘制。

•俯视图:从物体的上方观察,以垂直于物体的视角绘制。

•侧视图:从物体的侧面观察,以垂直于物体的视角绘制。

通过绘制这三个视图,我们可以得到物体在不同方向上的形状和尺寸信息,利于设计和制造过程中的准确沟通和理解。

三视图的画法步骤绘制三视图的过程可以分为以下步骤:1.确定物体的投影方向:根据题目或实际需求,确定物体相对于观察者的位置和方向。

一般来说,正视图位于左侧,侧视图位于右侧,俯视图位于上方。

2.绘制物体的正视图:根据题目或实际需求,确定物体正视图的尺寸和比例,并按照比例在纸上绘制物体的形状和细节。

注意保持物体的轴线与视图之间的一致性。

3.绘制物体的俯视图:根据题目或实际需求,确定物体俯视图的尺寸和比例,并按照比例在纸上绘制物体的形状和细节。

注意保持物体的轴线与视图之间的一致性。

4.绘制物体的侧视图:根据题目或实际需求,确定物体侧视图的尺寸和比例,并按照比例在纸上绘制物体的形状和细节。

注意保持物体的轴线与视图之间的一致性。

通常侧视图位于俯视图的右侧。

5.标注尺寸信息:根据物体的实际尺寸确定比例尺,将尺寸信息标注在三视图上,包括长度、宽度、高度以及其他关键尺寸。

标注要清晰、准确,方便理解和后续的加工和制造。

6.完善细节部分:检查三视图的绘制是否完整和准确。

根据实际尺寸和细节,确定是否需要进一步添加细节信息,如孔的位置和直径、倒角的大小等。

三视图的绘制技巧和注意事项在绘制三视图时,应注意以下技巧和事项:•视图之间的一致性:保持三个视图之间的相对位置和比例一致,特别是轴线的位置和方向。

最强机械制图CAD三视图(共9张PPT)

最强机械制图CAD三视图(共9张PPT)
三视图讲义
一、投影的分类:
1.中心投影法(如图一) 2.平行投影法 1)斜投影法(如图二) 2)正投影法(如图三)
S投 射 中 心 點
A
C
B
a c
b
中心投影法
A
C B a
c b 斜投影法
A C
B a
c b 正投影法
二、正投影法的基本原理 1.正投影法和三视图(如图四、五、六圖圖) 一一
圖二
圖三
用正投影法在一个投影面上得到的一个视图,只能反映物体一个方向的形状,不能完 整反映物体的形状.因此,要表示物体完整的形状,就必须从几个方向进行投射,画出几个 视图,通常用三个视图表示,即主视图、右视图、俯视图.
1为)视了图作1中图)的方物每便个,通体封常闭上用线简互框化,通的相常轴表平向示伸行物缩体系的上数一,线即个p=表段q面=r,=(平1轴.面或测曲投面)的影投仍影. 互相平行. 平行于坐标轴的线段,轴 作2)物图体时上,先测不定平投出行直影于角轴坐仍测标投轴平影和面行坐的标于平原面点相图,画形应出,在轴的轴测测轴轴图,再上测按变立成轴体原表,形面且的上类同各似顶形一点. 或轴线段向端线点的段坐标的,画所出其有轴测线投段影,然的后连轴接向有关伸点,完缩成系轴测数图. 相同. 三视图与物体方位的对应关系(如图八)
俯视图反映物体的前、后和左、右的相对位置关系; 右视图反映物体的前、后和上、下的相对位置关系;
YH
俯視圖
X
O
YW
主視圖
右視圖
Z 三視圖的展開
圖六






圖七
第2页,共9页。






三视图画法-三视图得画法步骤

三视图画法-三视图得画法步骤

俯视图方向
三视图的画法
左视图方向
三视图的作图步骤
1.确定主视图的方向 2.布置视图
3.先画出能反映物体真实形状 的一个视图(一般为主视图)
4.运用 长对正、高平齐、宽相等 1 原则画出其它视图 5.检查
主视图方向
主视图
左视图
要求:俯视图安排在主视图的正下方, 左视图安排在主视图的正右方。 俯视图
练习一:画出下列基本几何体的三视图
通常一个完整的尺寸标注形式包括了尺寸界线尺寸线、箭头和尺寸 数字四个要素。
⑴尺寸界线
用细实线绘制,由图形的轮廓线、轴线或对称中心线引出(如60) 并可由轮廓线、轴线或对称中心线代替(如22)。 尺寸界线应超过尺寸线2 — 3mm 一般情况下尺寸界线应与尺寸线垂直,必要时也可倾斜。
⑵ 尺寸线 用细实线绘制,与所标注的线段平行。 尺寸线不能被其他图线代替,也不能作为其他图线的延长线, 即必须单独画出。标注圆或半圆的尺寸时 尺寸线应过圆心。 ⑶ 箭头 为尺寸线终端形式中的一种,箭头 的画法如图所示。 作图时如果画箭头的位置不够 , 可用 45°斜线或圆点代替箭头,如右图所示。 ⑷ 尺寸数字 尺寸数字应注写清楚且不允许被任何所穿过,若无法 避免时应将图线断开。应注意尺寸数字的注写位置和方向 线性尺寸的数字一般注写在尺寸线的上方,也允许注写在 尺寸线的中断处。垂直方向 的尺寸数字应注写在尺寸线的 左边方向向左,如图所示。
⑵ 图样中(包括技术要求和其他说明)的尺寸,以毫米为单位时, 不需标注计量单位的代号或名称。如果要采用其他单位则必须注 明相应的计量单位的代号或名称。
⑶ 图样中所标注的尺寸为该图样所示机件的最后完工尺寸,否则应 另加说明。 ⑷ 机件的每一尺寸一般只标注一次,并应标注在反映该结构最清晰 的图形上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.轴套类零件这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。

为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。

在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。

由此注出图中所示的Ф14 、Ф11(见A-A断面)等。

这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。

而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。

如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。

2.盘盖类零件这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。

在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。

如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。

在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。

3.叉架类零件这类零件一般有拨叉、连杆、支座等零件。

由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。

对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。

踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。

在标注叉架类零件的尺寸时,通常选用安装基面或零件的对称面作为尺寸基准。

尺寸标注方法参见图。

4.箱体类零件一般来说,这类零件的形状、结构比前面三类零件复杂,而且加工位置的变化更多。

这类零件一般有阀体、泵体、减速器箱体等零件。

在选择主视图时,主要考虑工作位置和形状特征。

选用其它视图时,应根据实际情况采用适当的剖视、断面、局部视图和斜视图等多种辅助视图,以清晰地表达零件的内外结构。

在标注尺寸方面,通常选用设计上要求的轴线、重要的安装面、接触面(或加工面)、箱体某些主要结构的对称面(宽度、长度)等作为尺寸基准。

对于箱体上需要切削加工的部分,应尽可能按便于加工和检验的要求来标注尺寸。

5.零件常见结构的尺寸注法常见孔的尺寸注法(盲孔、螺纹孔、沉孔、锪平孔);倒角的尺寸注法。

盲孔螺纹孔沉孔锪平孔倒角1.介绍表面粗糙度的概念及主要评定参数1)表面粗糙度的概念零件表面上具有较小间距的峰谷所组成的微观几何形状特性,称为表面粗糙度。

这主要是在加工零件时,由于刀具在零件表面上留下的刀痕及切削分裂时表面金属的塑性变形所形成的。

零件表面粗糙度是也是评定零件表面质量的一项技术指标,它对零件的配合性质、工作精度、耐磨性、抗腐蚀性、密封性、外观等都有影响。

在保证机器性能的前提下,为获得相应的零件表面粗糙度,应根据零件的作用,选用恰当的加工方法,尽量降低生产成本。

一般来说,凡零件上有配合要求或有相对运动的表面,表面粗糙度参数值要小。

2)表面粗糙度的代号、符号及其标注 GB/T 131-1993规定了表面粗糙度代号及其注法。

图样上表示零件表面粗糙度的符号见下表。

3)表面粗糙度的主要评定参数零件表面粗糙度的评定参数有:1)) 轮廓算术平均偏差(Ra)--在取样长度内,轮廓偏距绝对值的算术平均值。

Ra 的数值及取样长度l见表。

2))轮廓最大高度(Rz)--在取样长度内,轮廓峰顶线与轮廓峰底线的距离。

使用时优先选用Ra参数。

2.表面粗糙度的标注要求4) 表面粗糙度的代号标注示例表面粗糙度高度参数Ra、Rz、Ry在代号中用数值标注时,除参数代号Ra可省略外,其余在参数值前需标注出相应的参数代号Rz或Ry,标注示例见表。

表面粗糙度的标注表面粗糙度中数字及符号的方向5) 表面粗糙度代(符号)在图样上的标注方法1)) 表面粗糙度代(符)号一般应注在可见轮廓线、尺寸界线或它们的延长线上,符号的尖端必须从材料外指向表面。

2)) 表面粗糙度代号中数字及符号的方向必须按规定标注。

3.表面粗糙度的标注示例在同一图样上,每一表面一般只标注一次代(符)号,并尽可能地靠近有关的尺寸线。

当空间狭小或不便标注时可以引出标注。

当零件所有表面具有相同的表面粗糙度要求时,可统一标注在图样的右上角,当零件的大部分表面具有相同的表面粗糙度要求时,对其中使用最多的一种代(符)号可以同时注在图样的右上角,并加注"其余"两字。

凡统一标注的表面粗糙度代(符)号及说明文字,其高度均应该是图样标注的1.4倍。

零件上连续表面、重复要素(如孔、齿、槽等)的表面和用细实线连接不连续的同一表面,其表面粗糙度代(符)号只注一次。

同一表面上有不同的表面粗糙度要求时,应用细实线画出其分界线,并注出相应的表面粗糙度代号和尺寸。

齿轮、螺纹等工作表面没有画出齿(牙)形时,其表面粗糙度代(符)号注法见图。

中心孔的工作表面,键槽的工作表面,倒角,圆角的表面粗糙度代号可以简化标注。

需要将零件局部热处理或局部镀(涂)覆时,应用粗点画线画出其范围并标注出相应尺寸,也可将其要求注写在表面粗糙度符号长边的横线上。

2.标准公差和基本偏差为便于生产,实现零件的互换性及满足不同的使用要求,国家标准《极限与配合》规定了公差带由标准公差和基本偏差两个要素组成。

标准公差确定公差带的大小,而基本偏差确定公差带的位置。

1)标准公差(IT)标准公差的数值由基本尺寸和公差等级来决定。

其中公差等级是确定尺寸精确程度的标记。

标准公差分为20级,即IT01,IT0,IT1,…,IT18。

其尺寸精确程度从IT01到IT18依次降低。

标准公差的具体数值见有关标准。

2)基本偏差基本偏差是指在标准的极限与配合中,确定公差带相对零线位置的上偏差或下偏差,一般指靠近零线的那个偏差。

当公差带在零线的上方时,基本偏差为下偏差;反之,则为上偏差。

基本偏差共有28个,代号用拉丁字母表示,大写为孔,小写为轴。

从基本偏差系列图中可以看出:孔的基本偏差A~H和轴的基本偏差k~zc为下偏差;,孔的基本偏差K~ZC和轴的基本偏差a~h为上偏差,JS和js的公差带对称分布于零线两边、孔和轴的上、下偏差分别都是+IT/2、-IT/2。

基本偏差系列图只表示公差带的位置,不表示公差的大小,因此,公差带一端是开口,开口的另一端由标准公差限定。

基本偏差和标准公差,根据尺寸公差的定义有以下的计算式:ES=EI+IT 或 EI=ES-IT ei=es-IT或 es=ei+IT 孔和轴的公差带代号用基本偏差代号与公差带等级代号组成。

配合基本尺寸相同的、相互结合的孔和轴公差带之间的关系,称为配合。

根据使用要求的不同,孔和轴之间的配合有松有紧,因而国标规定配合种类:1)间隙配合孔与轴装配时,有间隙(包括最小间隙等于零)的配合。

孔的公差带在轴的公差带之上。

2)过渡配合孔与轴装配时,可能有间隙或过盈的配合。

孔的公差带与轴的公差带互相交叠。

3)过盈配合孔与轴装配时有过盈(包括最小过盈等于零)的配合。

孔的公差带在轴的公差带之下。

基准制:在制造配合的零件时,使其中一种零件作为基准件,它的基本偏差一定,通过改变另一种非基准件的基本偏差来获得各种不同性质配合的制度称为基准制。

根据生产实际的需要,国家标准规定了两种基准制。

1)基孔制(如左下图所示)基孔制--是指基本偏差为一定的孔的公差带与不同基本偏差的轴的公差带形成各种配合的一种制度。

见左下图。

基孔制的孔称为基准孔,其基本偏差代号为H,其下偏差为零。

2)基轴制(如右下图所示)基轴制--是指基本偏差为一定的轴的公差带与不同基本偏差的孔的公差带形成各种配合的一种制度。

见右下图。

基轴制的轴称为基准轴,其基本偏差代号为h,其上偏差为零。

配合代号配合代号由孔和轴的公差带代号组成,写成分数形式,分子为孔的公差带代号,分母为轴的公差带代号。

凡是分子中含H的为基孔制配合,凡是分母中含h的为基轴制配合。

例如φ25H7/g6的含义是指该配合的基本尺寸为φ25、基孔制的间隙配合,基准孔的公差带为H7,(基本偏差为H公差等级为7级),轴的公差带为g6(基本偏差为g,公差等级为6级)。

例如φ25N7/h6 的含义是指该配合的基本尺寸为φ25、基轴制过渡配合,基准轴的公差带为h6,(基本偏差为h,公差等级为6级),孔的公差带为N7(基本偏差为N,公差等级为7级)。

公差与配合在图样上的标注1)在装配图上标注公差与配合,采用组合式注法。

2)在零件图上的标注方法有三种形式。

4.形位公差零件加工后,不仅存在尺寸误差,而且会产生几何形状及相互位置的误差。

圆柱体,即使在尺寸合格时,也有可能出现一端大,另一端小或中间细两端粗等情况,其截面也有可能不圆,这属于形状方面的误差。

阶梯轴,加工后可能出现各轴段不同轴线的情况,这属于位置方面的误差。

所以,形状公差是指实际形状对理想形状的允许变动量。

位置公差是指实际位置对理想位置的允许变动量。

两者简称形位公差。

形位公差项目符号1) 形状和位置公差的代号国家标准GB/T 1182-1996规定用代号来标注形状和位置公差。

在实际生产中,当无法用代号标注形位公差时,允许在技术要求中用文字说明。

形位公差代号包括:形位公差各项目的符号,形位公差框格及指引线,形位公差数值和其他有关符号,以及基准代号等。

框格内字体的高度h与图样中的尺寸数字等高。

2) 形位公差标注示例一根气门阀杆,在图中所标注的形位公差附近添加的文字,只是为了给读者作说明而重复写上的,在实际的图样中不需要重复注写。

1.零件上的铸造结构1) 铸造圆角当零件的毛坯为铸件时,因铸造工艺的要求,铸件各表面相交的转角处都应做成圆角。

铸造圆角可防止铸件浇铸时转角处的落砂现象及避免金属冷却时产生缩孔和裂纹。

铸造圆角的大小一般取R=3~5mm,可在技术要求中统一注明。

2) 起模斜度用铸造的方法制造零件毛坯时,为了便于在砂型中取出模样,一般沿模样拔模方向作成约1∶20的斜度,叫做拔模斜度。

因此在铸件上也有相应的拔模斜度,这种斜度在图上可以不予标注,也不一定画出,如下图所示;必要时,可以在技术要求中用文字说明。

3) 铸件厚度当铸件的壁厚不均匀一致时,铸件在浇铸后,因各处金属冷却速度不同,将产生裂纹和缩孔现象。

因此,铸件的壁厚应尽量均匀,见上图;当必须采用不同壁厚连接时,应采用逐渐过渡的方式,见上图。

铸件的壁厚尺寸一般采用直接注出。

2.零件上的机械加工结构1)退刀槽和砂轮越程槽在零件切削加工时,为了便于退出刀具及保证装配时相关零件的接触面靠紧,在被加工表面台阶处应预先加工出退刀槽或砂轮越程槽。

相关文档
最新文档