自适应中值滤波器matlab实现
基于matlab的实验报告
基于matlab的实验报告实验报告:基于MATLAB 的实验一、实验目的通过使用MATLAB 软件,掌握如何进行数据分析、图像处理、算法实现等一系列实验操作,提高实验者的实践能力和动手能力。
二、实验原理MATLAB 是一种在科学计算和技术开发领域广泛应用的计算机软件。
它能进行矩阵计算、绘制函数和数据图像、实现算法以及进行数据分析等。
通过掌握MATLAB 的使用,能够快速、高效地解决各种科学和工程问题。
三、实验内容1. 数据分析:使用MATLAB 的数据分析工具进行数据的导入、处理和分析。
2. 图像处理:利用MATLAB 的图像处理工具包对图像进行滤波、增强、分割等操作。
3. 算法实现:使用MATLAB 实现常用的算法,如排序、搜索、图像压缩等。
四、实验步骤1. 数据分析:(1)使用MATLAB 的读取数据函数将数据导入MATLAB 环境中。
(2)利用MATLAB 的数据处理函数进行数据清洗和预处理。
(3)使用MATLAB 的统计工具进行数据分析,如求平均值、标准差等。
(4)利用MATLAB 的绘图函数将分析结果可视化。
2. 图像处理:(1)使用MATLAB 的读取图像函数将图像导入MATLAB 环境中。
(2)利用MATLAB 的图像处理工具包进行滤波操作,如均值滤波、中值滤波等。
(3)使用MATLAB 的图像增强函数对图像进行锐化、变换等操作。
(4)利用MATLAB 的图像分割算法对图像进行分割。
3. 算法实现:(1)使用MATLAB 编写排序算法,如冒泡排序、快速排序等。
(2)使用MATLAB 编写搜索算法,如二分查找、线性搜索等。
(3)使用MATLAB 实现图像压缩算法,如离散余弦变换(DCT)。
五、实验结果实验中,我们使用MATLAB 完成了数据分析、图像处理和算法实现的一系列实验操作。
通过数据分析,我们成功导入了数据并对其进行了清洗和预处理,最后得到了数据的统计结果。
在图像处理方面,我们对图像进行了滤波、增强和分割等操作,最终得到了处理后的图像。
matlab一维数组滤波
matlab一维数组滤波Matlab是一种强大的数值计算和数据分析工具,广泛应用于科学、工程、金融等领域。
在Matlab中,一维数组是一种常见的数据结构,用于存储和处理一组相关的数据。
本文将介绍如何使用Matlab对一维数组进行滤波操作。
滤波是一种常见的信号处理技术,用于去除噪声、平滑信号或者突出信号的特定频率成分。
在Matlab中,可以使用不同的函数实现一维数组的滤波,包括滑动平均滤波、中值滤波和高斯滤波等。
滑动平均滤波是一种简单且常用的滤波方法。
它通过计算一定窗口内数据的平均值来实现平滑操作。
在Matlab中,可以使用函数`smooth`来实现滑动平均滤波。
该函数的基本语法如下:```matlabsmoothed_signal = smooth(input_signal, window_size)```其中,`input_signal`是输入的一维数组,`window_size`是窗口大小。
函数会对`input_signal`中的每个元素取窗口内数据的平均值,并将结果存储在`smoothed_signal`中。
中值滤波是一种非线性滤波方法,它通过将窗口内数据的中值作为输出来实现平滑操作。
中值滤波可以有效地去除噪声,对于保留信号的边缘和细节信息也有较好的效果。
在Matlab中,可以使用函数`medfilt1`来实现中值滤波。
该函数的基本语法如下:```matlabfiltered_signal = medfilt1(input_signal, window_size)```其中,`input_signal`是输入的一维数组,`window_size`是窗口大小。
函数会对`input_signal`中的每个元素取窗口内数据的中值,并将结果存储在`filtered_signal`中。
高斯滤波是一种基于高斯函数的滤波方法,它可以有效地平滑信号并保留信号的边缘信息。
在Matlab中,可以使用函数`smoothdata`来实现高斯滤波。
MATLAB课程设计自适应中值滤波
采用快速排序算法,提高滤波速度 引入自适应阈值,提高滤波效果 采用并行计算,提高滤波效率 引入图像分割技术,提高滤波精度
课程设计任务和要 求
提 高 M AT L A B 编 程 能 力 掌握自适应中值滤波算法 提高问题解决能力 培养团队合作精神
掌握MATLAB的基 本语法和编程技巧
理解自适应中值滤 波的原理和实现方 法
添加标题
M AT L A B 实 现 自 适 应 中 值 滤 波 : 可 以 使 用 M AT L A B 中 的 i m f i l t e r 函 数 来 实 现 自 适 应 中 值 滤 波 , 该 函数可以方便地实现各种类型的滤波操作。 A B 图 像 处 理 工 具 箱 广 泛 应 用 于 图 像 处 理 、 计 算 机 视 觉 、 模 式 识 别 等 领 域 。
自适应中值滤波算 法介绍
中值滤波是一种非线性滤波技术,通过计算像素邻域的中值来代替像素值,以消除噪 声和模糊图像。
中值滤波可以有效地消除椒盐噪声和随机噪声,但对高斯噪声和脉冲噪声的抑制效果 较差。
中值滤波的缺点是会导致图像细节的丢失,特别是在处理边缘和纹理区域时。
自适应中值滤波是一种改进的中值滤波算法,可以根据图像的局部特性自适应地调整 滤波器的参数,以更好地保留图像的细节和边缘。
添加项标题
函数定义:使用符号"function"进行函数定义,如 "function y = f(x)"
添加项标题
赋值语句:使用符号"="进行赋值,如"x = 1"
添加项标题
条件语句:使用符号"if"、"elseif"、"else"进行条件判断, 如"if x > 0"
基于MATLAB的数字图像处理的设计与实现
基于MATLAB的数字图像处理的设计与实现摘要数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。
数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。
目的:改善医学图像质量,使图像得到增强。
方法:利用Matlab工具箱函数,采用灰度直方图均衡化和高通滤波的方法对一幅X线图像进行增强处理。
结果:用直方图均衡化的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。
高通滤波对于局部细节增强显著,高通滤波后使不易观察到的细节变得清晰。
结论:使用Matlab工具箱大大简化了编程工作,为医学图像处理提供了一种技术平台。
经过直方图均衡化和高通滤波处理后的医学图像,视觉效果得到改善。
关键词:MATLAB;直方图均衡化;高通滤波;图像增强AbstractDigital image processing is an emerging technology, with the development of computer hardware, real—time digital image processing has become possible due to digital image processing algorithms to appear,making it faster and faster processing speed,better for people services .Digital image processing is used by some algorithms computer graphics image pro cessing technology. Objective:To improve the quality of medical image by enhancing the details。
中值滤波原理及MATLAB实现
中值滤波原理及MATLAB实现摘要:图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。
本文将纯净的图像加入椒盐噪声,然后采用中值滤波的方法对其进行去噪。
中值滤波是一种常用的非线性信号处理技术,在图像处理中,它对滤除脉冲干扰噪声最为有效。
文章阐述了中值滤波的原理、算法以及在图像处理中的应用。
MATLAB 是一种高效的工程计算语言,在数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。
关键词:图像,中值滤波,去噪,MATLAB1.引言20世纪20年代,图像处理首次得到应用。
上个世纪60年代中期,随着计算机科学的发展和计算机的普及,图像处理得到广泛的应用。
60年代末期,图像处理技术不断完善,逐渐成为一个新兴的学科。
图像处理中输入的是质量低的图像,输出的是改善质量后的图像。
为了改善图像质量,从图像中提取有效信息,必须对图像进行去噪预处理。
根据噪声频谱分布的规律和统计特征以及图像的特点,出现了多种多样的去噪方法。
经典的去噪方法有:空域合成法,频域合成法和最优合成法等,与之适应的出现了许多应用方法,如均值滤波器,中值滤波器,低通滤波器,维纳滤波器,最小失真法等。
这些方法的广泛应用,促进数字信号处理的极大发展,显著提高了图像质量。
2.中值滤波在图像滤波中,常用的方法是线性滤波技术和非线性滤波技术,线性滤波以其完美的理论基础,数学处理简单、易于采用和硬件实现等优点,一直在图像滤波领域中占有重要的地位。
线性滤波对加性高斯噪声有较好的平滑作用,但对脉冲信号和其它形式的高频分量抑制效果较差,且模糊信号边缘。
非线性滤波是基于对输入信号序列的一种非线性投影关系,常把某一特定的噪声近似为零而保留信号的重要特征,一定程度上克服线性滤波器的不足,非线性滤波早期运用较多的是中值滤波器,其应用于多维信号处理时,对窄脉冲信号具有良好的抑制能力,但中值滤波器对中拖尾(如均匀分布噪声)和短拖尾分布噪声(如高斯噪声),滤波性能较差,且拖尾越短,其滤波能力越差。
数字图像去噪典型算法及matlab实现
图像去噪是数字图像处理中的重要环节与步骤。
去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。
图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等;目前比较经典的图像去噪算法主要有以下三种:均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。
有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。
中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。
中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。
其算法简单,时间复杂度低,但其对点、线与尖顶多的图像不宜采用中值滤波。
很容易自适应化。
Wiener维纳滤波:使原始图像与其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。
对于去除高斯噪声效果明显。
实验一:均值滤波对高斯噪声的效果代码I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声subplot(2,3,1);imshow(I);title('原始图像');subplot(2,3,2); imshow(J);title('加入高斯噪声之后的图像');%采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5K3=filter2(fspecial('average',7),J)/255; %模板尺寸为7K4= filter2(fspecial('average',9),J)/255; %模板尺寸为9 subplot(2,3,3);imshow(K1);title('改进后的图像1');subplot(2,3,4); imshow(K2);title('改进后的图像2');subplot(2,3,5);imshow(K3);title('改进后的图像3');subplot(2,3,6);imshow(K4);title('改进后的图像4');PS:filter2用法fspecial函数用于创建预定义的滤波算子,其语法格式为:h = fspecial(type)h = fspecial(type,parameters)参数type制定算子类型,parameters指定相应的参数,具体格式为:type='average',为均值滤波,参数为n,代表模版尺寸,用向量表示,默认值为[3,3]。
如何用MATLAB来实现中值滤波
如何用MATLAB来实现中值滤波在实时图像采集中,不可避免的会引入噪声,尤其是干扰噪声和椒盐噪声,噪声的存在严重影响边缘检测的效果,中值滤波是一种基于排序统计理论的非线性平滑计数,能有效平滑噪声,且能有效保护图像的边缘信息,所以被广泛用于数字图像处理的边缘提取,其基本原理是把数字图像或数字序列中的一点的值用该点邻域内所有的点排序后的中值来代替。
中值滤波对椒盐噪声有良好的滤除作用,特别是在滤除噪声的同时,能够保护信号的边缘,使之不被模糊。
这些优良特性是线性滤波方法所不具有的。
而且,中值滤波的算法比较简单,也易于用硬件实现。
这篇我们先用MATLAB来实现中值滤波。
中值滤波方法是,对待处理的当前像素,选择一个模板3x3、5x5或其他,这里选择3x3矩阵,该模板为其邻近的若干个像素组成,对模板的像素由小到大进行排序,再用模板的中值来替代原像素的值的方法。
当我们使用3x3窗口后获取领域中的9个像素,就需要对9个像素值进行排序,为了提高排序效率,排序算法思想如图所示。
(1)对窗内的每行像素按降序排序,得到最大值、中间值和最小值。
(2)把三行的最小值即第三列相比较,取其中的最大值。
(3)把三行的最大值即第一列相比较,取其中的最小值。
(4)把三行的中间值即第二列相比较,再取一次中间值。
(5)把前面的到的三个值再做一次排序,获得的中值即该窗口的中值。
sort排序函数sort(A)若A可以使矩阵或行列向量,默认都是对A进行升序排列。
sort(A)是默认的升序,而sort(A,descend)是降序排序。
sort(A)若A是矩阵,默认对A的各列进行升序排列sort(A,dim)dim=1时相当于sort(A)dim=2时表示对矩阵A中的各行元素升序排列。
中值滤波和自适应中值滤波
中值滤波与自适应中值滤波的比较和应用一、引言在图像处理领域,滤波是一种常用的技术,其主要目的是消除图像中的噪声。
其中,中值滤波和自适应中值滤波是两种重要的滤波方法。
二、中值滤波中值滤波是一种非线性滤波方法,它的基本思想是用一个像素邻域中所有像素值的中值来替代该像素的值。
这种方法可以有效地去除椒盐噪声,同时保持边缘信息不被破坏。
然而,中值滤波器的一个主要缺点是对高斯噪声的抑制效果较差。
三、自适应中值滤波自适应中值滤波是一种改进的中值滤波方法,它根据每个像素点周围像素的灰度分布特性自动调整滤波窗口大小。
这种方法既保留了中值滤波的优点,又克服了对高斯噪声抑制效果差的问题。
然而,由于需要计算每个像素周围的灰度分布特性,因此计算量较大。
四、中值滤波与自适应中值滤波的比较中值滤波和自适应中值滤波的主要区别在于滤波窗口的大小。
中值滤波使用固定大小的滤波窗口,而自适应中值滤波则根据每个像素点周围像素的灰度分布特性自动调整滤波窗口大小。
因此,自适应中值滤波在保持边缘信息的同时,能更好地去除噪声。
五、应用中值滤波和自适应中值滤波广泛应用于图像处理领域,如医学图像处理、遥感图像处理、视频监控等。
它们可以帮助我们提高图像的质量,提取有用的图像特征,从而进行更深入的图像分析和理解。
六、结论总的来说,中值滤波和自适应中值滤波都是有效的图像滤波方法。
选择哪种方法取决于具体的图像处理任务和需求。
如果图像中的噪声主要是椒盐噪声,并且对计算效率有较高的要求,那么中值滤波可能是一个更好的选择。
如果图像中的噪声包括高斯噪声,并且对图像质量有较高的要求,那么自适应中值滤波可能更适合。
自适应中值滤波器的实现与在图像降噪中的应用doc
自适应中值滤波器的实现与在图像降噪中的应用滤波器被广泛地用于图象的预处理,抑制图象噪声,增强对比度,以及强化图象的边沿特征.运用较为广泛的线性滤波器如平均值滤波器,能较好地抑制图象中的加性噪声. 但是,线性滤波器会引起图象的钝化或模糊,使得图象中物体边界产生位移. 特别是,在图象受到乘性噪声或脉冲噪声的干扰,如超声波及雷达成像中普遍存在的斑点噪声,线性滤波器就不能取得预期的效果.中值滤波器,就像其名字一样,是用该像素的相邻像素的灰度中值来代替该像素的值,是一种非线性滤波器。
例如滤波窗口由3×3 个象素组成,则其中5个象素的灰度值会小于等于该滤波器的输出灰度值,同时5 个象素的灰度值会大于等于滤波器的输出. 由此可见,对于离散的脉冲噪声,当其出现的次数小于窗口尺寸的一半时,将被抑制掉同时也能较好地保证图象的边沿特征,而且易于实现. 因此它被广泛地应用于图象处理,尤其是医学图象处理,如超声波图象.但由于其使用的滤窗大小是固定不变的,当窗中噪声像素数超过有用像素之半时(噪声密度较大时),中值滤波滤波作用大大降低。
多次试验验证:在脉冲噪声强度大于0.2时,中值滤波效果就显得不是令人满意。
而本文介绍的自适应中值滤波器会根据一定的设定条件改变滤窗的大小,即当噪声面积较大时,通过增加滤窗的大小将噪声予以去除,同时当判断滤窗中心的像素不是噪声时,不改变其当前像素值,即不用中值代替。
这样,自适应中值滤波器可以处理噪声概率更大的脉冲噪声,同时在平滑非脉冲噪声图像时能够更好地保持图像细节,这是传统中值滤波器做不到的。
文中首先介绍了自适应中值滤波器的原理,随后分析了实现的关键技术,并给出了程序代码,最后与传统中值滤波进行了试验比较,试验结果验证了自适应中值滤波器的有效性和实用性。
2.自适应中值滤波器的原理介绍及实现技术2.1 算法原理介绍自适应中值滤波器的滤波方式和传统的中值滤波器一样,都使用一个矩形区域的窗口Sxy ,不同的是在滤波过程中,自适应滤波器会根据一定的设定条件改变,即增加滤窗的大小,同时当判断滤窗中心的像素是噪声时,该值用中值代替,否则不改变其当前像素值,这样用滤波器的输出来替代像素(x,y) 处(即目前滤窗中心的坐标的值。
MATLAB中的信号去噪与信号恢复技巧
MATLAB中的信号去噪与信号恢复技巧导言:在现代科学和工程领域中,信号处理是一个重要的研究方向。
在这个由噪声干扰的世界中,如何准确地提取所需信号或恢复被噪声淹没的数据成为了一个关键问题。
而MATLAB作为一种高效强大的数值计算和数据可视化工具,为信号的去噪和恢复提供了丰富的技术支持。
本文将介绍MATLAB中常用的信号去噪与恢复技巧,以期帮助读者更好地掌握这一领域的知识。
一、信号去噪技巧1. 加性高斯白噪声的处理在很多实际应用中,信号受到加性高斯白噪声的干扰。
对于这类情况,常见的去噪方法是滤波器。
MATLAB中提供了一系列滤波器函数,如低通滤波器、中值滤波器、均值滤波器等。
通过选取适当的滤波器类型和参数,可以有效地去除噪声,同时保留信号的重要特征。
2. 基于小波变换的去噪方法小波变换是一种有效的信号分析工具,能够将信号分解成不同的频率成分。
基于小波变换的去噪方法利用信号在小波域中的稀疏性,通过滤除相应的小波系数来去除噪声。
MATLAB中提供了丰富的小波函数,例如dwt、idwt等,可以方便地实现小波去噪算法。
3. 自适应滤波方法自适应滤波是一种根据信号自身特性进行滤波的方法。
MATLAB中的自适应滤波函数提供了最小均方误差(Least Mean Square, LMS)和最小二乘(Least Square, LS)等算法,能够根据给定的信号模型自动调整滤波器参数以适应不同的信号特点。
二、信号恢复技巧1. 插值方法在信号采样过程中,可能会出现采样率不足或部分样本丢失的情况。
插值方法能够通过已知的样本数据推测未知的样本值,从而恢复完整的信号。
MATLAB中提供了许多插值函数,如线性插值、三次样条插值等,可以根据实际需要选择合适的插值方法进行信号恢复。
2. 基于稀疏表示的信号恢复方法稀疏表示是指将信号表示为尽可能少的非零系数线性组合的形式。
通过选择合适的稀疏表示字典和优化算法,可以从部分观测数据中恢复出原始信号。
使用MATLAB进行信号滤波和去除干扰
使用MATLAB进行信号滤波和去除干扰信号滤波是数字信号处理中一个重要的环节。
在实际应用中,信号经常会遭受到各种形式的干扰,例如噪声、其他信号的干扰等。
而滤波的目的就是从原始信号中去除干扰,提取出我们所关心的信号。
MATLAB作为一种功能强大的数学软件,提供了丰富的滤波函数和工具箱,以便我们方便地进行信号滤波操作。
下面将介绍一些常用的滤波方法和MATLAB中的应用。
首先,最常见的滤波方法之一是频率域滤波。
频率域滤波是将信号从时域转换到频域,通过操作频谱进行滤波。
在MATLAB中,我们可以使用fft函数对信号进行傅里叶变换,然后利用各种滤波器函数对频谱进行处理,最后再通过ifft函数将信号变换回时域。
常见的频率域滤波器有低通滤波器、高通滤波器、带通滤波器等。
我们可以根据信号的特点选择合适的滤波器类型和参数进行滤波操作。
除了频率域滤波,时域滤波也是常用的信号处理方法之一。
时域滤波是在时域上对信号进行直接处理,常见的时域滤波方法有移动平均滤波、中值滤波、卡尔曼滤波等。
在MATLAB中,我们可以使用filter函数对信号进行时域滤波。
例如,移动平均滤波可以通过设计一个移动窗口,然后将窗口内的数据取平均来平滑信号。
中值滤波则是通过将窗口内的数据排序,然后取其中位数值作为输出。
卡尔曼滤波则是一种递归滤波方法,可以用于估计信号的状态。
除了上述的常见滤波方法外,MATLAB还提供了一些高级滤波工具箱,例如信号处理工具箱、波形拟合工具箱等。
这些工具箱中包含了更多复杂和专业的滤波算法,可以用于处理特定领域的信号。
除了滤波方法之外,MATLAB还提供了一些降噪技术。
降噪是信号滤波中一个重要的任务,它的目标是将噪声从信号中去除,提高信号的质量。
MATLAB中常用的降噪技术有小波变换、奇异值分解等。
小波变换是一种多尺度的信号分析方法,它可以将信号分解成不同尺度的小波系数,然后通过处理小波系数来降低噪声。
奇异值分解则是将信号矩阵分解成三个矩阵的乘积,通过对奇异值进行阈值处理来降噪。
自适应中值滤波器的设计与实现
北京邮电大学世纪学院毕业设计(论文)题目自适应中值滤波器的设计与实现学号 ********学生姓名王立阳专业名称通信工程所在系(院)通信与信息工程系指导教师鞠磊2012年 6 月 1 日北京邮电大学世纪学院毕业设计(论文)任务书备注1、由指导教师撰写,可根据长度加页,一式三份,教务处、系(院)各留存一份,发给学生一份,任务完成后附在论文内;2、凡审核不通过的任务书,请重新申报。
北京邮电大学世纪学院毕业设计(论文)诚信声明本人声明所呈交的毕业设计(论文),题目《自适应中值滤波器的设计与实现》是本人在指导教师的指导下,独立进行研究工作所取得的成果,除了文中特别加以标注和致谢中所罗列的内容以外,毕业设计(论文)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京邮电大学或其他教育机构的学位或证书而使用过的材料。
申请学位论文与资料若有不实之处,本人承担一切相关责任。
本人签名:日期:毕业设计(论文)使用权的说明本人完全了解北京邮电大学世纪学院有关保管、使用论文的规定,其中包括:①学校有权保管、并向有关部门送交学位论文的原件与复印件;②学校可以采用影印、缩印或其它复制手段复制并保存论文;③学校可允许论文被查阅或借阅;④学校可以学术交流为目的,复制赠送和交换学位论文;⑤学校可以公布学位论文的全部或部分内容。
本人签名:日期:指导教师签名:日期:题目自适应中值滤波器的设计与实现摘要图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。
然而在图像使用传输过程中,不可避免会受到噪声的干扰。
中值滤波器是能够有效滤除脉冲噪声的非线性滤波器,但标准中值滤波去脉冲噪声的性能受滤波窗口尺寸的影响较大, 在抑制图像噪声和保护细节两方面存在矛盾。
本文在研究中值滤波器的基础上,给出了一种能够根据噪声位置进行中值滤波器的自适应中值滤波方法,该方法可以有效地克服中值滤波器造成图像边缘模糊的缺点。
最后通过matlab对所提出方法进行了仿真测试,结果验证了所提方法的有效性。
中值滤波在数字图像去噪中的应用
中值滤波在数字图像去噪中的应用作者:燕红文邓雪峰来源:《计算机时代》2020年第02期摘; 要:图像在传播时会受到各种噪音的影响,中值滤波器采用非线性计算方式,可很好地过滤脉冲噪音。
但滤波窗口尺寸对去除脉冲噪音的功能具有干扰性,使其能提高图像画面感,但不能很好地保留细节的完整性。
文章分析了中值滤波器的优劣,提出可以依照噪声点方位自适应地改变滤波器窗口尺寸的办法,避免了中值滤波容易导致图片边缘不清楚的问题。
借助Matlab做了模拟检测,结果表明,该办法具有较好的滤波特性。
关键词:中值滤波; 自适应; 图像处理; Matlab中图分类号:TP391; ; ; ; ; 文献标识码:A; ; ;文章编号:1006-8228(2020)02-47-03Application of median filter in digital image denoisingYan Hongwen, Deng Xuefeng(College of Information and Engineering, Shanxi Agricultural University, Jinzhong,Shanxi 030801, China)Abstract: The image is affected by various noises when it is transmitted. The median filter,which adopts a nonlinear calculation method, can filter the pulse noise well. However, the size of the filter window is a disturbing to the function of removing the impulse noise, which can improve the image but not well preserve the integrity of the details. This paper analyzes the advantages anddisadvantages of the median filter, and proposes that the filter window size can be adaptively adjusted according to the noise point orientation, which avoids the problem that median filtering makes the image edges unclear. The simulation results of Matlab show that the method has better filtering characteristics.Key words: median filtering; adaptive; image processing; Matlab0 引言光信号由CCD变换时易分布不均且在噪音传播时信道会产生误差[1],一般来说图像信号在生成、传播以及记录时都会被不同噪音干扰。
Matlab信号滤波与降噪技术详解
Matlab信号滤波与降噪技术详解引言:随着科技的发展与应用,信号处理在各个领域中的重要性日益突出。
在实际工程应用和科学研究中,信号经常会受到各种干扰和噪声的影响,这就需要对信号进行滤波和降噪处理。
Matlab作为一种广泛应用于信号处理的编程工具,提供了丰富的信号滤波和降噪技术。
本文将详细介绍Matlab中常用的信号滤波与降噪技术。
一、滤波与降噪的基本概念1.1 信号滤波的作用信号滤波是指通过去除信号中的噪声、干扰或不必要的频率成分,以达到改善信号质量、提高信号的信噪比或增强所需信号的目的。
1.2 降噪的意义降噪是指去除信号中的噪声成分,以提取出原始信号或滤波后的信号。
降噪的目的是为了更好地分析和处理信号,减小信号处理中的误差。
二、Matlab中滤波与降噪函数的使用Matlab提供了丰富的信号滤波和降噪函数,下面我们先简要介绍几个常用的函数及其使用方法。
2.1 lowpass滤波函数lowpass函数用于实现低通滤波,滤除高频噪声。
常用的语法格式为:y = lowpass(x,fc,fs)其中,x为输入信号,y为滤波后的信号,fc为滤波截止频率,fs为采样频率。
2.2 highpass滤波函数highpass函数用于实现高通滤波,滤除低频噪声。
常用的语法格式为:y = highpass(x,fc,fs)其中,x为输入信号,y为滤波后的信号,fc为滤波截止频率,fs为采样频率。
2.3 bandstop滤波函数bandstop函数用于实现带阻滤波,滤除指定频率范围内的噪声。
常用的语法格式为:y = bandstop(x,f1,f2,fs)其中,x为输入信号,y为滤波后的信号,f1和f2为滤波的频率范围,fs为采样频率。
2.4 wiener函数wiener函数用于实现维纳滤波,通过估计信号和噪声的功率谱密度来实现信号的恢复。
常用的语法格式为:y = wiener(x)其中,x为输入信号,y为滤波后的信号。
matlab函数、命令最全的自己总结
matlab函数、命令最全的⾃⼰总结《数字图像处理》冈萨雷斯,Matlab函数汇总 .图像显⽰colorbar显⽰彩条getimage由坐标轴得到图像数据ice(DIPUM)交互彩⾊编辑image创建和显⽰图像对象imagesc缩放数据并显⽰为图像immovie由多帧图像制作电影imshow显⽰图像imview在Image Viewer中显⽰图像montage将多个图像帧显⽰为矩阵蒙太奇movie播放录制的电影帧rgbcube显⽰⼀个彩⾊RGB⽴⽅体subimage在单个图形中显⽰多幅图像truesize调整图像的显⽰尺⼨warp将图像显⽰为纹理映射的表⾯图像⽂件输⼊/输出Dicominfo从⼀条DICOM消息中读取元数据Dicomread读⼀幅DICOM图像Dicomwrite写⼀幅DICOM图像Dicom-dict.txt包含DICOM数据字典的⽂本⽂件Dicomuid产⽣DICOM唯⼀的识别器Imfinfo返回关于图像的⽂件的信息Imread读图像⽂件Imwrite写图像⽂件图像算术Imabsdiff计算两幅图像的绝对差Imadd两幅图像相加或把常数加到图像上Imcomplement图像求补Imdivide两幅图像相除,或⽤常数除图像Imlincomb计算图像的线性组合Immultiply两幅图像相乘或⽤常数乘图像Imsubtract两幅图像相减,或从图像中减去常数⼏何变换Checkerboard创建棋盘格图像Findbounds求⼏何变换的输出范围Fliptform颠倒TFORM结构的输⼊/输出Imcrop修剪图像Imresize调整图像⼤⼩Imrotate旋转图像Imtransform对图像应⽤⼏何变换Intline整数坐标线绘制算法Makersampler创建重取样器结构Maketform创建⼏何变换结构(TFORM)Pixeldup(DIPUM)在两个⽅向上复制图像的像素Tformarray对N-D数组应⽤⼏何变换Tformfwd应⽤正向⼏何变换Tforminv应⽤反向⼏何变换Vstformfwd(DIPUM)可视化正向⼏何变换图像匹配Cpstruct2pairs将CPSTRUCT转换为有效的控制点对Cp2tform由控制点对推断⼏何变换Cpcorr使⽤互相关校准控制点位置Cpselect控制点选择⼯具Normxcorr2归⼀化⼆维互相关像素值及统计Corr2计算⼆维相关系数Covmatrix(DIPUM)计算向量族的协⽅差矩阵Imcontour创建图像数据的轮廓线Imhist显⽰图像数据的直⽅图Impixel确定像素的彩⾊点Improfile计算沿着线段的像素值横截⾯Mean2计算矩阵元素的均值Pixval显⽰关于像素的信息Regionprops测量图像区域的属性Statmoments(DIPUM)计算⼀幅图像直⽅图的统计中⼼距Std2计算矩阵元素的标准偏差图像分析(包括分割、描述和识别)Bayesgauss(DIPUM)⾼斯模式的贝叶斯分类器Bound2eight(DIPUM)将4连接边界转换为8连接边界Bound2four(DIPUM)将8连接边界转换为4连接边界Bwboundaries追踪区域边界Bwtraceboundary追踪单个边界Bound2im(DIPUM)将边界转换为图像Boundaries(DIPUM)追踪区域边界Bsubsamp(DIPUM)对边界⼆次取样Colorgrad(DIPUM)计算⼀幅RGB图像的向量梯度Colorseq(DIPUM)分割⼀幅彩⾊图像Connectpoly(DIPUM)连接多边形的顶点Diameter(DIPUM)测量图像区域的直径Edge(DIPUM)在⼀幅亮度图像中寻找边缘Fchcode(DIPUM)计算边界的freeman链码Frdescp(DIPUM)计算傅⾥叶描绘⼦Graythresh使⽤Ostu⽅法计算图像的全局阈值Hough(DIPUM)Hough变换Houghlines(DIPUM)基于Hough变换提取线段Houghpeaks(DIPUM)在Hough变换中检测峰值Houghpixels(DIPUM)计算属于Hough变换bin的图像像素Ifrdescp(DIPUM)计算逆傅⾥叶描绘⼦Imstack2vectors(DIPUM)从图像堆栈提取向量Invmoments(DIPUM)计算图像不变距Mahalanobis(DIPUM)计算Mahalanobis距离Minperpoly(DIPUM)计算最⼩周长多边形Polyangles(DIPUM)计算多边形内⾓Princomp(DIPUM)得到主分量向量和相关量Qtdecomp执⾏四叉树分解Qtgetblk得到四叉树分解中的块值Qtsetblk在四叉树中设置块值Randvertex(DIPUM)随机置换多边形顶点Regiongrow(DIPUM)由区域⽣长来执⾏分割Signature(DIPUM)计算边界的标记Specxture(DIPUM)计算图像的谱纹理Splitmerge(DIPUM)使⽤分离-合并算法分割图像Statxture(DIPUM)计算图像中纹理的统计度量Strsimilarity(DIPUM)两个串间的相似性度量X2majoraxis(DIPUM)以区域的主轴排列坐标x图像压缩Compare(DIPUM)计算和显⽰两个矩阵间的误差Entropy(DIPUM)计算矩阵的熵的⼀阶估计Huff2mat(DIPUM)解码霍夫曼编码矩阵Huffman(DIPUM)为符号源建⽴⼀个变长霍夫曼码Im2jpeg(DIPUM)使⽤JPEG近似压缩⼀幅图像Im2jpeg2k(DIPUM)使⽤JPEG2000近似压缩⼀幅图像Imratio(DIPUM)计算两幅图像或变量中的⽐特率Jpeg2im(DIPUM)解码IM2JPEG压缩的图像Jpeg2k2im(DIPUM)解码IM2JPEG2K压缩的图像Lpc2mat(DIPUM)解压缩⼀维有损预测编码矩阵Mat2huff(DIPUM)霍夫曼编码矩阵Mat2lpc(DIPUM)使⽤⼀维有损预测编码矩阵Quantize(DIPUM)量化UINT8类矩阵的元素图像增强Adapthisteq⾃适应直⽅图量化Decorrstretch对多通道图像应⽤去相关拉伸Gscale(DIPUM)按⽐例调整输⼊图像的亮度Histeq使⽤直⽅图均衡化来增强对⽐度Intrans(DIPUM)执⾏亮度变换Imadjust调整图像亮度值或彩⾊映射Stretchlim寻找对⽐度拉伸图像的限制图像噪声Imnoise给⼀幅图像添加噪声Imnoise2(DIPUM)使⽤指定的PDF⽣成⼀个随机数数组Imnoise3(DIPUM)⽣成周期噪声线性和⾮线性空间滤波Adpmedian(DIPUM)执⾏⾃适应中值滤波Convmtx2计算⼆维卷积矩阵Dftcorr(DIPUM)执⾏频率域相关Dftfilt(DIPUM)执⾏频率域滤波Fspecial创建预定义滤波器Medfilt2执⾏⼆维中值滤波Imfilter滤波⼆维和N维图像Ordfilter2执⾏⼆维顺序统计滤波Spfilt(DIPUM)执⾏线性和⾮线性空间滤波Wiener2执⾏⼆维去噪滤波线性⼆维滤波器设计Freqspace确定⼆维频率响应间隔Freqz2计算⼆维频率响应Fsamp2使⽤频率取样设计⼆维FIR滤波器Ftrans2使⽤频率变换设计⼆维FIR滤波器Fwind1使⽤⼀维窗法设计⼆维滤波器Fwind2使⽤⼆维窗法设计⼆维滤波器Hpfilter(DIPUM)计算频率域⾼通滤波器Lpfilter(DIPUM)计算频率域低通滤波器图像去模糊(复原)Deconvblind使⽤盲去卷积去模糊图像Deconvlucy使⽤Lucy-Richardson⽅法去模糊Deconvreg使⽤规则化滤波器去模糊Deconvwnr使⽤维纳滤波器去模糊Edgetaper使⽤点扩散函数锐化边缘Otf2psf光传递函数到点扩散函数Pst2otf点扩散函数到光传递函数图像变换Dct2⼆维离散余弦变换Dctmtx离散余弦变换矩阵Fan2para将扇形束投影变换为并⾏射束Fanbeam计算扇形射束变换Fft2⼆维快速傅⾥叶变换Fftn N维快速傅⾥叶变换Fftshift颠倒FFT输出的象限Idct2⼆维逆离散余弦变换Ifanbeam计算扇形射束逆变换Ifft2⼆维快速傅⾥叶逆变换Ifftn N维快速傅⾥叶逆变换Iradon计算逆Radon变换Para2fan将并⾏射束投影变换为扇形射束Phantom⽣成头部仿真模型的图像Radon计算Radon变换⼩波Wave2gray(DIPUM)显⽰⼩波分解系数Waveback(DIPUM)执⾏多灰度级⼆维快速⼩波逆变换Wavecopy(DIPUM)存取⼩波分解结构的系数Wavecut(DIPUM)在⼩波分解结构中置零系数Wavefast(DIPUM)执⾏多灰度级⼆维快速⼩波变换Wavefilter(DIPUM)构造⼩波分解和重构滤波器Wavepaste(DIPUM)在⼩波分解结构中放置系数Wavework(DIPUM)编辑⼩波分解结构Wavezero(DIPUM)将⼩波细节系数设置为零领域和块处理Bestblk为块处理选择块⼤⼩Blkproc为图像实现不同的块处理Col2im将矩阵列重排为块Colfilt按列邻域操作Im2col将图像块重排为列Nlfilter执⾏⼀般的滑动邻域操作形态学操作(亮度和⼆值图像)Conndef默认连通性Imbothat执⾏底帽滤波Imclearborder抑制与图像边框相连的亮结构Imclose关闭图像Imdilate膨胀图像Imerode腐蚀图像Imextendedmax最⼤扩展变换Imextendedmin最⼩扩展变换Imfill填充图像区域和孔洞Imhmax H最⼤变换Imhmin H最⼩变换Imimposemin强制最⼩Imopen打开图像Imreconstruct形态学重构Imregionalmax局部最⼤区域Imregionalmin局部最⼩区域Imtophat执⾏顶帽滤波Watershed分⽔岭变换形态学操作(⼆值图像)Applylut使⽤查表法执⾏邻域操作Bwarea计算⼆值图像中的对象⾯积Bwareaopen打开⼆值区域(删除⼩对象)Bwdist计算⼆值图像的距离变换Bweuler计算⼆值图像的欧拉数Bwhitmiss⼆值击不中操作Bwlabel在⼆维图像中标记连接分量Bwlabeln在N维⼆值图像中标记连接分量Bwmorph对⼆值图像执⾏形态学操作Bwpack打包⼆值图像Bwperim确定⼆值图像中的对象的周长Bwselect选择⼆值图像中的对象Bwulterode最终腐蚀Bwunpack解包⼆值图像Endpoints(DIPUM)计算⼆值图像的端点Makelut构建applylut使⽤的查找表结构元素(STREL)的创建和操作Getheight得到strel的⾼度Getneighbors得到strel邻域的偏移位置和⾼度Getnhood得到strel邻域Getsequence得到分解的strel序列Isflat对平坦的strel返回值Reflect以其中⼼反射strelStrel创建形态学结构元素Translate变换strel基于区域的处理Histroi(DIPUM)计算图像中的ROI的直⽅图Poly2mask将ROI多边形转换为掩膜Roicolor基于颜⾊选择ROIRoifill在任意区域内平稳地内插Roifilt2对ROI进⾏滤波Roipoly选择多边形ROI彩⾊映射处理Brighten加亮或加暗彩⾊映射Cmpermute在彩⾊映射中重排颜⾊Cmunique寻找唯⼀的彩⾊映射颜⾊和相应的图像Colormap设置或得到彩⾊查找表Imapprox以很少的颜⾊近似被索引的图像Rgbplot绘制RGB彩⾊映射分量彩⾊空间转换Applyform应⽤独⽴于设备的彩⾊空间变换Hsv2rgb将HSV值转换为RGB彩⾊空间Iccread读ICC彩⾊配置⽂件Lab2double将L*a*b*彩⾊值转换为double类Lab2uint16将L*a*b*彩⾊值转换为uint16类Lab2uint8将L*a*b*彩⾊值转换为uint8类Makecform创建独⽴于设备的彩⾊空间变换结构Ntsc2rgb将NTSC值转换为RGB彩⾊空间Rgb2hsv将RGB值转换为HSV彩⾊空间Rgb2ntsc将RGB值转换为NTSC彩⾊空间Rgb2ycbcr将RGB值转换为YCBCR彩⾊空间Ycbcr2rgb将YCBCR值转换为RGB彩⾊空间Rgb2hsi(DIPUM)将RGB值转换为HSI彩⾊空间Hsi2rgb(DIPUM)将HSI值转换为RGB彩⾊空间Whitepoint返回标准照明的XYZ值Xyz2double将XYZ彩⾊值转换为double类Xyz2uint16将XYZ彩⾊值转换为uint16类数组操作Circshift循环地移位数组Dftuv(DIPUM)计算⽹格数组Padarray填充数组Paddedsize(DIPUM)计算⽤于FFT的最⼩填充尺⼨图像类型和类型转换Changeclass改变⼀幅图像的类Dither使⽤抖动转换图像Gray2ind将亮度图像转换为索引图像Grayslice通过阈值处理从亮度图像创建索引图像Im2bw通过阈值处理将图像转换为⼆值图像Im2double将图像数组转换为双精度Im2java将图像转换为Java图像Im2java2d将图像转换为Java缓存的图像对象Im2uint8将图像数组转换为8⽐特⽆符号整数Im2uint16将图像数组转换为16⽐特⽆符号整数Ind2gray将索引图像转换为亮度图像Ind2rgb将索引图像转换为RGB图像Label2rgb将标记矩阵转换为RGB图像Mat2gray将矩阵转换为亮度图像Rgb2gray将RGB图像或彩⾊映射转换为灰度图像Rgb2ind将RGB图像转换为索引图像其他函数Conwaylaws(DIPUM)对单个像素应⽤Conway的遗传定律Manualhist(DIPUM)交互地⽣成2模式直⽅图Twomodegauss(DIPUM)⽣成⼀个2模式⾼斯函数Uintlut基于查找表计算新数组值⼯具箱参数Iptgetpref获得图像处理⼯具箱参数的值Iptsetpref设置图像处理⼯具箱参数的值matlab 标注连通域clear;clc;f=imread('c:\1.jpg');gray_level=graythresh(f);f=im2bw(f,gray_level);[l,n]=bwlabel(f,8)imshow(f)hold onfor k=1:n[r,c]=find(l==k);rbar=mean(r);cbar=mean(c);plot(cbar,rbar,'Marker','o','MarkerEdgeColor','k','MarkerFaceColor','k','Marker Size',10); plot(cbar,rbar,'Marker','*','MarkerEdgecolor','w');end主要概念:1.4连接8连接0101p1===>4连接,p为当前像素点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将下面代码直接贴入matlab中,并将读入图像修改成自己机子上的,就可以运行了。
可以按照“%%”顺序分步来运行
%% function 自适应中值滤波器
%%%%%%%%%%%%%%%
%实现两个功能:
%1.对高密度的椒盐噪声有好的滤除效果;
%2.滤波时减少对图像的模糊;
%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%
%原理:
%1.椒盐噪声概率越大,滤波器窗口需越大。
故若滤波器窗口随噪声概率自适应变化,才能有好的滤除效果
%2.为减少对图像的模糊,需在得出原图像值并非椒盐噪声点时,保留原图像值不变;
%3.椒盐噪声点的特点:该点的值为该点领域上的最大或最小;%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%
%步骤(得到图像中某点(x,y)(即窗口中心点)的值的步骤):
%1.设定一个起始窗口,以及窗口的最大尺寸;
%2.(此步用于确定窗口大小)对窗口内像素排序,判断中值是否是噪声点,若不是,继续第3步,若是,转到第5步;
%3.判断中心点是否是噪声点,若不是,则输出该点的值(即图像中该点的原值不变);若是,则输出中值;
%4.窗口尺寸增大,若新窗口尺寸小于设定好的最大值,重复第2步,若大于,则滤波器输出前一个窗口的中值;
%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%
%参数说明:
%被噪声污染的图像(即退化图像也即待处理图像):Inoise
%滤波器输出图像:Imf
%起始窗口尺寸:nmin*nmin(只取奇数),窗口尺寸最大值:nmax*nmax %图像大小:Im*In
%窗口内图像的最大值Smax,中值Smed,最小值Smin
%%%%%%%%%%%%%%%%%%%%
%%
clear
clf
%% 读入图像I
I=imread('e:/photo/cat.jpg');
%转化为灰度图Ig
Ig=rgb2gray(I);
%被密度为0.2的椒盐噪声污染的图像Inoise
Inoise=imnoise(Ig,'salt & pepper',0.2);
%或者是被方差为0.2的高斯噪声污染的图像Inoise
%Inoise=imnoise(Ig,'gaussian',0.2);
%显示原图的灰度图Ig和噪声图像Inoise
subplot(2,2,1),imshow(Ig);xlabel('a.原始灰度图像');
subplot(2,2,2),imshow(Inoise);xlabel('b.被噪声污染的图像');
%% 定义参数
%获取图像尺寸:Im,In
[Im,In]=size(Inoise);
%起始窗口尺寸:nmin*nmin(窗口尺寸始终取奇数)
nmin=3;
%最大窗口尺寸:nmax*nmax
nmax=9;
%定义复原后的图像Imf
Imf=Inoise;
%为了处理到图像的边界点,需将图像扩充
%因为窗口尺寸是弹性的,所以将Inoise固定扩充到最大:I_ex[(Im+(nmax-1))*(In+(nmax-1))]
I_ex=[zeros((nmax-1)/2,In+(nmax-1));zeros(Im,(nmax-
1)/2),Inoise,zeros(Im,(nmax-1)/2);zeros((nmax-1)/2,In+(nmax-1))];
%% 自适应滤波过程
%遍历图像Inoise中的每一点
for x=1:Im
for y=1:In
for n=nmin:2:nmax
%图像Inoise中的某点(x,y)的领域Sxy,对应在I_ex中为(x+[(nmax-1)/2-(n-1)/2]:x+[(nmax-1)/2-(n-1)/2]+(n-1),y+(nmax-1)/2-(n-
1)/2:y+[(nmax-1)/2-(n-1)/2]+(n-1))
Sxy=I_ex(x+(nmax-1)/2-(n-1)/2:x+(nmax-1)/2+(n-1)/2,y+(nmax-1)/2-(n-1)/2:y+(nmax-1)/2+(n-1)/2);
Smax=max(max(Sxy));%求出窗口内像素的最大值
Smin=min(min(Sxy));%求出窗口内像素的最小值
Smed=median(median(Sxy));%求出窗口内像素的中值
%判断中值是否是噪声点
if Smed>Smin && Smed<Smax
%若中值既大于最小值又小于最大值,则不是
%是,则退出该if语句,增大窗口尺寸,再次判断
%不是,则判断该点的原值是不是噪声点
if Imf(x,y)<=Smin || Imf(x,y)>=Smax
%若该点的原值既大于最小值又小于最大值,则不是
%不是,则输出原值,即不作处理
%是,则输出中值
Imf(x,y)=Smed;
end
break
%有输出则不再进行循环判断
end
end
%当n=max时,输出中值
Imf(x,y)=Smed;
end
end
subplot(2,2,3),imshow(Imf);xlabel('d.最大尺寸为9的自适应中值滤波器的滤波效果');
%% 与普通中值滤波器的对比
Imf1=medfilt2(Inoise,[3,3]);
Imf2=medfilt2(Imf1,[3,3]);
subplot(2,2,4),imshow(Imf2);xlabel('e.尺寸为3的普通中值滤波器两次滤波效果'); 下面是运行结果:。