人教八年级下册数学-.正比例函数导学案

合集下载

2024年人教版数学八年级下册正比例函数导学案精选3篇

2024年人教版数学八年级下册正比例函数导学案精选3篇

人教版数学八年级下册正比例函数导学案精选3篇〖人教版数学八年级下册正比例函数导学案第【1】篇〗教学内容:苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

教材学情分析:《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。

教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。

在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。

这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。

接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

“练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的长度,再按要求写出部分长度的比,再求出比值。

然后启发学生通过进一步的交流和比较,发现一些有趣的现象。

这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的这些比中哪两个比可以组成比例,并通过计算加以验算。

这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。

人教版数学八年级下册正比例函数导学案(推荐3篇)

人教版数学八年级下册正比例函数导学案(推荐3篇)

人教版数学八年级下册正比例函数导学案(推荐3篇)人教版数学八年级下册正比例函数导学案【第1篇】教学内容:教学要求:1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:认识正比例关系的意义。

教学难点:掌握成正比例量的变化规律及其特征。

教学过程:一、复习铺垫1.说出下列每组数量之间的关系。

(1)速度时间路程(2)单价数量总价(3)工作效率工作时间工作总量2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。

当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。

今天,先认识正比例关系的意义。

(板书课题)二、自主探究:1.教学例1。

出示例l。

让学生计算,在课本上填表,并思考能发现什么。

指名口答,老师板书填表。

让学生观察表里两种量变化的数据,思考:(1)表里有哪两种数量,这两种数量是怎样变化?(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?引导学生进行讨论,得出:(1)表里的两种量是长方形的宽与面积((长与面积)。

宽与面积((长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽((长)的变化而变化。

(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。

(3)可以看出它们的.变化规律是:面积与宽((面积与长)比的比值总是一定的。

(板书:面积和宽比的比值一定)因为面积和宽((面积与长)对应数值比的比值都是5(2)。

提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长((一定)面积/长=宽((一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定) 2.教学例2。

人教版数学八年级下册正比例函数导学案精选(3)篇2024年

人教版数学八年级下册正比例函数导学案精选(3)篇2024年

人教版数学八年级下册正比例函数导学案精选(3)篇2024年〖人教版数学八年级下册正比例函数导学案第【1】篇〗教学目标1.使学生理解解比例的意义.2.使学生掌握解比例的方法,会解比例.教学重点使学生掌握解比例的方法,学会解比例.教学难点引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式.教学过程一、复习准备(一)解下列简易方程,并口述过程.2 =8×9(二)什么叫做比例?什么叫做比例的基本性质?(三)应用比例的基本性质,判断下面哪一组中的.两个比可以组成比例?6∶10和9∶15 20∶5和4∶1 5∶1和6∶2(四)根据比例的基本性质,将下列各比例改写成其他等式.3∶8=15∶40二、新授教学(一)揭示解比例的意义.1.将上述两题中的任意一项用来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.2.学生交流根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.(二)教学例2.例2.解比例 3∶8=15∶1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.2.组织学生交流并明确.(1)根据比例的基本性质,可以把比例改写为:3 =8×15.(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.(3)规范并板书解比例的过程.解:3=8×15=40(三)教学例3例3.解比例1.组织学生独立解答.2.学生汇报3.练习:解下面的比例.=∶ = ∶三、全课小结这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.〖人教版数学八年级下册正比例函数导学案第【2】篇〗教学时间:3月19日教学内容:P47 – 49教学目标:1、使学生理解比的意义,了解比的各部分名称;2、使学生理解比值的概念,能正确求比值。

(人教版)数学下八年级导学案:19.2.1正比例函数

(人教版)数学下八年级导学案:19.2.1正比例函数

课型 新授课 课题 19.2.1正比例函数学习目标1、理解正比例函数的概念,会用描点法画正比例函数图象,2、掌握正比例函数的性质.3、会应用正比例函数的概念和性质解决问题,初步形成数学建模的思想 重点难点教学重点:理解正比例函数意义及解析式特点.掌握正比例函数图象的性质特点.能根据要求完成转化,解决问题. 教学难点:正比例函数图象性质特点的掌握.【学习范围】86页至89页【知识回顾】1、函数的三种表示方法______ _;_____ _;______ _. 2、描点法画函数图象的一般步骤____ __;____ ___;______ __.3、用描点法画出函数(1) y=x ;y=2x ;y=12x (2) y=-x ; y=-2x ; y=-12x 的图象。

(同桌的同学各选一组)【探究新知】<探究1>阅读教材86页,“思考”将答案写在下面: 探究意图:什么形式的函数叫做正比例函数!1、____________________2、_________________________3、____________________4、_________________________ 分析:它们的共同点是:都有几个变量_________;都没有___________项。

归纳:归纳:一般地,形如y=_____(___________)的函数,叫做正比例函数,其中___叫做________ _【例1】指出下列函数是否是正比例函数?比例系数是多少? (1)x y 3= (2) 2x y =(3)xy 3= (4)2r S π=<探究2>在下面平面直角坐标系中作出下列函数图像。

探究意图:正比例函数的图像性质! 第一组:(当K___________0)设计意图1、y=x ;2、y=2x ;3、y=12x 分析图像的共同点:1、它们的图像是:__________________;2、它们的图像都经过______________点;3、经过__________________象限4、图像的增减性_____________________5、当K=1时,它的图像是:_____________ 第二组:(当K___________0) 1、y=-x ;2、y=-2x 3、y=-12x 分析图像的共同点:1、它们的图像是:__________________;2、它们的图像都经过______________点;3、经过__________________象限4、图像的增减性_____________________5、当K=-1时,它的图像是:_____________综合分析:__________________决定了图像的增减性,当k_________时,y 随x 的增大而增大;当k_________时,y 随x 的增大而减小。

2023年人教版数学八年级下册正比例函数导学案(优选3篇)

2023年人教版数学八年级下册正比例函数导学案(优选3篇)

人教版数学八年级下册正比例函数导学案(优选3篇)〖人教版数学八年级下册正比例函数导学案第【1】篇〗教学内容教科书P45例1,完成教科书P49“练习九”中第1、2、4题。

教学目标1.从具体实例中认识成正比例的量,初步理解正比例的意义及字母表达式,学会根据正比例的意义来判断两种相关联的量是不是成正比例关系。

2.让学生在认识成正比例的量的过程中,学会用“函数”的眼光去理解数量关系中量与量的变化规律,发现两个变量背后的不变量,培养学生的分析能力和抽象概括能力。

3.渗透函数思想,初步建立实物之间互相联系的观念。

教学重点理解正比例的意义,并会判断两种量是否成正比例关系。

教学难点在探究中抽象出正比例的意义,渗透函数思想。

教学准备课件。

教学过程一、提供素材,感受相关联的量1.复习导入。

师:已知路程和时间,怎样求速度?【学情预设】学生会说出:速度=路程÷时间。

师:我们把路程和时间这样有关系的两种量叫做“相关联的量”。

你还能举出相关联的量的例子吗?【学情预设】学生可能会说出:总价÷数量=单价,总价和数量是两种相关联的量;工作总量÷工作时间=工作效率,工作总量和工作时间是两种相关联的量;一本书看了的页数+剩下的页数=总页数,看了的页数与剩下的页数是两种相关联的量等等。

只要学生说出的两个量是相关联的,都要予以肯定。

2.引入课题。

师:这节课我们一起来研究有关两种相关联的量的知识。

(板书课题:正比例)【设计意图】充分利用学生的认知经验和生活经验,在熟悉的数量关系的情境中导入新课,理解“两种相关联的量”的意义,为后续的学习作铺垫。

二、合作学习,探究成正比例的量1.初步理解正比例的意义。

(1)课件出示教科书P45例1。

(2)学生独立思考后,小组交流。

(3)汇报交流。

【学情预设】预设1:表中有总价和数量两种量。

预设2:彩带销售的数量增加,总价就相应增加;彩带销售的数量减少,总价就相应减少。

预设3:相应的总价和数量的比分别为,比值都是3.5。

八年级数学下册19.2.1正比例函数第1课时导学案新版新人教版2

八年级数学下册19.2.1正比例函数第1课时导学案新版新人教版2

19.2.1正比例函数(第一课时)学习目标:1、我能理解正比例函数的概念与解析式。

2、我会根据已知条件写出正比例函数的解析式。

学习重点:正比例函数的概念学习难点:根据已知条件写出正比例函数的解析式。

一、自主学习:1.函数的定义是。

2.成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商),这两种量就叫做成正比例的量,它们的关系叫做成正比例的关系。

3、问题:2011年开始运营的京沪高速铁路全长1318km,设列车的平均速度为300hkm/。

考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需小时?(结果保留小数点后一位)(2)京沪高铁列车的行程y(单位:km)是运行时间t(单位:h)的函数吗?它们之间的数量关系是。

(注意:实际问题要给出自变量的取值范围)(3)由(2)中的关系式求出当t=2.5时,y= ;当y=1200时,t= .(4)京沪高铁列车从北京南站出发2.5小时后,是否已经超过了始发站1100km的南京南站?4、完成书本86--87页思考:观察“思考”中所得的四个函数;(1)观察这些函数关系式,这些函数都是常数与自变量的形式,(2)一般地,形如()函数,叫做正比例函数,其中k叫做。

思考:为什么强调k是常数,k≠0 ?(3)、列举日常生活中正比例函数的模型,你知道多少?二、合作探究:(1)、下列函数哪些是正比例函数?① y=x3② y=3x③ y=-12x+1 ④ y=2x ⑤y=x2+1 ⑥ y=(a2+1)x+2(2)、若y=5x3m-2是正比例函数,则m= .(3)、若y=(m-2)x m-3是正比例函数,则m= .(4) 、如y=5x m2-3+m-2是正比例函数,则m= 。

(5)、已知y与2+x成正比例,且61-==yx时。

(1)求y与x之间的函数关系式;(2)若点(a,2)在函数图像上,求a的值。

四、达标测试:(1、2、3、4、5题是必做题;6、7、8题是选做题)1、教材87页的1、2题2、汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为 .y是x的函数。

人教版数学八年级下册《正比例函数图象及性质》导学案

人教版数学八年级下册《正比例函数图象及性质》导学案

19.2.1 正比例函数的图像及性质学习目标:1、理解正比例函数的概念,在用描点法画正比例函数图象过程中发现正比例函数图象性质2、能用正比例函数图象的性质简便地画出正比例函数图像3、能够利用正比例函数解决简单的数学问题学习重点:画正比例函数图像及总结正比例函数的性质学习难点:正比例函数图像的性质学习过程:(一) 、正比例函数的概念1.刘翔跑步的关系式在生活中广泛存在,下列问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点?(1)圆的周长l 随半径r 的变化而变化。

(2)铁的密度为7.8g/3cm ,铁块的质量m (单位:g )随它的体积V (单位:3cm )的变化而变化。

(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n 的变化而变化。

(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体的温度T (单位:℃)随冷冻时间t (单位:min )的变化而变化。

• 问题探究:• (1)以上对应关系都是函数关系吗?其变量和常量分别是什么?进一步指出谁是自变量,谁是函数值?(2)认真观察自变量和常量运用什么运算符号连接起来的?这些常量可以取哪些值?(3)这4个函数表达式与问题1的函数表达式 y =8.54x 有何共同特征?请你用语言加以描述.• 1.如果我们把这个常数记为k ,你能用数学式子表达吗?• 2.对这个常数k 有何要求呢?为什么?• 3.请你尝试给这类特殊函数下个定义:• (1)观察这些函数关系式,这些函数都是常数与自变量 的形式;• (2)一般地,形如 ( )函数,叫做正比例函数,其中k 叫做 。

4、你能列举出一些正比例函数的例子?跟踪练习(一):1.下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出正比例系数k 的值.(1)y =-0.1x (2)y=x/2(3)y =2x 2 (4)y 2=4x(5)y =-4x +3 (6)y=2(x -x 2 )+2x 2(二)、1.如果y =(k -1)x ,是y 关于x 的正比例函数,则k 满足________________.2.如果y=kx k-1,是y 关于x 的正比例函数,则k =__________.3.如果y =3x +k-4,是y 关于x 的正比例函数,则k =_________.(二)正比例函数图像的画法与性质知识链接:用描点法画函数图象的一般步骤:①______________,②___________________③___________________用描点法画出下列函数的图像(1)y=2x 列表得(1) ;(2) (2) y=-2x解:列表得:观察所画图像,填写你发现的规律:(3) 函数y=2x ,x y 2-=的图像是经过 的__________. (4) 函数x y 2=的图像经过第_______象限,从左到右呈_______趋势,即y 随x 的增大而________;(5) 函数x y 2-=的图像经过第_______象限,从左到右呈_______趋势,即y 随x 的增大而________;三、比较总结(1)想想看,经过原点与点(1,k )的直线是哪个函数的图像?(2)思考:画正比例函数的图像时,怎样画最简便?为什么?(3)上面总结的正比例函数规律对其他正比例函数适用吗?具有一般规律吗?1题)1题)下面我们一起用你认为最简便的画法完成下面函数图像2.试一试:用最简单的方法画出下列函数的图像(1) y=23x (2)、 y=-3x总结:正比例函数的性质 正比例函数kx y =(k ≠0)是一条经过 .当k > 0时,直线经过 象限,从左到右呈 趋势,即y 随x 的增大而当k 〈0时,直线经过 象限,从左到右呈 趋势,即y 随x 的增大 而跟踪练习(二):1. .函数x y 5-=的图像在第_______象限,经过点(0,____)与点(1,____),y 随x 的增大而_________2、已知正比例函数y=(3-k)x,若y 的值随x 的增大而增大,则k 的取值范围是什么?若y 的值随x 的增大而减小,则k 的取值范围是什么?四、总结归纳1、整理知识:正比例函数——1、 定义2、 图象特征3、 性质数学思想方法:类比化归、数形结合。

人教版数学八年级下册正比例函数导学案推荐3篇

人教版数学八年级下册正比例函数导学案推荐3篇

人教版数学八年级下册正比例函数导学案推荐3篇〖人教版数学八年级下册正比例函数导学案第【1】篇〗教材分析:正比例应用题这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用,数学教案-正比例应用题。

教材首先说明应用正、反比例的知识可以解决一些实际问题。

例1教学应用正比例的意义来解的基本应用题。

为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。

通过方框中的说明突出了怎样进行思考的过程,特别强调了新科技要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“行驶的路程和时间成正比例关系,所以两次行的路程和时间的比是相等的”然后再设未知数,列出等式(方程)解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答。

教学对象分析:成正比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一应用题,只不过那时是就题论题,没有上升到一般规律。

这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。

通过解答使学生进一步熟练地判断成正比例的量,从而加深对正比例意义的理解。

有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。

同时,由于解答时是根据正比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。

所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

教学目标:1、掌握用正比例的方法解答相关应用题;2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;3、培养学生分析问题、解决问题的能力;4发展学生综合运用知识解决简单实际问题的能力。

教学重点:掌握用正比例的方法解答应用题教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

人教版八年数学(下)导学案(正比例函数)

人教版八年数学(下)导学案(正比例函数)

【学习目标】:本节课主要内容是正比例函数的研究,讨论这种函数的定义、图象和增减性.领会正比例函数的定义,会从实际问题中提炼出正比例函数的解析式.【学习重点】:正比例函数. 【学习难点】:正比例函数性质的理解. 【学习过程】:一、回顾交流,探索新知【知识回顾】前面我们学习了函数的概念,函数是怎么定义的? 在一个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么,我们称y 是x 的函数。

其中,x 是自变量,y 是x 的函数(因变量)。

今天,我们继续研究函数,我们要研究一个较为简单、应用广泛的函数——正比例函数 。

【预备问题】汽车以60/千米时的速度匀速行驶,行驶里程为s 千米,行驶时间为t 小再写出s 关于t 的函数关系: .【问题探究】1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环:4•个月零1周后,人们在2.56万米外的澳大利亚发现了它(一个月按30天计算) .(1)这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?(2)这只燕鸥的行程y (单位:千米)与飞行时间x (单位:天)之间有什么关系?(3)这只燕鸥飞行1个半月的行程大约是多少千米?【共同思考】下列问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点?(1)圆的周长L 随半径r 的大小变化而变化:( )(2)铁的密度为7.8g/m 3,铁块的质量m (g )随它的体积V (cm 3)的大小变化而变化;( )(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h (单位:cm )•随这些练习本的本数n 的变化而变化;( )(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T (单位:℃)•随冷冻时间t(单位:分)的变化而变化;( )这些函数的共同点: 【形成定义】一般地,形如 的函数叫做正比例函数,•其中k 叫下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C .xD .【 例1】已知y=(k+1)x+k-1是正比例函数,求k 的值.二、范例点击,提高认知正比例函数的解析式具有共同的结构,那么他们的图像是否也具有某种必然的共同之处呢?先给同学们提一个问题:描点法画函数图象的一般步骤是: 、 、 . 【例2】画出下列正比例函数的图象:(1)y=2x (2)y=-2x 解:(1)y=2x 解:(2)y=-2x②描点: ②描点: ③连线: ③连线:问题1:通过观察例2中两图象可发现如下规律,你能将此规律补充完整吗? 两图象都是经过 点的 线,函数y=2x 的图象经过第 象限,从左向右呈 趋势即y 随着x 的增大而 ,函数y=-2x 的图象经过第 象限.从左向右呈 趋势,即y 随着x 的增大而 。

正比例函数导学案

正比例函数导学案

正比例函数一、学习目标:1、知道正比例函数的定义。

2、能够判断两个变量是否能够构成正比例函数关系.3、能够利用正比例函数解决简单的数学问题二、新知探究:探究一:正比例函数的定义1.下列问题中的变量对应规律可用怎样的函数表示?•(1)小亮每小时读20页书,若读书时间用字母t(h)表示,读过书的页数用字母m(页)表示,则用t表示m的函数表达式是。

(2)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n(本),则用n表示h的函数表达式是。

;(3)冷冻一个0℃的物体,使它每分钟下降2℃,物体的温度T(单位:℃)•随冷冻时间t(单位:分钟),则用t表示T的函数表达式是。

;2. 总结:上面几个函数的共同点:都是与的乘积的形式。

3. 一般地,形如()的函数,叫做正比例函数,其中非0常数k叫做。

思考:为什么强调k是常数,k ≠ 0 ?对应练习:1.y = -3x是函数, 比例系数是,x = 2时,y = 。

2.下列函数哪些是正比例函数?① y=x3② y=3x③ y=-12x+1 ④ y=2x ⑤y=x2+1⑥ y=(a2+1)x+2 ⑦y=-6 x3.在函数①y=0.5x ;②y=2x-3;③y=12x;④y=-2 x2;⑤y=3(2-x);⑥y = -32x中,正比例函数有____ __个。

4. 若函数y=(m—2)x是正比例函数,则m的条件是。

探究二:有一块10公顷的成熟麦田,用一台收割速度为0.5公顷/时的小麦收割机来收割。

(1)求收割的面积y(公顷)与收割的时间x(h)之间的函数关系式。

(2)求收割完这块麦田需用的时间。

对应练习:1、判断下列问题中哪两个量具有正比例关系,为什么?(1)向圆柱形水杯中加水,水的体积与高度; (2)正方形的面积与它的边长;(3)小丽录入一篇文章,她的打字速度与所用时间; (4)人的体重与身高2、填空:(1)已知函数y = 3x ,当x = 3时,y =(2)已知函数y = x 3,当y = 2时,x = (3)已知函数y = kx ,当x = -2,y = 10时,k =三、分层提高:基础练习:1、下列函数中,是正比例函数的是 (只填序号)①y = -4x; ② y = 3x –1 ③y =65x ④ y = x 9 ⑤ y = - 0.9x ⑥y = ()x 15- 2、汽车以40千米/时的速度行驶,行驶路程y (千米)与行驶时间x (小时)之间的函数表达式为___________________.y 是x 的_______函数,比例系数是 。

正比例函数的概念(第一课时)(导学案)-八年级数学下册同步备课系列(人教版)

正比例函数的概念(第一课时)(导学案)-八年级数学下册同步备课系列(人教版)

人教版初中数学八年级下册19.2.1正比例函数的概念导学案一、学习目标:1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.重点:正确理解正比例函数的概念.难点:根据己知条件写出正比例函数解析式.二、学习过程:问题解决问题:2011年开始运营的京沪高速铁路全长1318km.设列车的平均速度为300km/h.考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时(结果保留小数点后一位)?(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?(3)京沪高铁列车从北京南站出发2.5h后,是否已经过了距离始发站1100km 的南京南站?自主学习思考:下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式.(1)圆的周长l随半径r的变化而变化;________.(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)变化而变化;________.(3)每本练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;________.(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T(单位:℃)随冷冻时间t(单位:min)的变化而变化.________.【归纳】一般地,形如________(____________)的函数,叫做_________,其中k叫做____________.注:(1)_____________________;(2)___________________;(3)________________________________;(4)_____________________________________________________________.典例解析例1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?(1)y=3x;(2)y=2x+1;2;2;(5)y=πx;(6)y=-3x.【针对练习】下列式子,哪些y是x的正比例函数?如果是,请你指出正比例系数k的值.(1)y=-0.1x;(2)y x2;(3)y=2x2;(4)y2=4x;(5)y=-4x+3;(6)y=2(x-x2)+2x2.例2.已知=+2−1,当为何值时,是的正比例函数?【针对练习】若=−2+2−4是关于的正比例函数,求该正比例函数的解析式.例3.已知y=y1+y2,且y1−3与x成正比例,y2与x−2成正比例,当x=2时,y=7,当x=1时,y=0.(1)求出y与x之间的函数关系式;(2)计算x=4时,y的值.【针对练习】已知+5与成正比例,当=1时,=2(1)求与的函数表达式;(2)当=−1时,求函数值;(3)当=16时,求自变量的值.例4.已知某种小汽车的耗油量是每100km耗油15L.所使用的汽油为5元/L.(1)写出汽车行驶途中所耗油费y(元)与行程x(km)之间的函数关系式,并指出y是x的什么函数;(2)计算该汽车行驶220km所需油费是多少?【针对练习】列式表示下列问题中y与x的函数关系,并指出哪些是正比例函数.(1)正方形的边长为xcm,周长为ycm.(2)某人一年内的月平均收入为x元,他这年(12个月)的总收入为y元.(3)一个长方体的长为2cm,宽为1.5cm,高为xcm,体积为ycm3.达标检测1.下列关系中,是正比例函数的是()A.y=3xB.y=-x2C.60xD.y=5x-22.y是x的正比例函数,当x=2时,y=4,那么当x=-1时,y的值为()A.2B.1C.-2D.-13.如果每盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的支数,那么y与x之间的关系应该是()A.y=12xB.y=18xC.23xD.y=32x4.若y=(m-2)x+(m2-4)是关于x的正比例函数,则m的值是()A.2B.-2C.±2D.任意实数5.若y=-(m-1)x|m|是关于x的正比例函数,则m的值为()A.m≠1B.m=1C.m=±1D.m=-16.下列说法中不成立的是()A.y=3x-1中y+1与x成正比例B.在y=x+3中y与x成正比例C.在y=2(x+1)中y与x+1成正比例D.y=-x2中y与x成正比例7.比例系数为-3的正比例函数的解析式是________.8.如果y=(k-1)x,是y关于x的正比例函数,则k必须满足________.9.如果y=kx k-1,是y关于x的正比例函数,则k=____.10.如果y=3x+k-4,是y关于x的正比例函数,则k=_____.11.已知y与x成正比例,且当x=4时,y=-6,则y与x的函.数解析式_________.12.根据下表写出x,y之间的一个关系式:x,y之间的函数解析式为_________,由此断定y是x的________函数.13.下列函数中哪些是正比例函数?并指出正比例函数的比例系数. (1)y=x;(2)y=3x-5;(3)y=-57x+1;(4)1x;(5)y=-3x13;(6)y=(x-3)2.14.已知y与x+2成正比例,当x=4时,y=12.(1)写出y与x之间的函数解析式;(2)求当x=5时,y的值;(3)求当y=36时,x的值.15.如图,△ABC的边AB=8cm,当AB边上的高从小到大变化时,△ABC的面积也随之变化.(1)设AB边上的高为h(cm),请写出△ABC的面积S(cm2)与高h(cm)的关系式和h的取值范围;(2)用表格表示当h由5cm变到15cm时(每次增加2cm),S的对应值;(3)当h每增加2cm时,S如何变化?。

人教版数学八年级下册19 正比例函数(导学案)

人教版数学八年级下册19 正比例函数(导学案)

19.2一次函数知人者智,自知者明。

《老子》原创不容易,【关注】,不迷路!19.2.1正比例函数一、新课导入1.导入课题两个变量x,y 成正比例,且比例系数是k(k ≠0),你能写出y 与x 的关系式吗?学生回答后板书关系式,由此导入课题.(板书课题)2.学习目标(1)知道什么样的函数是正比例函数,能根据正比例函数的定义确定字母系数的值.(2)会画正比例函数的图象,知道正比例函数的图象是过原点的一条直线.(3)熟记正比例函数的性质,并能运用正比例函数的性质解题.3.学习重、难点重点:正比例函数的意义和图象.难点:正比例函数的图象和性质.二、分层学习1.自学指导(1)自学内容:P86到P87练习以上的内容.(2)自学时间:5分钟.(3)自学要求:思考课本问题(1)~(4)的列式根据,观察这些表达式的结构形式有什么共同特点.(4)自学参考提纲:①思考中的四个解析式有什么共同特点?②请叙述正比例函数的定义.你认为定义中容易忽视的是什么?③完成P87的练习.④成正比例与正比例函数有什么异同?⑤如果y=(m -2)23m x -是正比例函数,那么m =-2.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生在完成提纲②、⑤时存在的疑点和出现的问题.②差异指导:对个别在确定⑤中m的值时有困难的学生进行点拨引导.(2)生助生:小组研讨,帮助解决疑点.4.强化(1)正比例函数的定义及k≠0的条件.(2)展示练习的答案,并点评.(3)成正比例关系的列式结构特点.(4)字母系数的确定依据.1.自学指导(1)自学内容:P87练习以下到P89练习以上的内容.(2)自学时间:10分钟.(3)自学要求:比较图19.2-1和19.2-2的两个函数中k值与图象从左到右的升降之间有何关系.(4)自学参考提纲:①正比例函数的图象是什么?画正比例函数的图象只需描几个点?为什么?②说出k>0和k0和k<0时正比例函数y=kx的性质.④完成P89练习.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生是否找到正比例函数的图象特点,k值与图象的位关系.②差异指导:a.指导学生找到y=kx(k≠0)的图象的共性;b.指导认识k值与函数图象从左到右的升降关系.(2)生助生:同桌之间相互研讨.4.强化(1)点评画正比例函数图象的简单方法.(2)展示练习的答案,并点评.(3)总结正比例函数的图象和性质.(4)展示本节所学知识点和数学思想方法.三、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习表现、收获和疑惑.2.教师对学生的评价:(1)表现性评价:对学生在本节课中的学习态度、成果等进行点评.(2)笔评价:课堂评价检测.3.教师的自我评价(教学反思).从本节课开始,学生将逐渐认识并理解各类具体的函数图象,一般的基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征,结合学生已有的知识与经验和后面的学习内容与要求,本课时重在引导学生认识正比例函数的概念、图象的画法和应用性质的基本步骤,为后续学习指名方向和打下坚实的基础,利于研究更复杂的具体函数.教学中引导生观“形”识“信息”,逐步形成读图能力以及解题能力.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列函数中,y是x的正比例函数的是(B)A.y=2x-1B.y=x3C.y=2x2D.y=-2x+12.(10分)下列关系中,是正比例关系的是(D)A.当路程s一定时,速度v与时间tB.圆的面S与圆的半径rC.方体的体积V与棱长aD.正方形的周长C与它的边长a3.(10分)关于函数y=12x,下列结论正确的是(D)A.函数图象必经过点(1,2)B.函数图象经过第二、第四象限C.y随x的增大而减小D.y随x的增大而增大4.(10分)已知正比例函数y=(3k-1)x,若y随x的增大而增大,则k的取值范围是()A.k<0B.k>0C.k<13D.k>135.(10分)正比例函数y=(m-4)x的图象经过第一、第三象限,则m的取值范围是m>4.6.(20分)画出下列函数的图象:(1)y=12x;(2)y=-12x.二、综合应用(20分)7.已知:y-3与x成正比例,当x=2时,y=7.(1)求y与x之间的函数关系式;(2)求当x=4时,y的值;(3)求当y=4时,x的值.解:(1)y=2x+3;(2)y=11;(3)x=12.三、拓展延伸(10分)8.如图:三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是(C)A.a>b>cB.c>b>aC.b>a>cD.b>c>a【素材积累】岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。

人教版数学八年级下册19.2《正比例函数(1)》导学案

人教版数学八年级下册19.2《正比例函数(1)》导学案
请写出以下问题中的函数关系式
(1)圆的周长l随半径r的大小变化而变化;
(2)一只燕欧每天飞行的路程为200千米,那么它的行程y〔单位:千米〕就是飞行时间x〔单位:天〕的函数。
(3)每个练习本的厚度为,一些练习本摞在一起的总厚度h〔单位:cm〕随这些练习本的本数n的变化而变化;
(4)冷冻一个0℃的物体,使它每分下降2℃,物体的温度T〔单位:℃〕随冷冻时间t〔单位:分〕的变化而变化。
1.y+1与2x+3成正比例,当x=1时,y=9,求y与x的函数关系式。
2.当m、n为何值时,y=(5m-3) +(m+n)是正比例函数?写出它的解析式。
3.在水管放水的过程中,放水的时间 (min)与流出的水量 〔m3)是两个变量,水管每分钟流出的水量是0.2 m3,放水的过程持续10 min,写出 与 之间的函数解析式,并指出函数的定义域,再画出这个函数的图像·
7.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y〔g/ 〕与大气压强x(KPa)成正比例函数关系。当x=36(KPa)时,y=108〔g/ 〕,请写出y与x的函数关系式________________.
学生纠错与分析改错纠〔请用红色笔〕学生








5-8
拓展提高题〔选做〕
课题
正比例函数〔第1课时〕
授课教师
学生姓名
班级
学习时间
设计人
学习目标
1.理解正比例函数的概念;
2.能够利用正比例函数解决简单的数学问题
学习要点
重点
难点
多媒体辅助
理解正比例函数的概念
利用正比例函数解决简单的数学问题

2023年人教版数学八年级下册正比例函数导学案(优选3篇)

2023年人教版数学八年级下册正比例函数导学案(优选3篇)

人教版数学八年级下册正比例函数导学案(优选3篇)〖人教版数学八年级下册正比例函数导学案第【1】篇〗课前准备教师准备多媒体课件教学过程谈话导入师:谁能用比的知识说一说我们班男女同学的人数情况?(指名汇报)师:今天我们就一起来整理和复习比和比例的有关知识。

回顾与整理1.(1)举例说一说什么是比,什么是比例,什么是比例尺以及它们的应用。

预设生1:两个数相除又叫作两个数的比,如5÷2,可以写成5∶2。

生2:表示两个比相等的式子叫作比例,如8∶4=24∶12。

生3:图上距离和实际距离的比,叫作这幅图的比例尺,如一幅地图的比例尺是。

比例尺可分为数值比例尺和线段比例尺。

生4:配制农药会应用到比的知识;地图上一般都有比例尺。

……(2)说一说比与比例有什么区别。

比比例各部分名称0.9 ∶ 0.6=1.5前项后项比值基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个内项的积等于两个外项的积。

(3)出示教材83页“回顾与交流”2题。

学生独立完成,思考比、分数、除法之间的关系,并全班交流。

预设生1:除法算式中的被除数相当于分数的分子,相当于比的前项;除法算式中的除数相当于分数的分母,相当于比的后项;除号相当于分数的分数线,相当于比的比号。

生2:除法算式的商相当于分数的分数值,相当于比的比值。

强调:因为0不能作除数,所以所有分数的分母及比的后项都不能为0。

〖人教版数学八年级下册正比例函数导学案第【2】篇〗【教材分析】正比例这个内容是学生在学习了比的意义、比的化简与比的应用等内容的基础上进行的。

本课是有关比例知识的初步认识,结合具体情境,理解正比例的意义,判断两个量是否成正比例。

教材提供了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生通过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的意义,会判断两个量是否是正比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.2 一次函数
19.2.1 正比例函数
落红不是无情物,化作春泥更护花。

出自龚自珍的《己亥杂诗·其五》
◆教学目标:
1.理解正比例函数的解析式,熟练地求正比例函数的解析式。

2.会画正比例函数的图象,理解正比例函数的性质。

重难点
1、正确理解正比例函数的概念,正比例函数的图象和性质。

2、根据已知条件写出正比例函数解析式。

学习过程
一、复习:
函数的定义:一般地,在一个变化过程中,有个变量x和y,对于变量x
的每一个值,变量y都有的值和它对应,我们就把x称为,y
是x的。

如果当x=a时y=b, 那么b 叫做当自变量的值为a时的。

二、探究新知阅读课本内容回答下列问题:
1、问题:问题1、2011年开始运营的京沪高速铁路全长1318km,设列车的平
均速度为300km/h.
(1)列车从始发站北京南站到终点站上海虹桥站,约需小时,(结果
保留一位小数)
(2)列车的行程y(单位:km)是与运行时间t(单位:h)的函数吗?它们之
间的数量关系是:。

(注意:实际
问题要给出自变量的范围)
(3)由(2)中的关系式求出当t=2.5时,y= ;当y=1200时,t= .
(4)列车从北京南站出发2.5h后,是否已经过了距始发站1100km的南京南站? 问题2、下列问题中,变量之间的对应关系是函数关系吗?如果是,写出函数解
析式:
(1)圆的周长L随半径r的变化而变化。

(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)
的变化而变化。

(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的本数n的变化而变化。

(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体的温度T(单位:℃)随时间t(单位:min)的变化而变化。

2、以上问题中的函数都是常数与自变量的的形式。

定义:形如的函数叫做正比例函数,其中k 叫做,k必须满足的条件是,变量x的指数是。

3、在下图中分别画出下面四个正比例函数的图象
(1)x
=
y2
=(注意恰当选择自变量的值)
(2)y x
观察:(1)(2)这两个函数的图象都是经过和第的一条直线,从左向右上升
(3) 1.5
=-
y x
(4)错误!未找到引用源。

观察(3)、(4),函数的图象都是经过和第的一条直线,从左向右
比较上面个图象,填写你发现的规律:
(1)四个图象都是经过的 __________,
(2) 函数x y 2=和1
3
y x =的图象经过第_______象限,从左到右_______,即y
随x 的增大而________;
(3)函数 1.5y x =-和4y x =-的图象经过第_______象限,从左到右_______,即y 随x 的增大而________;
x
y O
-6
-6
-4-2-8
-4
-28642
108
642
4、归纳:正比例函数的解析式为______,其图象是一条直线,性质如下:
y=kx (k ≠0) 0>k
0<k
图象大致形状
图象所在象限 相同点 增减性
在y=kx(k 是不为0的常数)中,当x=0时,y=0;当x=1时,y= 。

故,
直线y=kx 的图象经过点(0,0)和(1, )。

因此,以后画正比例函数y=kx 只需确定两点,过这两点作直线即可。

为了简便,通常过原点和点(1, )画直线。

三、课堂巩固: 1、若253
2-+=-m x y m 是正比例函数,求m 的值.
2、已知y 与x 成正比例,当x=2时y =-4,求y 与x 之间的函数关系式。

解:设y=kx(k ≠0的常数), ∵当x=2时y =-4
∴ 即:k=
∴y 与x 之间的函数关系式为: (以上先设出待定系数k,再由条件求出k ,从而确定函数解析式的方法,叫待定系数法。

注意这里的y 与x 是变量哟。


变式题:已知y 与x+2成正比例,当x=3时y =10,求y 与x 之间的函数关系式。

四、课堂作业:
1、下列函数关系中,属于正比例函数关系的是( )
A 、圆的面积与它的半径
B 、面积为常数S 时矩形的长y 与宽经x
C 、路程是常数时,行驶的速度v 与时间t
D 、 三角形的底边是常数a 时它的面积S 与这条边上的高h 2、下列函数中是正比例函数的是( ) A 、 y =πx B 、y =-
x
1
C 、y =9x +1
D 、 y =x 2-3 3、下列函数解析式中,不是正比例函数的是( )
A 、xy=-2
B 、y+8x=0
C 、3x=4y
D 、y=-错误!未找到引用源。

x
4、函数y=(2-k)x 是正比例函数,则k 的取值范围是
5、若y =5x +b -2是正比例函数,则b 的值是
6、函数y=kx 中当x=-3时,y=6,则k=
7、分别指出下列正比例函数中常数k 的值 ①x y 3
3
-= ②y=3x ③x y )12(-=
④x y 2
7
-=
Z_X_X_K]
8、已知y-2与x+1成正比例,当x =8时,y =6,写出y 与x 之间的函数关系式,并分别求出x =4和x =-3时y 的值。

9、正比例函数x k y )3(-=
①若y 随x 增大而增大,求k 的取值范围;②若y 随x 增大而减小,求k 的取值范围。

10、已知y 与x 成正比例,且当x =-2时y =-4
(1)写出y 与x 的函数关系式 (2)设点(a,-2)在这个函数图象上,求a 。

五、课后反思
【素材积累】
1、人生只有创造才能前进;只有适应才能生存。

博学之,审问之,慎思之,明辨之,笃行之。

我不知道将来会去何处但我知道我已经摘路上。

思想如钻子,必须集中摘一点钻下去才有力量。

失败也是我需要的,它和成功对我一样有价值。

2、为了做有效的生命潜能管理,从消极变为积极,你必须了解人生的最终目的。

你到底想要什么?一生中哪些对你而言是最重要的?什么是你一生当中最想完成的事?或许,你从来没有认真思量过生命潜能管理旧是以有系统的方法管理自我及周边资源,达成。

相关文档
最新文档