数据结构实用教程第二版答案徐孝凯

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪习题一

1.有下列几种用二元组表示的数据结构,试画出它们分别对应的图形表示(当出现多个关系时,

对每个关系画出相应的结构图),并指出它们分别属于何种结构。

⑴ A=(K,R)其中

K={a1,a2,a3...,an}

R={}

⑵ B=(K,R)其中

K={a,b,c,d,e,f,g,h}

R={r}

r={,,,,,,}

⑶ C=(K,R)其中

K={a,b,c,d,f,g,h}

R={r}

r={,,,,,,}

⑷ D=(K,R)其中

K={1,2,3,4,5,6}

R={r}

r={(1,2),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6)}

⑸ E=(K,R)其中

K={48,25,64,57,82,36,75,43}

R={r1,r2,r3}

r1={<48,25>,<25,64>,<64,57>,<57,82>,<82,36>,<36,75>,<75,43>}

r2={<48,25>,<48,64>,<64,57>,<64,82>,<25,36>,<82,75>,<36,43>}

r3={<25,36>,<36,43>,<43,48>,<48,57>,<57,64>,<64,75>,<75,82>}

解:⑴是集合结构;⑵是线性结构;⑶⑷是树型结构;⑸散列结构。只作为参考。

2.设计二次多项式ax2+bx+c的一种抽象数据类型,假定起名为QIAdratic,

该类型的数据部分分为三个系数项a、b和c,操作部分为:(请写出下面每一个

操作的具体实现)。

⑴初始化数据成员ab和c(假定用记录类型Quadratie定义成员),每个数据成

员的默认值为0。

Quadratic InitQuadratic(float aa=0,float bb=0,float cc=0);

解:

Quadratic InitQuadratic(float aa,float bb,float cc)

{

Quadratic q;

q.a=aa;

q.b=bb;

q.c=cc;

return q;

}

⑵做两个多项式加法,即使对应的系数相加,并返回相加的结果。

Quadratic Add(Quadratic q1,Quadratic q2);

解:

Quadratic Add(Quadratic q1,Quadratic q2);

{

Quadratic q;

q.a=q1.a+q2.a;

q.b=q1.b+q2.b;

q.c=q1.c+q2.c;

return q;

}

⑶根据给定x的值计算多项式的值。

float Eval(Quadratic q,float x);

解:

float Eval(Quadratic q,float x)

{

return(q.a*x*x+q.b*x+q.c);

}

⑷计算方程ax2+bx+c=0的两个实数根,对于有实根、无实根和不是实根方程(即a==0)这三种情况要返回不同的整数值,以便于工作调用函数做不同的处理。int Root(Quadratic q,float& r1,float& r2);

解:

int Root(Quadratic q,float& r1,float& r2)

{

if(q.a==0)return -1;

float x=q.b*q.b-4*q.a*q.c;

if(x>=0){

r1=(float)(-q.b+sqrt(x))/(2*q.a);

r2=(float)(-q.b-sqrt(x))/(2*q.a);

return 1;

}

else

return 0;

}

⑸按照ax**2+bx+c的格式(x2用x**2表示)输出二次多项式,在输出时要注意去掉系数为0的项,并且当b和c的值为负时,其前不能出现加号。

void Print(Quadratic q)

解:

void Print(Quadratic q)

{

if(q.a) cout<

if(q.b)

if(q.b>0)

cout<<"+"<

else

cout<

if(q.c)

if(q.c>0)

cout<<"+"<

else

cout<

cout<

}

3.用c++函数描述下列每一个算法,并分别求出它们的时间复杂度。

⑴比较同一简单类型的两个数据x1和x2的大小,对于x1>x2,x1=x2和x1''='和'<'字符。假定简单类型用SimpleType表示,它可通过typedef

语句定义为任一简单类型。

解:

char compare(SimpleType x1,SimpleType x2)

{

if(x1>x2) return'>';

else if(x1==x2) return '=';

else return'<';

}

其时间复杂度为O(1)

⑵将一个字符串中的所有字符按相反方的次序重新放置。

解:

void Reverse(char*p)

{

int n=strlen(p);

for(int i=0;i

char ch;

ch=p[i]

p[i]=p[n-i-1];

p[n-i-1]=ch;

}

}

其时间复杂度为O(n)

⑶求一维double型数组a[n]中的所有元素之乘积。

解:

double product(double a[],int n)

{

double p=1;

for(int i=0;i

p*=a[i];

return p;

}

其时间复杂度为O(n)

⑷计算Σni=0xi/i+1的值。

解:

double Accumulate(double x,int n)

{

double p=1,s=1;

for(int i=1;i<=n;i++){

p*=x;

s+=p/(i+1);

}

return s;

}

其时间复杂度为O(n)

⑸假定一维数组a[n]中的每个元素值均在[0,200]区间内,分别统计出落在[0,20)

,[20,50),[50,80),[80,130),[130,200]等各区间的元素个数。

相关文档
最新文档