接触应力计算全面讨论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接触应力计算全面讨论
图1 曲面体的坐标
图2 坐标关系及接触椭圆
1.2 接触应力
两曲面接触并压紧,压力P 沿z 轴作用,在初始接触点的附近,材料发生局部的变形,靠接触点形成一个小的椭圆形平面,椭圆的长半轴a 在x 轴上,短半轴b 在y 轴上。
椭圆形接触面上各点的单位压力大小与材料的变形量有关,z 轴上的变形量大,沿z 轴将产生最大单位压力P 0。
其余各点的单位压力P 是按椭圆球规律分布的。
其方程为
单位压力
总压力 P 总=∫PdF
∫dF 从几何意义上讲等于半椭球的体积,故
接触面上的最大单位压力P 0称为接触应力σH
(1)
a 、
b 的大小与二接触面的材料和几何形状有关。
2 两球体的接触应力
半径为R1、R2的两球体相互接触时,在压力P的作用下,形成一个半径为a的圆形接触面积即a=b(图4),由赫兹公式得
式中:E1、E2为两球体材料的弹性模量;μ1、μ2为两球体材料的泊松。
图4 两球体外接触
取综合曲率半径为R,则
若两球体的材料均为钢时,E1=E2=E,μ1=μ2=μ=0.3,则
(2)
如果是两球体内接触(图5),综合曲率半径为,代入式(2)计算即可求出接触应力σH。
如果是球体与平面接触,即R2=∞,则R=R1代入式(2)计算即可。
图5 两球体内接触
3 轴线平行的两圆柱体相接触时的接触应力
轴线平行的两圆柱体接触时,变形前二者沿一条直线接触,压受力P 后,接触处发生了弹性变形,接触线变成宽度为2b 的矩形面(图6),接触面上的单位压力按椭圆柱规律分布。
变形最大的x 轴上压力最大,以P 0表示,接触面上其余各点的压力按半椭圆规律分布,如图7
,
半椭圆柱的体积等于总压力P ,故
图6 两圆柱体接触
图7 轴线平行的两圆柱体相接触的压力分布
最大单位压力
(3)
由赫兹公式知
代入式(3),得
若两圆柱体均为钢时,E1=E2=E,μ1=μ2=0.3,取则接触应力为
若为两圆柱体内接触(图8),则以代入式(4)计算。
若是圆柱体与平面接触,则R2=∞,R=R1代入式(4)计算。
4 机械零件的接触应力计算
4.1 摩擦轮传动
金属摩擦轮传动失效的主要形式是滚动体表面的疲劳点蚀,常按接触疲劳强度设计,来验
算滚动体接触表面上的接触应力。
对于圆盘与摩擦轮的传动(图9),将滚动体的压紧力
代入赫兹应力公式,可得
图8 两圆柱体内接触
图9 圆盘与摩擦轮接触
式中:T 为摩擦轮轴上转矩;f 为摩擦系数;b 为接触长度;S 为摩擦力裕度,在动力传动中取1.25~1.5,在仪器传动中取不大于3。
4.2 齿轮传动
一对齿轮在节点外接触,相当于半径为ρ1、ρ2的两个圆柱体相接触(图10),因此也用式(4)来求接触应力
图10 一对齿轮在节点处接触的接触应力
代入式(4),便可得出轮齿表面的接触应力公式,进而导出齿轮传动接触强度的设计计算式。
4.3 凸轮机构
凸轮机械中滚子与凸轮工作面也存在着接触应力,也可以用式(4)进行校核
式中:q =P /L ,P 为凸轮与推杆间在所校核的接触处的法向压力,常见的直动滚子推杆盘形凸轮机构法向压力如图11所示。
式中:Q 为推杆上的载荷;α为压力角;f 为导槽与推杆间摩擦系数;L a 为推杆上滚子中心伸出导槽的长度。
4.4 滚柱式离合器(图12)
当离合器进入接合状态时,滚柱被楔紧在星轮和套筒间,靠套筒随星轮一同回转。
图11 凸轮机构的受力
图12 滚柱式定向离合器简图
星轮工作面的坐标为作用在滚柱的力对离合器轴心的力臂为
若传递的传矩为M k 时,作用在滚柱上的力为
滚柱和星轮的接触是圆柱体和平面相接触,所以综合曲率半径单位长度的载荷q=Q/L,代入式(4)即可得出滚柱和星轮间的接触应力公式
式中:L为滚柱长度;d为滚柱直径。
4.5 滚动轴承的滚动体与滚道间的接触应力
滚子轴承的滚子与内环的接触相当于两圆柱体外接触(图13),综合曲率半径
单位长度上的载荷代入式(4),便可得出受力最大的滚子与内环接触处的接触应力
式中:P为受力最大的滚子所承受的力;L为滚子工作长度。
图13
5 结语
(1)通过对曲面间高副接触应力的分析,对赫兹公式进一步作了改进,得到了4个接触应力计算公式。
(2)有些机械零件,如上述讨论的齿轮,摩擦轮、滚动轴承等都是工作在高的接触压力作用
下,经过多次接触应力循环下,局部表面将发生小片或小块金属剥落,形成麻点或凹坑,使零件工作时噪音增大,振动加剧。
本文对以上这类零件的接触应力都给出了具体的计算公式。