新七年级数学下册《幂的运算》题.docx

合集下载

七下 幂的运算 整章教案 知识点+例题+练习 含答案(全面)

七下 幂的运算 整章教案 知识点+例题+练习 含答案(全面)

4=m ,85=n ,求328+m n的值.【变式】(﹣8)57×0.12555.【答案】解:(﹣8)57×0.12555=(﹣8)2×[(﹣8)55×]=﹣64.【巩固练习】 一.选择题1.计算的x 3×x 2结果是( ) A .x 6 B .6xC . x 5D .5x2.2nn a a+⋅的值是( ). A. 3n a+B. ()2n n a+C. 22n a+D. 8a3.下列运算正确的是( ) A .a 2•a 3=a 6 B .(ab )2=a 2b 2C .(a 2)3=a 5D .a 2+a 2=a 44.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).A. 100×210=310 B. 1000×1010=3010 C. 100×310=510 D. 100×1000=410 5.下列计算正确的是( ). A.()33xy xy =B.()222455xyx y -=- C.()22439xx -=-D.()323628xyx y -=-6.若()391528m n a ba b =成立,则( ).A. m =6,n =12B. m =3,n =12C. m =3,n =5D. m =6,n =5二.填空题7.若a m =2,a n =8,则a m+n = . 8. 若()319xaa a ⋅=,则x =_______. 9. 已知35na=,那么6n a =______.10.若38ma a a ⋅=,则m =______;若31381x +=,则x =______.11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦______; ()523-=______.12.若n 是正整数,且210na=,则3222()8()n n a a --=__________.4443(3)(3)n n n ==.964.例5、 已知1327m =,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________. 【答案与解析】解: ∵ 331133273m -===,∴ 3m =-. ∵ 122n n -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-. ∴ 4411(3)(3)81n m -=-==-.举一反三: 【变式】计算:(1)1232()a b c --; (2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭; 【答案】解:(1)原式424626b a b c a c --==. (2)原式8236981212888b b c b cb c c---=⨯==. 类型三、科学记数法 例6、观察下列计算过程:(1)∵33÷53=332231333=⨯,33÷53=353-=23-,∴23-= (2)当a≠0时,∵2a ÷7a =27a a =225a a a ⨯=51a ,2a ÷7a =27a -=5a -,5a -=51a , 由此可归纳出规律是:p a -=1p a(a≠0,P 为正整数) 请运用上述规律解决下列问题: (1)填空:103-= ;259x x x ⨯÷= .(2)用科学记数法:3×410-= .(写成小数形式)(3)把0.00000002写成如(2)的科学记数法10na ⨯的形式是: .D.0.3311.【答案】113.8410⨯;12.【答案】-32;【解析】解:()224m m aa ,==()3318n n a a ==-,23m n a -=4=﹣32. 三.解答题13.【解析】解:(1)2x y +=2x •2y =3×5=15;(2)32x =()32x =33=27; (3)212x y +-=()22x •2y ÷2=23×5÷2=.14.【解析】解:(1)8.5×310-=0.0085(2)2.25×810-=0.0000000225(3)9.03×510-=0.000090315.【解析】解:原式4863482323444a b a b a b a b a b ------=-÷=-=- 当23a b ==-,时,原式23412(3)27=-=-.。

最新北京课改版七年级下册数学《幂的运算》单元测试题及答案.docx

最新北京课改版七年级下册数学《幂的运算》单元测试题及答案.docx

(新课标)京改版七年级数学下册第6章6.2幂的运算测试题一.选择题(共10小题)1.计算(a2)3的结果是()A.a5B.a6C.a8 D.3a2 2.计算(﹣a3)2的结果是()A.﹣a5B.a5C.﹣a6D.a6 3.下列计算正确的是()A.(a2)3=a5B.2a﹣a=2 C.(2a)2=4a D.a•a3=a44.下列运算正确的是()A.(a2)5=a7B.a2•a4=a6C.3a2b﹣3ab2=0 D.()2=5.下列计算,正确的是()A.x3•x4=x12 B.(x3)3=x6C.(3x)2=9x2 D.2x2÷x=x6.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b37.计算:(ab2)3=()A.3ab2B.ab6C.a3b6D.a3b28.下列运算正确的是()A.3a+4b=12a B.(ab3)2=ab6C.(5a2﹣ab)﹣(4a2+2ab)=a2﹣3ab D.x12÷x6=x2 9.下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a510.已知10x=m,10y=n,则102x+3y等于()A.2m+3n B.m2+n2C.6mn D.m2n3二.填空题(共10小题)11.计算:(3x)2= .12.计算(a2)3的结果等于.13.若a2n=5,b2n=16,则(ab)n= .14.若a x=2,a y=3,则a2x+y= .15.若a+3b﹣2=0,则3a•27b= .16.已知a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是.17.(﹣0.125)2012×82012= .18.若a x=3,则(a2)x= .19.已知2n=3,则4n+1的值是.20.计算:(﹣x3)2•x2= .三.解答题(共5小题)21.计算:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2 (2)a•a3•(﹣a2)3.22.计算:(1)(﹣x)•x2•(﹣x)6 (2)(y4)2+(y2)3•y2.23.已知:26=a2=4b,求a+b的值.24.已知3×9m×27m=316,求m的值.25.已知2x=8y+2,9y=3x﹣9,求x+2y的值.六年级数学下册第6章6.2幂的运算测试题参考答案与试题解析一.选择题(共10小题)1.分析:根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.解答:解:(a2)3=a6.故选:B.2.分析:根据幂的乘方计算即可.解答:解:(﹣a3)2=a6,故选D3.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、(a2)3=a6,故错误;B、2a﹣a=a,故错误;C、(2a)2=4a2,故错误;D、正确;故选:D.4.分析:根据幂的乘方、同底数幂的乘法和同类项合并计算即可.解答:解:A、(a2)5=a10,错误;B、a2•a4=a6,正确;C、3a2b与3ab2不能合并,错误;D、()2=,错误;故选B.5.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,整式的除法的法则,对各选项分析判断后利用排除法求解.2解答:解:A、x3•x4=x7,故错误;B、(x3)3=x9,故错误;C、正确;D、2x2÷x=2x,故错误;故选:C.6.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣2a2b)3=﹣8a6b3.故选B.7.有分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.解答:解:(ab2)3,=a3(b2)3,=a3b6故选C.8.分析:根据同底数幂的除法的性质,整式的加减,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、3a与4b不是同类项,不能合并,故错误;B、(ab3)2=a2b6,故错误;C、正确;D、x12÷x6=x6,故错误;故选:C.9.分析:A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.解答:解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.10.分析:根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘的性质的逆用,计算后直接选取答案.解答:解:102x+3y=102x•103y=(10x)2•(10y)3=m2n3.故选D.二.填空题(共10小题)11.分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘计算.解答:解:(3x)2=32•x2=9x2.故填9x2.12.分析:根据幂的乘方,底数不变指数相乘,可得答案.解答:解:原式=a2×3=a6,故答案为:a6.13.分析:根据幂的乘方与即的乘方,即可解答.解答:解:∵a2n=5,b2n=16,∴(a n)2=5,(b n)2=16,∴,∴,故答案为:.14.分析:根据幂的乘方和同底数幂的乘法法则计算即可.解答:解:∵a x=2,a y=3,∴a2x+y=a2x•a y,=(a x)2•a y,=4×3,=12.15.分析:根据幂的乘方运算以及同底数幂的乘法运算法则得出即可.解答:解:∵a+3b﹣2=0,∴a+3b=2,则3a•27b=3a×33b=3a+3b=32=9.故答案为:9.16.分析:把四个数字的指数化为11,然后比较底数的大小.解答:解:a=255=3211,b=8111,c=6411,d=2511,∵81>64>32>25,∴b>c>a>d.故答案为:b>c>a>d.17.分析:根据积的乘方法则得出a m•b m=(ab)m,根据以上内容进行计算即可.解答:解:(﹣0.125)2012×82012=[(﹣0.125)×8]2012=(﹣1)2012=1,故答案为:1.18.分析:根据(a2)x=(a x)2即可求解.解答:解:(a2)x=(a x)2=32=9.故答案是:9.19.分析:根据4n+1=22n×4,代入运算即可.解答:解:因为4n+1=22n×4,所以把2n=3代入22n×4=9×4=36,故答案为:36.20.分析:先根据幂的乘方计算,再根据同底数幂的乘法计算即可.解答:解:(﹣x3)2•x2=x8.故答案为:x8.三.解答题(共5小题)21.解答:解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.22.解答:解:(1)(﹣x)•x2•(﹣x)6=﹣x9;(2)(y4)2+(y2)3•y2=y8+y8=2y8.23.解答:解:∵26=22b,∴2b=6,∴b=3.又∵26=a2,∴(23)2=a2,∴a=±23=±8.故a+b=8+3=11或a+b=﹣8+3=﹣5.24.解答:解:∵3×9m×27m=3×32m×33m=35m+1=316,∴5m+1=16,∴m=3.25.解答:解:根据2x=23(y+2),32y=3x﹣9,列方程得:,解得:,则x+2y=11.。

七年级数学下册《幂的运算》练习题附答案(苏科版)

七年级数学下册《幂的运算》练习题附答案(苏科版)

七年级数学下册《幂的运算》练习题附答案(苏科版)班级:___________姓名:___________考号:___________一、选择题1.计算a6•a2的结果是( )A.a12B.a8C.a4D.a32.计算:(-x)3·2x的结果是( )A.-2x4;B.-2x3;C.2x4;D.2x3.3.下列计算错误的是( )A.(-a)·(-a)2=a3B.(-a)2·(-a)2=a4C.(-a)3·(-a)2=-a5D.(-a)3·(-a)3=a64.计算(-2a2)3的结果是( )A.-6a2B.-8a5C.8a5D.-8a65.下列计算正确的是()A.(xy)3=x3yB.(2xy)3=6x3y3C.(-3x2)3=27x5D.(a2b)n=a2n b n6.如果3a=5,3b=10,那么9a﹣b的值为( )A.12B.14C.18D.不能确定7.下列计算中正确的是( )A.2x3﹣x3=2B.x3•x2=x6C.x2+x3=x5D.x3÷x=x28.已知23×83=2n,则n的值是( )A.18B.8C.7D.129.若x,y均为正整数,且2x+1·4y=128,则x+y的值为( )A.3B.5C.4或5D.3或4或510.计算x5m+3n+1÷(x n)2•(﹣x m)2的结果是( )A.﹣x7m+n+1B.x7m+n+1C.x7m﹣n+1D.x3m+n+1二、填空题11.计算:(﹣x)3•x2= .12.计算:(34)2027×(-43)2028=13.计算:3a·a2+a3=_______.14.计算:[(-x)2] n·[-(x3)n]=______.15.化简:6a6÷3a3= .16.已知2m=a,32n=b,m,n是正整数,则用a,b的式子表示23m﹣10n=_______.三、解答题17.化简:a3•a2•a4+(﹣a)2;18.化简:(2x2)3-x2·x419.化简:(6x2﹣8xy)÷2x.20.化简:(4m2n﹣6m2n2+12mn2﹣2mn)÷2mn.21.已知4x=8,4y=32,求x+y的值.22.已知4×2a×2a+1=29,且2a+b=8,求a b的值.23.若2×8n×16n=222,求n的值.24.“已知a m=4,a m+n=20,求a n的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得:a m+n=a m a n,所以20=4a n,所以a n=5.请利用这样的思考方法解决下列问题:已知a m=3,a n=5,求下列代数的值:(1)a2m+n; (2)a m-3n.25.已知2n= a,5n= b,20n= c,试探究a,b,c之间有什么关系.参考答案1.【答案】B2.【答案】A3.【答案】A4.【答案】D5.【答案】D6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】B11.【答案】﹣x5.12.【答案】4 3.13.【答案】4a314.【答案】-x5n;15.【答案】2a3.16.【答案】3 2 a b17.【答案】解:原式=a9+a2;18.【答案】解:原式=7x6;19.【答案】解:原式=2x(3x﹣4y)÷2x=3x﹣4y20.【答案】解:原式=2m﹣3mn+6n﹣1.21.【答案】解:4x·4y=8×32=256=44而4x·4y=4x+y∴x+y=4.22.【答案】解:由题意得,2a+3=9解得:a=3则b=8﹣2a=8﹣6=2a b=9.23.【答案】解:n=324.【答案】解:(1)45;(2)3 125.25.【答案】解:∵20n= (22×5)n= 22n×5n= (2n)2×5n= a2b,且20n= c ∴c= a2b.。

70道幂运算计算题(试题版) -百度版

70道幂运算计算题(试题版) -百度版

70道七下数学《幂运算》易错点幂运算计算题(试题版)学校:________ 班级:________ 姓名:________ 成绩:________一、解答题(共70小题)1.计算:x2•(﹣x3)4.2.计算a2•a4+(a3)2﹣32a63.计算:(2x2)4﹣x•x3•x4.4.计算:a3•a4•a+(﹣2a4)2.5.计算:m2•m4+(﹣2m2)3﹣(﹣m)6.6.化简:a•a5﹣(﹣2a3)2.7.(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6.8.计算:(﹣a2)3•(﹣a3)2.9.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.10.计算:(2x2)3﹣x4•x2.11.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.12.(a﹣b)2•(b﹣a)3•(b﹣a)(结果用幂的形式表示)13.计算,x2•x4•x6+(x3)2+[(﹣x)4]3.14.(﹣x3)2(x2)3+(﹣x3)415.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.16.计算:(2x2)3+x4•x217.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;18.(a3)2•(a4)3+(a2)519.计算:a3•a•a4+(﹣2a4)2+(a2)4.20.计算:(m﹣n)2×(n﹣m)3×(m﹣n)621.计算:y3•(﹣y)•(﹣y)5•(﹣y)222.计算:a2⋅a4+(3a3)2﹣10a623.(﹣x)•(﹣x12)•(﹣x3)3.24.[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.25.a2•a4+2a•a5﹣(2a3)2.26.计算:(﹣x)3•x•(﹣x)2.27.已知x n=2(n为正整数),求(x2n)2•(x3)2n的值.28.计算:22m+4m﹣22m+129.计算:(a﹣b)2(b﹣a)4.30.计算:(﹣2x2)3+x2•x431.x2•x5•x+(﹣2x4)2+(x2)433.计算:(﹣x)3x5+(2x4)2.34.计算:﹣(a2)4•(a2)335.计算:(﹣3x3)2﹣x2•x4﹣(x2)336.计算:x•x3+(x2)237.a3•a4•a+(a2)4+(﹣2a4)2.38.计算:a•a3﹣(2a2)2+4a439.计算:(2x2)3﹣x2•x4.41.计算:(2a2)3+(﹣3a3)2+(a2)2•a242.计算:(m4)2+m5•m3+(﹣m)4•m4.43.计算:a+2a+3a+a2•a5+a•a3•a3.44.计算:a5•(﹣a)3+(﹣2a2)4.45.计算:[﹣(a﹣b)2]3﹣[﹣(b﹣a)3]2+(a+b)2•(﹣a﹣b)4.46.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.47.(x﹣y)3•(x﹣y)4•(x﹣y)2.48.计算:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3.49.计算:(2x)3(﹣5xy2).50.计算:2x4•x2+(﹣3x3)2﹣5x6.51.(﹣a2b)(2ab)3+10a3b4.52.计算:a3b2•(﹣b2)2+(﹣2ab2)3.53.计算:(﹣2x2)3+(﹣3x3)2+(﹣x)6.54.计算:(2a)2﹣a×3a+a2.55.计算:(﹣2x2)3+2x2•x456.计算:2a3•a+(2a2)2﹣5a457.化简:a2•(﹣2a)4﹣(3a3)2+(﹣2a2)3.58.(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)359.计算:2a2•3a3﹣2a•(﹣a2)2.60.化简(5x)2•x7﹣(3x3)3+2(x3)2+x361.(﹣3a3)2•a3+(﹣4a2)•a7﹣(5a3)362.计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.63.计算:22017×.64.简便计算:0.1252016×(﹣8)2017.65.[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2]66.x2•(﹣x)2•(﹣x)2+(﹣x2)367.(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.68.计算:(﹣0.125)2014×82015.69.计算:﹣82015×(﹣0.125)2016+(0.25)3×26.70.计算0.1259×(﹣8)10+()11×(2)12.70道七下数学《幂运算》易错点幂运算计算题(答案版)学校:________ 班级:________ 姓名:________ 成绩:________一、解答题(共70小题)1.计算:x2•(﹣x3)4.【解答】解:原式=x2•x12=x14.2.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.3.计算:(2x2)4﹣x•x3•x4.【解答】解:原式=16x8﹣x8=15x8.4.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.5.计算:m2•m4+(﹣2m2)3﹣(﹣m)6.【解答】解:原式=m6﹣8m6﹣m6=﹣8m6.6.化简:a•a5﹣(﹣2a3)2.【解答】解:a•a5﹣(﹣2a3)2=a6﹣4 a6=﹣3a6.7.(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6.【解答】解:(x﹣y)•(y﹣x)2•(y﹣x)3﹣(y﹣x)6=﹣(x﹣y)•(x﹣y)2•(x﹣y)3﹣(x﹣y)6=﹣(x﹣y)6﹣(x﹣y)6=﹣2(x﹣y)6.8.计算:(﹣a2)3•(﹣a3)2.【解答】解:原式=﹣a6•a6=﹣a12.9.计算:m7•m5+(﹣m3)4﹣(﹣2m4)3.【解答】解:原式=m12+m12﹣(﹣8m12)=m12+m12+8m12=10m12.10.计算:(2x2)3﹣x4•x2.【解答】解:(2x2)3﹣x4•x2=8x6﹣x6=7x6.11.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.【解答】解:原式=﹣a8+a8﹣4a8=﹣4a8.12.(a﹣b)2•(b﹣a)3•(b﹣a)(结果用幂的形式表示)【解答】解:(a﹣b)2•(b﹣a)3•(b﹣a)=(b﹣a)2•(b﹣a)3•(b﹣a)=(b﹣a)2+3+1=(b﹣a)6.13.计算,x2•x4•x6+(x3)2+[(﹣x)4]3.【解答】解:原式=x12+x6+x12=2x12+x6.14.(﹣x3)2(x2)3+(﹣x3)4【解答】解:原式=x6•x6+x12=x12+x12=2x12.15.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.【解答】解:原式=﹣(a﹣b)6+8(a﹣b)6=﹣7(a﹣b)616.计算:(2x2)3+x4•x2【解答】解:原式=8x6+x6=9x6.17.计算结果用幂的形式表示:[(a﹣b)3•(a﹣b)]2•(b﹣a)5;【解答】解:[(a﹣b)3•(a﹣b)]2•(b﹣a)5=(a﹣b)7•[﹣(a﹣b)5]=﹣(a﹣b)12.18.(a3)2•(a4)3+(a2)5【解答】解:原式=a6•a12+a10=a18+a10.19.计算:a3•a•a4+(﹣2a4)2+(a2)4.【解答】解:a3•a•a4+(﹣2a4)2+(a2)4=a8+4a8+a8=6a8.20.计算:(m﹣n)2×(n﹣m)3×(m﹣n)6【解答】解:原式=(n﹣m)2×(n﹣m)3×(n﹣m)6=(n﹣m)2+3+6=(n﹣m)11.21.计算:y3•(﹣y)•(﹣y)5•(﹣y)2【解答】解:原式=y3•(﹣y)•(﹣y)5•y2=y3+1+5+2=y11.22.计算:a2⋅a4+(3a3)2﹣10a6【解答】解:原式=a6+9a6﹣10a6=0.23.(﹣x)•(﹣x12)•(﹣x3)3.【解答】解:(﹣x)•(﹣x12)•(﹣x3)3=﹣x22.24.[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.【解答】解:[(a+b)3]2﹣[(a+b)2]3﹣2(a+b)(﹣a﹣b)[(a+b)2]3.=(a+b)6﹣(a+b)6+2(a+b)8=2(a+b)8.25.a2•a4+2a•a5﹣(2a3)2.【解答】解:a2•a4+2a•a5﹣(2a3)2=a6+2a6﹣4a6=﹣a6.26.计算:(﹣x)3•x•(﹣x)2.【解答】解:(﹣x)3•x•(﹣x)2=﹣x3•x•x2=﹣x6.27.已知x n=2(n为正整数),求(x2n)2•(x3)2n的值.【解答】解:(x2n)2•(x3)2n=(x n)4•(x n)6=24×26=210.28.计算:22m+4m﹣22m+1【解答】解:原式=22m+(22)m﹣2×22m=22m×(1+1﹣2)=0.29.计算:(a﹣b)2(b﹣a)4.【解答】解:原式=(a﹣b)2(a﹣b)4=(a﹣b)6.30.计算:(﹣2x2)3+x2•x4【解答】解:(﹣2x2)3+x2•x4=﹣8x6+x6=﹣7x6.31.x2•x5•x+(﹣2x4)2+(x2)4【解答】解:原式=x8+4x8+x8=6x8.32.计算:2x7•(﹣x3)﹣(﹣x3)2•x4【解答】解:原式=﹣2x10﹣x10=﹣3x10.33.计算:(﹣x)3x5+(2x4)2.【解答】解:原式=﹣x8+4x8=3x8.34.计算:﹣(a2)4•(a2)3【解答】解:﹣(a2)4•(a2)3=﹣a8•a6=﹣a14.35.计算:(﹣3x3)2﹣x2•x4﹣(x2)3【解答】解:原式=9x6﹣x6﹣x6=7x6.36.计算:x•x3+(x2)2【解答】解:原式=x•x3+(x2)2,=x4+x4=2x4.37.a3•a4•a+(a2)4+(﹣2a4)2.【解答】解:原式=a3+4+1+a2×4+4a8,=a8+a8+4a8,=6a8.38.计算:a•a3﹣(2a2)2+4a4【解答】解:原式=a4﹣4a4+4a4=a4.39.计算:(2x2)3﹣x2•x4.【解答】解:(2x2)3﹣x2•x4=8x6﹣x6=7x6.40.计算:(2a2)3﹣a4•a2﹣(a3)2【解答】解:原式=8a6﹣a6﹣a6=6a6.41.计算:(2a2)3+(﹣3a3)2+(a2)2•a2【解答】解:(2a2)3+(﹣3a3)2+(a2)2•a2=23×(a2)3+(﹣3)2×(a3)2+(a2)2×a2=8a6+9a6+a6=(8+9+1)a6=18a6.42.计算:(m4)2+m5•m3+(﹣m)4•m4.【解答】解:(m4)2+m5•m3+(﹣m)4•m4=m4×2+m5+3+m4+4=3m8.43.计算:a+2a+3a+a2•a5+a•a3•a3.【解答】解:原式=(a+2a+3a)+(a7+a7)=6a+2a7.44.计算:a5•(﹣a)3+(﹣2a2)4.【解答】解:a5•(﹣a)3+(﹣2a2)4.=a5•(﹣a3)+16a8=﹣a8+16a8=15a8.45.计算:[﹣(a﹣b)2]3﹣[﹣(b﹣a)3]2+(a+b)2•(﹣a﹣b)4.【解答】解:原式=﹣(a﹣b)6﹣(a﹣b)6+(a+b)6=﹣2(a﹣b)6+(a+b)6.46.计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.【解答】解:a3•a•a5+a4•a2•a3=a9+a9=2a9.47.(x﹣y)3•(x﹣y)4•(x﹣y)2.【解答】解:原式=(x﹣y)3+4+2=(x﹣y)9.48.计算:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3.【解答】解:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3=(﹣2)6•a6﹣(﹣3)2•(a3)2+(﹣1)3•(2a)6=64a6﹣9a6﹣64a6=﹣9a6.49.计算:(2x)3(﹣5xy2).【解答】解:原式=8x3•(﹣5xy2)=﹣40x4y2.50.计算:2x4•x2+(﹣3x3)2﹣5x6.【解答】解:2x4•x2+(﹣3x3)2﹣5x6=2x6+9x6﹣5x6=6x6.51.(﹣a2b)(2ab)3+10a3b4.【解答】解:原式=(﹣a2b)•8a3b3+10a3b4=﹣8a5b3+10a3b4.52.计算:a3b2•(﹣b2)2+(﹣2ab2)3.【解答】解:a3b2•(﹣b2)2+(﹣2ab2)3=a3b2•b4﹣8a3b6=a3b6﹣8a3b6=﹣7a3b6.53.计算:(﹣2x2)3+(﹣3x3)2+(﹣x)6.【解答】解:原式=﹣8x6+9x6+x6=2x6.54.计算:(2a)2﹣a×3a+a2.【解答】解:原式=4a2﹣3a2+a2=2a2.55.计算:(﹣2x2)3+2x2•x4【解答】解:原式=﹣8x6+2x6=﹣6x6.56.计算:2a3•a+(2a2)2﹣5a4【解答】解:原式=2a4+4a4﹣5a4=a4.57.化简:a2•(﹣2a)4﹣(3a3)2+(﹣2a2)3.【解答】解:原式=a2•16a4﹣9a6﹣8a6=﹣a658.(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)3【解答】解:(﹣2x2y)3+(3x2)2•(﹣x)2•(﹣y)3=﹣8x6y3﹣9x6y3=﹣17x6y3.59.计算:2a2•3a3﹣2a•(﹣a2)2.【解答】解:2a2•3a3﹣2a•(﹣a2)2.=2a2•3a3﹣2a•a4=6a5﹣2a5=4a5.60.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.61.(﹣3a3)2•a3+(﹣4a2)•a7﹣(5a3)3【解答】解:原式=9a6•a3﹣4a2•a7﹣125a9=9a9﹣4a7﹣125a9=﹣120a9.62.计算:(﹣a)2•(﹣a3)•(﹣a)+(﹣a2)3﹣(﹣a3)2.【解答】解:原式=﹣a2•(﹣a3)•(﹣a)+(﹣a6)﹣a6=a6﹣a6﹣a6=﹣a6.63.计算:22017×.【解答】解:22017×.=22017××(﹣)=[2×(﹣)]2017×(﹣)=﹣1×(﹣)=.64.简便计算:0.1252016×(﹣8)2017.【解答】解:0.1252016×(﹣8)2017,=×(﹣8)2016×(﹣8),=(﹣1)2016×(﹣8),=﹣8.65.[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2]【解答】解:原式=4(a﹣b)6+(a﹣b)6+(a﹣b)2=5(a﹣b)6+(a﹣b)2.66.x2•(﹣x)2•(﹣x)2+(﹣x2)3【解答】解:原式=x2•x2•x2﹣x6=x6﹣x6=0.67.(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2.【解答】解:(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2=4y6﹣64y6﹣4y2•(9y4)=4y6﹣64y6﹣36y6=﹣96y6.68.计算:(﹣0.125)2014×82015.【解答】解:原式=(﹣0.125×8)2014×8=(﹣1)2014×8=8.69.计算:﹣82015×(﹣0.125)2016+(0.25)3×26.【解答】解:原式=﹣82015×(﹣0.125)2015×(﹣0.125)+(0.25)3×23×23=﹣[8×(﹣0.125)]2015×(﹣0.125)+(0.25×2×2)3=1×(﹣0.125)+1=0.875.70.计算0.1259×(﹣8)10+()11×(2)12.【解答】解:0.1259×(﹣8)10+()11×(2)12=(﹣0.125×8)9×(﹣8)+(×2)11×2=8+2=10.。

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。

-299 B。

-2 C。

299 D。

22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。

4个 B。

3个 C。

2个 D。

1个3.下列运算正确的是()A。

2x+3y=5xy B。

(-3x^2y)^3=-9x^6y^3C。

D。

(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。

an与XXX^(2n)与b^(2n)C。

a^(2n+1)与b^(2n+1) D。

a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。

0个 B。

1个 C。

2个 D。

3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。

9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。

(完整word版)苏教版七年级数学幂的运算练习卷

(完整word版)苏教版七年级数学幂的运算练习卷

6 a -^a =a / 八 3 3^3 (—ab )= - a bC . (a * 2) 3=a 5苏教版 七年级 数学 幂的运算 练习卷一 .选择题(共13小题) 1 .碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为 的碳纳米管,1纳米=0.000000001米,则 A . 0.5X10^9 米 B . 5X 0-8米 C . 5X 0-9 米 D . 5X 0-10 米 0.5纳米用科学记数法表示为(2. -2.040 X 05表示的原数为( ) A . - 204000 B . - 0.000204 C . - 204.000 D . - 20400 3. (2007?十堰)下列运算正确的是( A6小 3 18 f / 3、2 2 5 A . a ?a =a B . (a ) a =a 一 6 3 2 f 33^3 C . a -^a =a D . a +a =2a 4. (2007?眉山)下列计算错误的是( z 、33A . (- 2x ) = - 2xC . (- x )9r- x )3 6=x)3B . - a ?a= - a3、2 , 6D . (- 2a )=4a0.5纳米6. (2004?三明)下列运算正确的是(A 2小 3 6 A . x ?x =x C . (x - 1) 0=1) ( 2) 3 6 (—x ) =x5 4 D . 6x 5-2x=3x 4 7. A . x>--B . XM —二2[2C . x <--D . x M2\2在①(-1) 0=1 ;②(-1) 3=-1 :③3a =,;④3a(-x ) 5— (- x ) 3= - x 2 中,A .①②B .②③C .①②③D .①②③④苦 (3、 右 a =( )-2 b= (- 1) -1,c=(--.)则 a , b ,c 的大小关系是()A . a > b > cB . a > c > bC . c > a > bD . c > b > a则 )8. 9. 正确的式子有(若( 2x+1 ) 0=110•通讯卫星的高度是 并同时反射给地面需要 A . 3.6X10「1秒 C . 2.4X10「2 秒3.6 X107米,电磁波在空中的传播速度是)B . 1.2 X 0^1 秒 D . 2.4 X 0「1 秒3X108米/秒,从地面发射的电磁波被通讯卫星接受5. 正确的是(1212B .D11.下列计算,结果正确的个数()(1) U) —1 =—3:—3; (2) 2 = —8;(3)(-上)—2——';(4) ( n—3.14) 0=134gA . 1个B. 2个C. 3个D. 4个12. 下列算式,计算正确的有-3 0①10 =0.0001 ;② (0.0001)=1;③ 3aA . 1个B. 2个C. 3个D. 4个13. 计算:^ 的结果是()5 4A .主B. §5 4C.(为仙D. (5他54二.填空题(共8小题)1 - 314. (2005?常州)(占)°= ---------------------------- ;©= ---------------------a+215. 已知(a- 3)a2=1,则整数a= ________________ .16 .如果(x - 1)x+4=1成立,那么满足它的所有整数x的值是24. ________________________________________________________________________ (2010?西宁)计算:(斗)7 —(2 14—兀)°+0.0X4°=________________________________________________________________________________ •25•计算:(1)(- 2.5x3) 2(- 4x3) = _ __ ;(2)(- 104) ( 5XI05) ( 3X102) = ______________ ;26 •计算下列各题:(用简便方法计算)2n 2n-1 2 2 3 2(1)- 10 XI00x( - 10) = ________________________________________ ; (2) [ (- a) (- b) ?a b c] = ;(3)(x3) 2^x2^x+x3-( - x) 2? (- x2) = _______________ ; (4)〔-9)0(-2)(丄)5= ____________3 327.把下式化成(a- b) p的形式:15 ( a- b) 3[ - 6 ( a- b) p+5] (b- a) 2^45 (b - a) 5= ____________ .28 .如果x m=5, x n=25,则x5m-2n的值为________________________ •,. n m k 戸「2n+m-2k 砧/古*29. 已知:a =2, a =3, a =4,贝U a 的值为.30 .比较2100与375的大小2100 ________________ 375.答案与评分标准一•选择题(共13小题)1 •碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,贝U 0.5纳米用科学记数法表示为( )A • 0.5X10「9米B • 5 XI0「8米C. 5X10「9米 D • 5X10^10米考点:科学记数法一表示较小的数。

最新七年级下数学同底数幂的乘法练习题(含答案)

最新七年级下数学同底数幂的乘法练习题(含答案)

最新七年级下数学同底数幂的乘法练习题(含答案)XXX——学生素质素养拓展培训中心第一课时:同底数幂的乘法基础练1.填空:1) a叫做a的m次幂,其中a叫幂的底数,m叫幂的指数;2) 写出一个以幂的形式表示的数,使它的底数为c,指数为3,这个数为c³;3) (-2)表示负二的一次幂,-24表示负二的四次幂;4) 根据乘方的意义,a⁰=1,a¹=a,因此a⁰=1,a¹=a。

2.计算:1) a⁴;2) b⁶;3) m²;4) c¹⁷;5) a⁷⁺ᵖ;6) t²ᵐ⁻¹;7) qⁿ⁺¹;8) n³p⁺¹。

3.计算:1) 32⁻ᵇ;2) (-a)²;3) (-y)³;4) (-a)⁷⁺³;5) -3³;6) (-5)⁴²⁷;7) (-q)²;8) (-m)⁴⁺²;9) -23;10) (-2)⁴⁹。

4.下面的计算对不对?如果不对,应怎样改正?325³³⁶1) 2×3=6;改正:2³×3³=6³;2) a+a=a;改正:a×a=a²;3) y×y=2y;改正:y×y=y²;223⁴¹²4) m²×m=m;改正:m²×m=m³;5) (-a)×(-a)=a;改正:(-a)×(-a)=a²;6) a×a=a;改正:a×a=a²;236²7) (-4)=4;改正:(-4)²=16;8) 7×7×7=7;改正:7³=343;9) -a=-4;改正:-a=4;3310) n+n=n;改正:n×n=n²。

2020—2021年北师大版初中数学七年级下册幂的乘方测试题及答案(试题).docx

2020—2021年北师大版初中数学七年级下册幂的乘方测试题及答案(试题).docx

1.2幂的乘方与积的乘方第1课时幂的乘方基础训练知识点1 幂的乘方法则1.计算(-a3)2结果正确的是( )A.a5B.-a5C.-a6D.a62.下列计算正确的是( )A.a3+a3=a6B.3a-a=3C.(a3)2=a5D.a·a2=a33.化简a4·a2+(a3)2的结果是( )A.a8+a6B.a6+a9C.2a6D.a124.下列运算正确的是( )A.4m-m=3B.2m2·m3=2m5C.(-m3)2=m9D.-(m+2n)=-m+2n5.下列运算正确的是( )A.a2-a=aB.ax+ay=axyC.m2·m4=m6D.(y3)2=y5知识点2 幂的乘方法则的应用6.已知a=-34,b=(-3)4,c=(23)4,d=(22)6,则下列a,b,c,d四者关系的判断正确的是( )A.a=b,c=dB.a=b,c≠dC.a≠b,c=dD.a≠b,c≠d7.已知10x=m,10y=n,则102x+3y等于( )A.2m+3nB.m2+n3C.6mnD.m2n38.9m·27n可以写为( )A.9m+3nB.27m+nC.32m+3nD.33m+2n9.若3×9m×27m=321,则m的值为( )A.3B.4C.5D.610.若5x=125y,3y=9z,则x∶y∶z等于( )A.1∶2∶3B.3∶2∶1C.1∶3∶6D.6∶2∶111.若x,y均为正整数,且2x+1·4y=128,则x+y的值为( )A.3B.5C.4或5D.3或4或512.已知(2x)n=22n(n为正整数),求正数x的值.13.已知x+4y=5,求4x·162y的值.14.已知2x+5y-9=0,求4x·32y的值.易错点对幂的乘方法则理解不透导致出错15.下列四个算式中正确的有( )①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(-x)3]2=(-x)6=x6;④(-y2)3=y6.A.0个B.1个C.2个D.3个提升训练考查角度1 利用幂的乘方法则进行计算16.计算:(1)(-a2)3·a3+(-a)2·a7-5(a3)3;(2)x5·x7+x6·(-x3)2+2(x3)4;(3)[(a-2b)2]m·[(2b-a)3]n(m,n是正整数).考查角度2 利用幂的乘方求字母间的关系17.已知2x=a,4y=b,8z=ab,试猜想x,y,z之间的数量关系,并说明理由.考查角度3 利用幂的乘方求字母的值(方程思想)18.(1)已知2×8x×16=223,求x的值;(2)已知3m+2×92m-1×27m=98,求m的值.探究培优拔尖角度利用幂的乘方比较大小的技巧19.阅读下列解题过程,试比较2100与375的大小.解:因为2100=(24)25=1625,375=(33)25=2725,16<27,所以2100<375.请根据上述解答过程解答:比较255,344,433的大小.20.已知a=833,b=1625,c=3219,试比较a,b,c的大小.21.已知a2=5,b3=12,且a>0,b>0,试比较a,b的大小.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】D解:102x+3y=102x·103y=(10x)2·(10y)3=m2n3.8.【答案】C 9.【答案】B 10.【答案】D11.【答案】C解:因为2x+1·4y=2x+1+2y=128=27,所以x+1+2y=7,即x+2y=6.因为x,y 均为正整数,所以y只能为1,2.当y=1时,x=4,x+y=5;当y=2时,x=2,x+y=4,故选C.12.解:由题意知(2x)n=22n=4n.又因为x为正数,所以2x=4,即x=2.13.解:4x·162y=4x·44y=4x+4y=45=1024.14.解:4x·32y=22x·25y=22x+5y.因为2x+5y-9=0,所以2x+5y=9.所以原式=29=512.15.【答案】C解:本题易错之处在于混淆幂的乘方与同底数幂的乘法法则或弄错结果的符号.②③正确,①(a4)4=a16,④(-y2)3=-y6.16.解:(1)原式=-a9+a9-5a9=-5a9.(2)原式=x12+x12+2x12=4x12.(3)原式=(a-2b)2m·(2b-a)3n=(a-2b)2m·[-(a-2b)]3n,所以当n为奇数时,原式=-(a-2b)2m+3n;当n为偶数时,原式=(a-2b)2m+3n.或原式=(2b-a)2m·(2b-a)3n=(2b-a)2m+3n.17.解:猜想x+2y=3z.理由:因为2x·4y=ab,8z=ab,所以2x·4y=8z,即2x+2y=23z.所以x+2y=3z.18.解:(1)因为2×8x×16=223,所以23x+5=223,所以3x+5=23,所以x=6.解:综合运用幂的乘方法则和同底数幂的乘法法则将等式进行转化,运用方程思想确定字母的值是解决这类问题的常用方法. (2)因为3m+2×92m-1×27m=3m+2×34m-2×33m=38m=98,所以38m=316.所以8m=16.所以m=2.19.解:因为255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,32<64<81,所以255<433<344.20.解:因为a=833=(23)33=299,b=1625=(24)25=2100,c=3219=(25)19=295,95<99<100,所以c<a<b.21.解:因为a6=(a2)3=53=125,b6=(b3)2=122=144,125<144,所以a6<b6.又因为a>0,b>0,所以a<b.。

(完整版)幂的运算练习及答案

(完整版)幂的运算练习及答案

(完整版)幂的运算练习及答案初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数次数 2、多项式2a 2b-35是次项式。

各项的系数分别是3、在下列各式53b a +, 3x ,π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式有多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。

5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。

11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是()A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是()A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为()A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为()A 、a<b<c<d< p="">B 、a<b<d<c< p="">C 、b<a<c<d< p="">D 、a<d<b<c< p="">6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -?-?-?-(4) 2344()()2()()x x x x x x -?-+?---?四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关,求y 的值。

(完整版)初一数学下册《幂的运算》单元测试卷

(完整版)初一数学下册《幂的运算》单元测试卷

初一数学下册《幂的运算》单元测试卷一、选择题1、下列计算正确的是( )A 、x 2+ x 2=x 4B 、x 3÷x 4=x1 C 、(m 5)5=m 25 D 、x 2y 3=(xy)5 2、81×27可以记为( ) A 、93 B 、36 C 、37 D 、312 3、a 5可以等于( )A 、(-a )2·(-a)3·B 、(-a)·(-a)4C 、(-a 2)·a3 D 、(-a 3)·(-a 2) 4、若a m =6,a n =10,则a m-n 值为( )A 、-4B 、4C 、 53D 、35 5、计算- b 2·(-b 3)2的结果是( ) A 、-b 8 B 、-b 11 C 、b 8D 、b 11 6、连结边长为1的正方形对边中点,可将一个正方形分成四个全等的小正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成四个更小的小正方形,……重复这样的操作,则2004次操作后右下角的小正方形面积是( )A 、20041 B 、(21)2004 C 、(41)2004 D 、1-(41)2004 7、下列运算正确的是( )A 、x 3+2x 3=3x 6B 、(x 3)3=x 6C 、x 3·x 9=x27 D 、x ÷x 3=x -2 8、在等式a 2·a 3·( )=a 10中,括号内的代数式应当是( )A 、a 4B 、a 5C 、a 6D 、a 79、 (a 2)3÷(-a 2)2=( )A 、- a 2B 、a 2C 、-aD 、a 10、0.000000108这个数,用科学记数法表示,正确的是( )A 、1.08×10-9B 、1.08×10-8C 、1.08×10-7D 、1.08×10-611、若n 是正整数,当a=-1时,-(-a 2n )2n+1等于( )A 、1B 、-1C 、0D 、1或-112、计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2 表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式数是( )A 、8B 、15C 、20D 、30二、填空题(每空3分,共42分) 7、(21)-1= ,(-3)-3= , (π-3)0 ,(-21)100×2101= 。

初一数学幂的运算题目

初一数学幂的运算题目

初一数学幂的运算题目一、幂的运算题目1. 计算:a^3· a^4- 解析:根据同底数幂相乘,底数不变,指数相加。

所以a^3· a^4=a^3 + 4=a^7。

2. 计算:(x^2)^3- 解析:根据幂的乘方,底数不变,指数相乘。

所以(x^2)^3=x^2×3=x^6。

3. 计算:(2a)^3- 解析:根据积的乘方等于乘方的积,(2a)^3=2^3· a^3=8a^3。

4. 计算:a^5div a^2- 解析:根据同底数幂相除,底数不变,指数相减。

所以a^5div a^2=a^5 - 2=a^3。

5. 计算:( - 3x^3)^2- 解析:根据积的乘方,( - 3x^3)^2=(-3)^2·(x^3)^2=9x^6。

6. 若a^m=3,a^n=2,求a^m + n的值。

- 解析:根据同底数幂相乘的运算法则a^m + n=a^m· a^n,已知a^m=3,a^n=2,所以a^m + n=3×2 = 6。

- 解析:- 先计算x^3· x^5,根据同底数幂相乘,底数不变,指数相加,得到x^3· x^5=x^3+5=x^8。

- 再计算(x^4)^2,根据幂的乘方,底数不变,指数相乘,得到(x^4)^2=x^4×2=x^8。

- 所以x^3· x^5-(x^4)^2=x^8-x^8=0。

8. 计算:(a^2b)^3- 解析:根据积的乘方等于乘方的积,(a^2b)^3=(a^2)^3· b^3=a^6b^3。

9. 若a^m=5,a^2m的值是多少?- 解析:根据幂的乘方,a^2m=(a^m)^2,已知a^m=5,所以a^2m=5^2=25。

10. 计算:y^10div y^5div y^3- 解析:- 根据同底数幂相除,底数不变,指数相减。

- 先计算y^10div y^5=y^10 - 5=y^5。

(完整版)幂的运算练习及答案

(完整版)幂的运算练习及答案

初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数 次数 2、多项式2a 2b-35是 次 项式。

各项的系数分别是3、在下列各式53b a +, 3x , π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式 有 多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。

5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。

11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是( )A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是( )A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为( )A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为( )A 、a<b<c<dB 、a<b<d<cC 、b<a<c<dD 、a<d<b<c6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -⋅-⋅-⋅-(4) 2344()()2()()x x x x x x -⋅-+⋅---⋅四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关, 求y 的值。

(完整word版)幂的运算练习题及答案

(完整word版)幂的运算练习题及答案

则;
考点 :单项式乘单项式;幂的乘方与积的乘方;多项式乘多
(2)同类项的概念是所含字母相同, 相同字母的指数也相同
项式。
的项是同类项,不是同类项的一定不能合并.
分析: 根据幂的乘方与积的乘方、合并同类项的运算法则进
4、 a 与 b 互为相反数,且都不等于 0,n 为正整数,则下列
行逐一计算即可.
各组中一定互为相反数的是(

A、2x+3y=5xy
B、(﹣ 3x2y)3= ﹣ 9x6y3
C、
,正确;
D、应为( x﹣ y) 3=x3﹣3x2y+3xy 2﹣ y3,故本选项错误.
故选 C. 点评:( 1)本题综合考查了整式运算的多个考点,包括合并
C、
D 、 同类项,积的乘方、单项式的乘法,需要熟练掌握性质和法
(x﹣y)3=x 3﹣y3
法公式做(注意一个负数的偶次幂是正数,奇次幂是负数) ;
④利用乘法分配律的逆运算. 解答: 解: ①∵ a5+a5=2a5;,故 ①的答案不正确; ②∵(﹣ a)6?(﹣ a)3=(﹣ a)9=﹣ a9,故② 的答案不正确; ③∵ ﹣ a4?(﹣ a)5=a9;,故 ③的答案不正确;
8 / 17
④25+2 5=2 ×25=2 6. 所以正确的个数是 1, 故选 B. 点评: 本题主要利用了合并同类项、同底数幂的乘法、乘法 分配律的知识,注意指数的变化. 二、填空题(共 2 小题,每小题 5 分,满分 10 分) 6、计算: x2?x3= x5 ;(﹣ a2)3+(﹣ a3)2= 0 . 考点 :幂的乘方与积的乘方;同底数幂的乘法。 分析: 第一小题根据同底数幂的乘法法则计算即可;第二小 题利用幂的乘方公式即可解决问题. 解答: 解: x2?x3=x5;

(完整word版)七年级下册数学幂的运算练习题

(完整word版)七年级下册数学幂的运算练习题

七年级下册数学幂的运算练习题一
1、以下运算,果正确的选项是A.B .
C.D .
2、察以下算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,⋯,89的个位数字是
〔〕
A.2;B.4;C.8
;D.6.
3、假设,,等于()
A
.B.6C.21D.20
4、于非零数,以下式子运算正确的选
项是〔〕
A
.B.C
.D.
5、算:的果,正确的选
项是〔〕
A
.B.C.D.
6、以下各式算果不正确的选
项是()
A.ab(ab)2=a3b3B.a3b2÷2ab=a2b
C .
2
3363332 (2ab)=8ab D.a÷a·a=a
二、填空
7、如果,,=.8、算:=
_______.
9、算:=.
1
0、算:=,=.
1 1、在以下各式的括号中填入适当的代数式,使等式成立:
⑴a=〔〕;⑵.
1
2、算:=,=.
13、在横上填入适当的代数式:,.
14、:,求的值.
15、计算:〔y〕+〔y〕=.16、计算:〔x〕=.
17、计算:.
三、解答
18、,求(1);(2).
19、,求的值.
20、解方程:.21、解方程:;
22、地球上的所有植物每年能提供人类大约大卡的能量,假设每人每年要消耗
大卡的植物能量,试问地球能养活多少人?
23、计算:.24、计算:;
25、计算:26、计算:;
27、计算:.
28、;
29、计算:;
30、计算:;。

完整word版新版北师大数学七下第一章幂运算练习题

完整word版新版北师大数学七下第一章幂运算练习题

新版北师大数学七下第一章幂的运算练习题幂的运算法规:① a m a n ( ) ② (a m ) n ③ (ab) n() ④ a m a n ⑤ a 0 ( ) ⑥ ap一 . 同底数幂的乘法1、以下各式中,正确的选项是() A . m 4 m4m 8 B. m 5 m5( )( )()2m 25 C. m 3m 3m 9 D. y 6 y 6 2y 122、102·107 =,x y 5 ? x y 43, a 4 ? aa 5 , a ? a 3 ? a ma 8 , 则 m=3、若 a m =2,a n = 3,则 a m+n =( );已知 n 是大于 1 的自然数 , 则 cn 1? c n 1 = ( );4. a 3211·a·( ) = a ; 5、81×27 可以记为(21 31 ·6, 2 2=,7.x 2 y 2 · 2 y x 3 =二 . 幂的乘方- t 3 ·( - t) 4·( - t) 5 =) A 、93 B 、 36 C 、37 D 、312a 10 · a 2 · a =,a 2 · a 6 =,32 27 81=,23,a b c b c a c a b =,12 324k 121、x ;a 4 a 8 ; ( )24 2x =;2 z3== a b ;2 xy2. x4 3? x 7= ;a 2 4? a3;(-a n ) 2n=;x 2 5 =;若 a x 2, 则 a 3 x=3. 223;x44;x 3 2 x 2 3=;a 2 n 2 2 ·a n 1 3= ;==三 . 同底数幂的除法1、a 4 a;a 5a a 4 ; ab 3aba 3b 3 ;x n 2 x 2;ab 4 ab 42、以下 4 个算式 (1)c 4c 2c 2 (2)y6y 4y 2 (3) z 3 z 0z 3 (4)a 4m a ma 4其中 , 计算错误的有 ( )个个个个25223. x7x3= ;( 3)( 3 ) = ;( ab)6 ( ab)3 =;( x y)3 ( x y)2 = ;4. a 7(a 3a) =;(b 5 b 3 ) (b 2 b 5 ) =;y y 2 ( y) 7( y) 4 =;四 . 幂的混杂运算1、a 5÷(- a 2 )· a = ; (a 2b ) ? ab 32=;(- a 3) 2 ·( - a 2) 3=;x 2 ? x m3x 2m =2、 x m ? ( x n )3x m 1 ? 2x n 1 = ; (-3a) 3- ( -a) ·( - 3a =3、以下运算中与 a 4 ? a 4 结果相同的是 ( ) A.a 2 ? a 8B. a 24C. a 4 4D.a 24? a 242mm4、3 ×9×27=5. (ab)6 ( ab)2 =;(a 2 )3 ( a 2 )2 =;( m 2n 3 )6 ( m 2n 3 )2 =;6.10 m5,10n 3 ,则10 2m( 2abc) 2 ( abc)3( 2 10 3 ) 2 10 4 ) 23 n =;=;3=,以下各式中填入a 3能使式子成立的是() A .a6= ( ) 2B. a 6 =( ) 43=( ) 0D. a 5=( ) 278,以下各式计算正确的()A.x a ·x 3 =(x 3 ) aB.x a ·x 3 =(x a ) 3C.(x a ) 4 =( x 4 ) aD. x a · x a · x a =x 3 a9,若是( 9 n ) 2 =3 8 ,则 n 的值是()D.无法确定10 ,已知 P=(-ab 3 ) 2 ,那么 -P 2 的正确结果是 ()A.a 4 b 122b 64b 8D.- a 412b3 233 )A .1.08 ×10 17× 17× 16× 16 11,计算( -4 ×10) ×(-2 ×10)的正确结果是(10 101012,以下各式受骗算正确的选项是()A .(x 4 ) 3 =x 7 B.[ ( -a ) 2 ] 5 =-a 10 C.(a m ) 2 =(a 2 ) m =a 2mD.( -a 2 ) 3 =(-a 3 ) 2 =-a 6 13 ,计算( -a 2) 3 ·(-a 3 ) 2 的结果是( ) A . a 1212103614,以下各式错误的选项是()A . [(a+b ) 2 ] 3 =(a+b ) 6B.[ (x+y ) 2n ] 5 =(x+y ) 2n 5C. [( x+y ) m ] n =(x+y ) mnD. [ (x+y ) m 1 ] n =[(x+y ) n ] m 115. 化简求值 a 3·(- b 3)2+(- 1ab 2)3,其中 a = 1,b =4。

【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)

【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)

【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)一、选择题(每题3分,共24分)1.【2021·南京市玄武区二模】计算a 3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 62.计算⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫15-2的结果是( ) A.110 B .-110 C .25 D .-1253.【2022·宿迁】下列运算正确的是( )A .2m -m =1B .m 2·m 3=m 6C .(mn )2=m 2n 2D .(m 3)2=m 54.计算:(a ·a 3)2=a 2·(a 3)2=a 2·a 6=a 8,其中,第一步运算的依据是( )A .同底数幂的乘法法则B .幂的乘方法则C .乘法分配律D .积的乘方法则5.已知a a -1÷a =a ,则a =( )A .3B .1C .-1D .3或±16.【2022·长沙市校级期中】已知2x -3y =2,则(10x )2÷(10y )3的值为( )A .10 000B .1 000C .10D .1007.已知(x -1)|x |-1有意义且值为1,则x 的值为( )A .±1 B.-1 C .-1或2 D .28.【2022·青岛期中】如图,已知点P 从距原点右侧8个单位的点M 处向原点方向跳动,第一次跳动到OM 的中点M 1处,第二次从点M 1跳到OM 1的中点M 2处,第三次从点M 2跳到OM 2的中点M 3处,…,依次这样进行下去,第2 024次跳动后,该点到原点O 的距离为( )A .2-2 024B .2-2 023C .2-2 022D .2-2 021二、填空题(每题3分,共30分)9.【2022·苏州市吴江区期中】计算:(-3xy 3)3=__________.10.【2021·溧阳市期中】若83=25·2m ,则m =________.11.计算:(-5)2 023×⎝ ⎛⎭⎪⎫15 2 024=________.12.【2021·扬州市江都区期中】已知2a ÷4b =8,则a -2b 的值是________.13.【2022·湖北】科学家在实验室中检测出某种病毒的直径约为0.000 000 103m ,该直径用科学记数法表示为______________m.14.若0<x <1,则x -1,x ,x 2的大小关系是____________.15.【2021·盐城市建湖县月考】已知3x +1=6,2y +2=108,则xy 的值为________.16.设x =5a ,y =125a +1(a 为正整数),用含x 的代数式表示y ,则y =________.17.梯形的上、下底的长分别是4×103cm 和8×103cm ,高是1.6×104cm ,此梯形的面积是__________.18.我们知道,同底数幂的乘法法则为a m ·a n =a m +n (其中a ≠0,m 、n 为正整数).类似地,我们规定关于任意正整数m 、n 的一种新运算:g (m +n )=g (m )·g (n ),若g (1)=-13,则g (2 023)·g (2 024)=________________. 三、解答题(第19、20题每题6分,第21、22题每题8分,第23、24题每题9分,第25、26题每题10分,共66分)19.计算:(1)a3·a2·a+(a2)3; (2)(2m3)3+m10÷m-(m3)3. 20.计算:(1)0.62 023×(-53)2 024; (2)(-2)-2+⎝⎛⎭⎪⎫13-1×(2 023-π)0.21.已知2a=4b(a、b是正整数)且a+2b=8,求2a+4b的值.22.(1)比较221与314的大小;(2)比较86与411的大小.23.【2021·张家港市月考】(1)已知2×8x×16=223,求x的值;(2)已知a m=2,a n=3,求a3m-2n的值.24.某农科所要在一块长为1.2×105cm,宽为2.4×104cm的长方形实验地上培育新品种粮食,已知培育每种新品种需一块边长为1.2×104cm的正方形实验地,这块长方形实验地最多可以培育多少种新品种粮食?25.【2021·宿迁市沭阳县期中】(1)已知10a=5,10b=6,求102a+103b的值;(2)已知9n+1-9n=72,求n的值.26.【2022·盐城市亭湖区校级月考】规定两数a、b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.。

新教材七年级数学《幂的运算》题库

新教材七年级数学《幂的运算》题库

新教材七年级数学《幂的运算》题库一、选择题1.计算32)(x-的结果是( ) A.5x -; B.5x ; C.6x -; D.6x .【答案】C【解析】试题分析:根据幂的乘方法则即可得到结果。

=-32)(x 6x -,故选C. 考点:本题考查的是幂的乘方点评:解答本题的关键是熟练掌握幂的乘方法则:幂的乘方,底数不变,指数相乘。

2.计算下列各式,结果是8x 的是( )A .x 2·x 4;B .(x 2)6;C .x 4+x 4;D .x 4·x 4.【答案】D 【解析】试题分析:根据幂的乘方法则,同底数幂的乘法法则,合并同类项法则依次分析即可。

A .642x x x=⋅;B .1262)(x x =;C .4442x x x =+,故错误; D .844x x x =⋅,本选项正确。

考点:本题考查的是幂的乘方,同底数幂的乘法,合并同类项 点评:解答本题的关键是熟练掌握幂的乘方法则:幂的乘方,底数不变,指数相乘;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

3.在下列各式的括号内填入适当的代数式,使等式成立:⑴103(____)a a a =∙∙; ⑵863(____)a a a ∙=∙.【答案】⑴6a ;⑵11a 【解析】试题分析:根据同底数幂的乘法法则即可得到结果。

(1)1063a a a a =∙∙;(2)1486113a a a a a =∙=∙.考点:本题考查的是同底数幂的乘法点评:解答本题的关键是熟练掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

4.若1621=+x ,则x 等于( )A.7;B.4;C.3;D.2.【答案】C【解析】试题分析:先把16化为底数为2的乘方的形式,即可得到结果。

412162==+x ,41=+∴x ,3=x ,故选C.考点:本题考查的是有理数的乘方点评:解答本题的关键是把等式左右两边统一为底数为2的乘方的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年(新课标)沪科版七年级数学下册
幂的运算性质
1、下列各式计算过程正确的是( )
(A )x 3+x 3=x
3+3=x 6 (B )x 3·x 3=2x 3=x 6 (C )x ·x 3·x 5=x
0+3+5=x 8 (D )x 2·(-x )3=-x 2+3=-x 5
2、化简(-x )3·(-x )2,结果正确的是( )
(A )-x 6 (B )x 6 (C )x 5 (D )-x 5
3、下列计算:①(x 5)2=x 25;②(x 5)2=x 7;③(x 2)5=x 10;④x 5·y 2=(xy )7;
⑤x 5·y 2=(xy )10;⑥x 5y 5=(xy )5;其中错误..
的有( ) (A )2个 (B )3个 (C )4个 (D )5个
4、下列运算正确的是( )
(A )a 4+a 5=a 9 (B )a 3·a 3·a 3=3a 3 (C )2a 4×3a 5=6a 9 (D )(-a 3)4=a 7
5、下列计算正确的是( )
(A )(-1)0=-1 (B )(-1)-1=+1
(C )2a -3=321
a (D )(-a 3)÷(-a )7=41a
6、下列计算中,运算错误的式子有( )
⑴5a 3-a 3=4a 3;⑵x m +x m =x 2m ;⑶2m ·3n =6
m +n ;⑷a m +1·a =a m +2;
(A )0个 (B )1个 (C )2个 (D )3个
7、计算(a -b )2(b -a )3的结果是( )
(A )(a -b )5 (B )-(a -b )5 (C )(a -b )6 (D )-(a -b )6
8.计算9910022)()(-+-所得的结果是( ) A .-2 B 2 C .-992 D .992
9.当n 是正整数时,下列等式成立的有( )
(1)22)(m m a a = (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-=
A .4个
B .3个
C .2个
D .1个
10.若52=m ,62=n ,则n m 22+=
. 11、(2m -n)3·(n -2m)2= ;
12、要使(x -1)0-(x +1)-2有意义,x 的取值应满足什么条件?
13、如果等式()
1122=-+a a ,则a 的值为 14、232324)3()(9n m n m -+ 15、
422432)(3)3(a ab b a ⋅-⋅
16、已知: ()
1242=--x x ,求x 的值.
17、(-2a 2b )3+8(a 2)2·(-a )2·(-b )3

18、 18、(-3a 2)3·a 3+(-4a )2·a 7-(5a 3)3;
逆向思维
19、0.25101×4100=;(-0.5)2002×(-2)2003=;22006×32006的个位数字是;
20、若a=999111,b=111222,则a、b的大小关系是;
21、已知:10a=5,10b=6,求102a+3b的值.
练:若3m=6,9n=2,求32m-4n+1的值;
22、若n为正整数,且x2n=4,求(x3n)2-2(x2)n的值.
23、若n 为正整数,且x 2n =3,求(3x 3n )2-8(x 2)2n
的值.
24、已知:352=+y x ,求y x 324⋅的值;
25、012200420052006222222------Λ的值.
26、已知y x y x x a a a a +==+求,25,5的值.
27、已知472510225•=••n m ,求m 、n.。

相关文档
最新文档