数学3必修第三章概率基础训练A组及答案

合集下载

数学必修3第三章概率A组

数学必修3第三章概率A组

数学必修3第三章:概率(A 组)班级 姓名 分数一、选择题(每题5分,共30分)1.下列叙述错误的是( )A . 频率是随机的,在试验前不能确定,随着试验次数的增加,频率一般会越来越接近概率 B . 若随机事件A 发生的概率为()A p ,则()10≤≤A pC . 互斥事件不一定是对立事件,但是对立事件一定是互斥事件D .5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可能性相同 2.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( )A .41 B .21 C .81D .无法确定 3.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为( )A .101 B .103 C .21 D .1074.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是( )A. 3个都是正品B.至少有1个是次品C. 3个都是次品D.至少有1个是正品 5.某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为03.0,出现丙级品的概率为01.0,则对产品抽查一次抽得正品的概率是( )A .09.0B .98.0C .97.0D .96.06.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[)85.4,8.4( g )范围内的概率是( ) A .0.62 B .0.38 C .0.02 D .0.68 题号 123456答案7. 8. 9. 10. 11.二、填空题(每题5分,共25分)7.有一种电子产品,它可以正常使用的概率为0.992,则它不能正常使用的概率是 。

8.一个三位数字的密码键,每位上的数字都在0到9这十个数字中任选,某人忘记后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为___ 9.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是 。

人教A版高中数学必修三练习:第三章概率3.1.3概率的基本性质含答案

人教A版高中数学必修三练习:第三章概率3.1.3概率的基本性质含答案

分层训练·进阶冲关A组基础练( 建议用时 20 分钟)1.一组试验仅有四个互斥的结果 A,B,C,D, 则下边各组概率可能建立的是( D )A.P(A)=0.31,P(B)=0.27,P(C)=0.28,P(D)=0.35B.P(A)=0.32,P(B)=0.27,P(C)=0.06,P(D)=0.47C.P(A)= ,P(B)= ,P(C)=,P(D)=D.P(A)=,P(B)= ,P(C)=,P(D)=2.给出以下结论 :①互斥事件必定对峙 .②对峙事件必定互斥 .③互斥事件不必定对峙 .④事件 A与 B 的和事件的概率必定大于事件A的概率 .⑤事件 A与 B 互斥 , 则有 P(A)=1-P(B).此中正确命题的个数为( C )A.0B.1C.2D.33.1 人在打靶中连续射击 3 次, 事件“起码有 1 次中靶”的对峙事件是( C )A. 起码有 3 次中靶B.3 次都中靶C.3 次都不中靶D.恰有 1 次中靶4.从装有 5 个红球和 3 个白球的口袋内任取 3 个球 , 那么 , 互斥而不对峙的事件是 ( D )A. 起码有一个红球与都是红球B.起码有一个红球与都是白球C.起码有一个红球与起码有一个白球D.恰有一个红球与恰有两个红球5. 现有语文、数学、英语、物理和化学共 5 本书 , 从中任取 1 本, 拿出的是理科书的概率为( C )A. B. C. D.6.某工厂的产品中 , 出现二级品的概率是 7%,出现三级品的概率是 3%, 其他都是一级品和次品 , 并且出现一级品概率是次品的9 倍, 则出现一级品的概率是( A )7.一商铺有奖促销活动中有一等奖与二等奖两个奖项 , 此中中一等奖的概率为 0.1, 中二等奖的概率为0.25, 则不中奖的概率为0.65 . 8.从 4 名男生和 2 名女生中任选 3 人参加演讲竞赛 , 所选 3 人中起码有1 名女生的概率为, 那么所选 3 人中都是男生的概率为.9.从一箱产品中随机地抽取一件 , 设事件 A=“抽到一等品”, 事件B=“抽到二等品” , 事件 C=“抽到三等品” , 且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为 0.35 .10.一个口袋内装有大小同样的红球、白球和黑球, 从中摸出一个球, 摸出红球或白球的概率为0.58, 摸出红球或黑球的概率为0.62, 那么摸出红球的概率为0.2 .11.盒子里装有 6 个红球 ,4 个白球 , 从中任取 3 个球 . 设事件 A 表示“ 3 个球中有 1 个红球 ,2 个白球” , 事件 B 表示“ 3 个球中有 2 个红球 ,1个白球” . 已知 P(A)= ,P(B)= , 求“ 3 个球中既有红球又有白球”的概率 .【分析】记事件C 为“3 个球中既有红球又有白球”,则它包含事件A “3 个球中有 1 个红球 ,2 个白球”和事件 B“3 个球中有 2 个红球 ,1 个白球” ,并且事件 A 与事件 B 是相互互斥的 ,因此 P(C)=P(A ∪B)=P(A)+P(B)=+ = .12.在数学考试中 , 小明的成绩在 90 分以上的概率是 0.18, 在 80 分~ 89分的概率是 0.51, 在 70 分~ 79 分的概率是 0.15, 在 60 分~ 69 分的概率是 0.09, 在 60 分以下的概率是 0.07, 计算 :(1)小明在数学考试中获得 80 分以上成绩的概率 ;(2)小明考试及格的概率 .【分析】记小明的成绩“在 90 分以上”“在 80 分~ 89 分”“在 70 分~ 79 分”“在 60 分~ 69 分”分别为事件 A,B,C,D, 且这四个事件相互互斥 .(1)小明的成绩在 80 分以上的概率是 P(A ∪B)=P(A)+P(B)=0.18+0.51=0.69.(2)方法一 :小明及格的概率是 P(A ∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.18+0.51+0.15+0.09=0.93.方法二 :小明不及格的概率为0.07, 则小明及格的概率为1-0.07=0.93.B组提高练( 建议用时 20 分钟)13. 假如事件 A,B 互斥 , ,分别为事件A,B的对峙事件,那么( B )A.A∪B 是必定事件B.∪是必定事件C.与必定互斥D.与必定不互斥14.对一批产品的长度 ( 单位 :mm)进行抽样检测 , 下列图为检测结果的频次散布直方图 . 依据标准 , 产品长度在区间 [20,25) 上的为一等品 , 在区间[15,20) 和区间 [25,30) 上的为二等品 , 在区间 [10,15) 和[30,35) 上的为三等品 . 用频次预计概率 , 现从该批产品中随机抽取一件 , 则其为二等品的概率为 ( D )15.为保护世界经济次序 , 我国在亚洲经济论坛时期踊跃倡议反对地方贸易保护主义 , 并承诺包含汽车在内的入口商品将最多在 5 年内把关税所有降低到世贸组织所要求的水平 , 此中 21%的入口商品恰巧 5 年关税达到要求 ,18%的入口商品恰巧 4 年关税达到要求 , 其他入口商品将在 3年或 3 年内达到要求 , 则包含汽车在内的入口商品不超出 4 年的时间关税达到要求的概率为0.79 .16.甲射击一次 , 中靶概率是 P1, 乙射击一次 , 中靶概率是 P2, 已知 ,22是方程 x -5x+6=0的根 , 且 P 知足方程 x -x+ =0.1则甲射击一次 , 不中靶概率为;乙射击一次 , 不中靶概率为.17.假定向三个相邻的敌军军械库扔掷一枚炸弹 , 炸中第一个军械库的概率为 0.5, 炸中其他两个军械库的概率都为 0.1. 若只需炸中一个 , 此外两个也要发生爆炸 . 求军械库发生爆炸的概率 .【分析】设以 A,B,C 分别表示炸中第一、第二、第三个军械库这三个事件,于是P(A)=0.5,P(B)=P(C)=0.1. 又设D 表示军械库爆炸这个事件,则有 D=A ∪B∪C,此中 A,B,C 相互互斥 .( 由于只扔掷了一枚炸弹 , 因此不会同时炸中两个以上军械库 )因此 P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.5+0.1+0.1=0.7.18.以下图 , 靶子由一此中心圆面Ⅰ和两个齐心圆环Ⅱ、Ⅲ组成 , 射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为 0.35,0.30,0.25.(1)求射手没有命中圆面Ⅰ的概率 .(2)求射手命中圆面Ⅰ或圆环Ⅲ的概率 .(3)求射手没有命中靶的概率 .【分析】记射手命中圆面Ⅰ为事件 A, 命中圆面Ⅱ为事件 B, 命中圆面Ⅲ为事件 C,不中靶为事件 D, 则 A,B,C 互斥 .(1)记“射手没有命中圆面Ⅰ”为事件 E,则 E= .因此 P(E)=P( )=1-P(A)=1-0.35=0.65.(2)记“射手命中圆面Ⅰ或圆环Ⅲ”为事件 F,则 F=A+C. 因此P(F)=P(A+C)=P(A)+P(C)=0.35+0.25=0.60.(3)射手中靶的概率为 P(A ∪B∪C)=P(A)+P(B)+P(C)=0.35+0.30+0.25=0.90.由于中靶和不中靶是对峙事件,故不命中靶的概率为P(D)=1-P(A∪B ∪C)=1-0.90=0.10.C组培优练 ( 建议用时 15 分钟 )19.若随机事件 A,B 相互互斥 ,A,B 发生的概率均不等于 0, 且 P(A)=2-a,P(B)=4a-5,则实数a的取值范围是.20. 某医院派出医生下乡进行免费治疗, 派出医生人数及其概率以下:医生人数01234 5 人及以上概率0.10.16x y0.2z(1)若派出医生不超出 2 人的概率为 0.56, 求 x 的值 ;(2)若派出医生最多 4 人的概率为 0.96, 最少 3 人的概率为 0.44, 求 y,z 的值 .【分析】 (1) 由派出医生不超出 2 人的概率为 0.56,得 0.1+0.16+x=0.56,因此x=0.3.(2)由派出医生最多 4 人的概率为 0.96,得 0.96+z=1, 因此 z=0.04.由派出医生最少 3 人的概率为 0.44, 得y+0.2+z=0.44,因此 y=0.44-0.2-0.04=0.2.封闭 Word 文档返回原板块。

北师大版高二数学必修三第三章概率练习(含解析)

北师大版高二数学必修三第三章概率练习(含解析)

北师大版高二数学必修三第三章概率练习(含解析)数学是应用符号言语研讨数量、结构、变化以及空间模型等概念的一门学科。

查字典数学网为大家引荐了高二数学必修三第三章概率练习,请大家细心阅读,希望你喜欢。

一、选择题1.某人将一枚硬币延续抛掷了10次,正面朝上的情形出现了6次,那么()A.概率为0.6B.频率为0.6C.频率为6D.概率接近于0.6【解析】延续抛掷了10次,正面朝上的情形出现了6次,只能说明频率是0.6,只要停止少量的实验时才可估量概率.【答案】B2.以下说法错误的选项是()A.频率反映事情的频繁水平,概率反映事情发作的能够性大小B.做n次随机实验,事情A发作m次,那么事情A发作的频率mn就是事情A的概率C.频率是不能脱离n次实验的实验值,而概率是具有确定性的不依赖于实验次数的实际值D.频率是概率的近似值,概率是频率的动摇值【解析】依据频率与概率的意义可知,A正确;C、D均正确,B不正确,应选B.【答案】B3.从寄存号码区分为1,2,,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到的次数138576131810119那么取到号码为奇数的频率是()A.0.53B.0.5C.0.47D.0.37【解析】mn=13+5+6+18+11100=0.53.【答案】A4.(2021沈阳检测)某彩票的中奖概率为11 000意味着()A.买1 000张彩票就一定能中奖B.买1 000张彩票中一次奖C.买1 000张彩票一次奖也不中D.购置彩票中奖的能够性是11 000【解析】中奖概率为11 000,并不意味着买1 000张彩票就一定中奖,中一次奖或一次也不中,因此A、B、C均不正确.【答案】D5.2021年山东省高考数学试题中,共有12道选择题,每道选择题有4个选项,其中只要1个选项是正确的,那么随机选择其中一个选项正确的概率为14,某家长说:要是都不会做,每题都随机选择其中一个选项,那么一定有3题答对这句话()A.正确B.错误C.不一定D.无法解释【解析】把解答一个选择题作为一次实验,答对的概率是14,说明做对的能够性大小是14.做12道选择题,即停止了12次实验,每个结果都是随机的,那么答对3题的能够性较大,但是并不一定答对3道,也能够都选错,或仅有2,3,4题选对,甚至12个题都选择正确.【答案】B二、填空题6.样本容量为200的频率散布直方图如图3-1-1所示.依据样本的频率散布直方图估量,样本数据落在[6,10)内的频数为________,数据落在[6,10)内的概率约为________.图3-1-1【解析】样本数据落在[6,10)内的频率为0.084=0.32,频数为2021.32=64.由频率与概率的关系知数据落在[6,10)内的概率约为0.32.【答案】64 0.327.在5张不同的彩票中有2张奖票,5团体依次从中各抽取1张,各人抽到奖票的概率________(填相等不相等).【解析】由于每人抽得奖票的概率均为25,与前后的顺序有关.【答案】相等8.假设袋中装有数量差异很大而大小相反的白球和黑球(只是颜色不同),每次从中任取一球,记下颜色后放回并搅匀,取了10次有9次白球,估量袋中数量最多的是________.【解析】取了10次有9次白球,那么取出白球的频率是910,估量其概率约是910,那么取出黑球的概率是110,那么取出白球的概率大于取出黑球的概率,所以估量袋中数量最多的是白球 .【答案】白球三、解答题9.(1)设某厂产品的次品率为2%,问从该厂产品中恣意地抽取100件,其中一定有2件次品这一说法对不对?为什么?(2)假定某次数学检验,全班50人的及格率为90%,假定从该班中恣意抽取10人,其中有5人及格是能够的吗?【解】(1)这种说法不对,由于产品的次品率为2%,是指产品是次品的能够性为2%,所以从该产品中恣意地抽取100件,其中有能够有2件次品,而不是一定有2件次品.(2)这种状况是能够的.10.(2021课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t盈余300元.依据历史资料,失掉销售季度内市场需求量的频率散布直方图,如图3-1-2所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图3-1-2(1)将T表示为X的函数;(2)依据直方图估量利润T不少于57 000元的概率.【解】(1)当X[100,130)时,T=500X-300(130-X)=800X-39 000.当X[130,150]时,T=500130=65 000.所以T=800X-39 000,100130,?65 000,130150.(2)由(1)知利润T不少于57 000元当且仅当120210.由直方图知需求量X[120, 150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估量值为0.7.11.在消费进程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位:mm)共有100个数据,将数据分组如下表:分组频数[1.30,1.34)4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54)2总计100(1)画出频率散布直方图;(2)估量纤度落在[1.38,1.50)mm中的概率及纤度小于1.42的概率是多少.【解】(1)频率散布直方图,如图:(2)纤度落在[1.38,1.50)mm中的频数是30+29+10=69,那么纤度落在[1.38,1.50)mm中的频率是69100=0.69,所以估量纤度落在[1.38,1.50)mm中的概率为0.69.纤度小于1.42 mm的频数是4+25+30=59,那么纤度小于1.42 mm的频率是59100=0.59,所以估量纤度小于1.42 mm的概率为0.59.小编为大家提供的高二数学必修三第三章概率练习,大家细心阅读了吗?最后祝同窗们学习提高。

高一数学人教A版必修三练习:第三章概率3.2.2含解析

高一数学人教A版必修三练习:第三章概率3.2.2含解析

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.用计算机随机模拟掷骰子的试验,估计出现2点的概率,则下列步骤中不正确的是( )A.用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x ,如果x =2,我们认为出现2点B.我们通常用计算器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C.出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D.程序结束.出现2点的频率m n作为概率的近似值 解析: 计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数(包括1,7),共7个整数.答案: A2.小明同学的QQ 密码是由0,1,2,3,4,5,6,7,8,9这10个数字中不同的6个数字组成的六位数字,由于长时间未登录QQ ,小明忘记了密码的最后一个数字,如果小明登录QQ 时密码的最后一个数字随意选取,则恰好能登录的概率是( )A.1105B.1104C.1100D.110解析: 从0,1,2,3,4,5,6,7,8,9中任取一个数字有10个基本事件,恰巧是密码最后一位数字有1个基本事件,则恰好能登录的概率为110. 答案: D3.袋子中有四个小球,分别写有“伦”“敦”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“伦”“敦”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次就停止概率为( )A.15B.14C.13D.12解析: 由随机模拟产生的随机数可知,直到第二次停止的有13,43,23,13,13共5个基本事件,故所求的概率为P =520=14. 答案: B4.甲、乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16解析: 甲、乙最后一小时他们所在的景点共有6×6=36种情况,甲、乙最后一小时他们同在一个景点共有6种情况.由古典概型的概率公式知最后一小时他们同在一个景点的概率是P =636=16. 答案: D二、填空题(每小题5分,共15分)5.在利用整数随机数进行随机模拟试验中,整数a 到整数b 之间的每个整数出现的可能性是 W.解析: [a ,b ]中共有b -a +1个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是1b -a +1. 答案: 1b -a +16.抛掷一枚均匀的正方体骰子两次,用随机模拟方法估计朝上面的点数和为7的概率,共进行了两次试验,第一次产生了60组随机数,第二次产生了200组随机数,那么这两次估计的结果相比较,第次准确.解析:用随机模拟方法估计概率时,产生的随机数越多,估计的结果越准确,所以第二次比第一次准确.答案:二7.一个小组有6位同学,选1位小组长,用随机模拟方法估计甲被选中的概率,给出下列步骤:①统计甲的编号出现的个数m;②将六名学生编号1、2、3、4、5、6;③利用计算器或计算机产生1到6之间的整数随机数,统计个数为n;④则甲被选中的概率近似为m n.其正确步骤顺序是(只需写出步骤的序号即可)解析:由随机模拟的步骤可知,正确的顺序为②③①④.答案:②③①④三、解答题(每小题10分,共20分)8.小明与同学都想知道每6个人中有2个人生肖相同的概率,他们想设计一个模拟试验来估计6个人中恰有两个人生肖相同的概率,你能帮他们设计这个模拟方案吗?解析:用12个完全相同的小球分别编上号码1~12,代表12个生肖,放入一个不透明的袋中摇匀后,从中随机抽取一球,记下号码后放回,再摇匀后取出一球记下号码……连续取出6个球为一次试验,重复上述试验过程多次,统计每次试验中出现相同号码的次数除以总的试验次数,得到的试验频率可估计每6个人中有两个人生肖相同的概率.9.甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率.(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解析:(1)设A表示“取出的两球是相同颜色”,B表示“取出的两球是不同颜色”.则事件A 的概率为:P (A )=3×2+3×29×6=29. 由于事件A 与事件B 是对立事件,所以事件B 的概率为:P (B )=1-P (A )=1-29=79. (2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N 对随机数中,每对中的两个数字不同的对数n .第3步:计算n N 的值.则n N就是取出的两个球是不同颜色的概率的近似值.。

2019-2020学年人教A版数学必修三练习:第3章 概率 3.2.1 Word版含解析

2019-2020学年人教A版数学必修三练习:第3章 概率 3.2.1 Word版含解析

姓名,年级:时间:第三章 3.2 3.2。

1A级基础巩固一、选择题1.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( B )A.15B.错误!C.错误!D.错误![解析]设5名学生分别为甲、乙、丙、丁、戊,从甲、乙、丙、丁、戊5人中选2人,有(甲、乙),(甲、丙),(甲、丁),(甲、戊),(乙、丙),(乙、丁),(乙,戊),(丙、丁),(丙、戊),(丁,戊),共10种情况,其中甲被选中的情况有(甲,乙),(甲、丙),(甲、丁),(甲、戊),共4种,所以甲被选中的概率为错误!=错误!。

2.从1、2、3、4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( B )A.错误!B.错误!C.错误!D.错误![解析]从1、2、3、4中任取2个不同的数有以下六种情况:{1,2}、{1,3}、{1,4}、{2,3}、{2,4}、{3,4},满足取出的2个数之差的绝对值为2的有{1,3}、{2,4},故所求概率是错误!=错误!.3.为美化环境,从红、黄、白、紫4种颜色的花中任选两种花种在一个花坛中,余下的两种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( C )A.13B.错误!C.错误!D.错误![解析]__从红、黄、白、紫4种颜色的花中任选两种花种在一个花坛中,余下的两种花种在另一个花坛中,所有不同的种法有(红,黄),(红,白),(红,紫),(黄,白),(黄,紫),(白,紫),共6种方法,其中,红色和紫色的花不在同一花坛的种法有(红,黄),(红,白),(黄,紫),(白,紫)4种方法,所以所求的概率为错误!=错误!.4.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( D )A.错误!B.错误!C.310D.错误![解析] 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P=错误!=错误!。

2019人教A版高中数学必修三第3章【概率3.3 几何概型】训练卷及答案

2019人教A版高中数学必修三第3章【概率3.3 几何概型】训练卷及答案

2019人教A版高中数学必修三第3章【概率3.3 几何概型】训练卷及答案A组基础练(建议用时20分钟)1.下列概率模型中,几何概型的个数为( B )①从区间[-10,10]内任取出一个数,求取到1的概率;②从区间[-10,10]内任取出一个数,求取到绝对值不大于1的数的概率;③从区间[-10,10]内任取出一个整数,求取到大于1而小于2的数的概率;④向一个边长为4 cm的正方形ABCD内投一点P,求点P离中心不超过1 cm的概率.A.1B.2C.3D.42.两根电线杆相距100 m,若电线遭受雷击,且雷击点距电线杆10 m之内时,电线杆上的输电设备将受损,则遭受雷击时设备受损的概率为( B )A.0.1B.0.2C.0.05D.0.53.在长为10厘米的线段AB上任取一点G,以AG为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( D )A. B. C. D.4.用计算器或计算机产生20个[0,1]之间的随机数x,但是基本事件都在区间[-1,3]上,则需要经过的线性变换是( D )A.y=3x-1B.y=3x+1C.y=4x+1D.y=4x-15.已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=( D )A. B. C. D.6.有四个游戏盘,如下图所示,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖机会大,他应当选择的游戏盘为( A )7.如图,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是,则此长方体的体积是3.8.一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行,若蜜蜂在飞行过程中与正方体玻璃容器6个表面中有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是.9.在正方体ABCD-A1B1C1D1内随机取点,则该点落在三棱锥A1-ABC内的概率是.10.如图所示,在直角坐标系内,射线OT落在60°角的终边上,任作一条射线OA,则射线OA落在∠xOT内的概率是.11.(1)从区间(0,5)内任意选取一个实数x,求事件“9x>27”发生的概率.(2)从区间(0,8)内任取一个整数x,求事件“lo x>-2”发生的概率.【解析】(1)由9x>27,解得x>log927,即x>.由几何概型可知,所求概率为P1==.(2)由lo x>-2,所以0<x<4.则在区间(0,8)内满足不等式的整数为1,2,3共3个.故由古典概型可知,所求概率为P=.12.在正方体ABCD-A1B1C1D1中,棱长为1,在正方体内随机取一点M,求使M-ABCD的体积小于的概率.【解析】设点M到面ABCD的距离为h,则=·h=,即h=.所以只要点M到面ABCD的距离小于时,即满足条件.所有满足点M到面ABCD的距离小于的点组成以面ABCD为底,高为的长方体,其体积为.又因为正方体体积为1,所以使四棱锥M-ABCD的体积小于的概率为P==.B组提升练(建议用时20分钟)13.在区间[-1,1]上任取两数x和y,组成有序实数对(x,y),记事件A为“x2+y2<1”,则P(A)等于( A )A. B. C.π D.2π14.球O与棱长为a的正方体ABCD-A1B1C1D1的各个面均相切,如图,用平行于底面的平面截去长方体A2B2C2D2-A1B1C1D1,得到截面A2B2C2D2,且A2A=a,现随机向截面A2B2C2D2上撒一粒黄豆,则黄豆落在截面中的圆内的概率为( B )A. B. C. D.15.方程x2+x+n=0(n∈(0,1))有实根的概率为.16.有一个圆面,圆面内有一个内接正三角形,若随机向圆面上投一镖都中圆面,则镖落在三角形内的概率为.17.设有一个等边三角形网格,其中各个最小等边三角形的边长都是4 cm,现用直径等于2 cm的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.【解析】记A={硬币落下后与格线没有公共点},如图,在边长为4cm的等边三角形内作小等边三角形,使其三边与原等边三角形三边距离都为1,则等边三角形A′B′C′的边长为4-2=2,当硬币的中心落在△A′B′C′内时,硬币与格线没有公共点.由几何概率公式得:P(A)==.18.已知函数f(x)=-x2+ax-b.(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率.(2)若a,b都是从区间[0,4]任取的一个数,求f(1)>0成立的概率.【解析】(1)a,b都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N=5×5=25(个).函数有零点的条件为Δ=a2-4b≥0,即a2≥4b.因为事件“a2≥4b”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2), (4,0),(4,1),(4,2),(4,3),(4,4),共12个.所以事件“a2≥4b”的概率为P=.(2)因为a,b都是从区间[0,4]上任取的一个数,f(1)=-1+a-b>0,所以a-b>1,此为几何概型,所以事件“f(1)>0”的概率为P==.C组培优练(建议用时15分钟)19.如图,在一个边长为a,b(a>b>0)的矩形内画一个梯形,梯形上、下底分别为a与a,高为b,向该矩形内随机投一点,则所投的点落在梯形内部的概率为.20.设关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.【解析】设事件A为“方程x2+2ax+b2=0有实根”,当a≥0,b≥0时,此方程有实根的条件是a≥b.(1)全集Ω={(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2), (3,0),(3,1),(3,2)},共12个,其中第一个数表示a的取值,第二个数表示b的取值,事件A={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)},共9个,故P(A)==.(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},而构成A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b},即如图所示的阴影部分,所以P(A)==.。

高一数学人教A版必修三练习:第三章概率3.3.2含解析

高一数学人教A版必修三练习:第三章概率3.3.2含解析

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.要产生[-3,3]上的均匀随机数y ,现有[0,1]上的均匀随机数x ,则y 不可取为( ) A.-3x B.3x C.6x -3D.-6x -3解析: 法一:利用伸缩和平移变换进行判断, 法二:由0≤x ≤1,得-9≤-6x -3≤-3,故y 不能取-6x -3.答案: D2.设x ,y 是两个[0,1]上的均匀随机数,则0≤x +y ≤1的概率为 ( ) A.12 B.14 C.29D.316解析: 如图所示,所求的概率为P =S 阴影S 正方形=12.答案: A3.用随机模拟方法求得某几何概型的概率为m ,其实际概率的大小为n ,则( ) A.m >n B.m <nC.m =nD.m 是n 的近似值解析: 随机模拟法求其概率,只是对概率的估计. 答案: D4.设一直角三角形两直角边的长均是区间[0,1]上的随机数,则斜边的长小于1的概率为( )A.12B.34C.π4D.3π16解析: 设两直角边分别为x ,y ,则x ,y 满足x ∈[0,1],y ∈[0,1],则P (x 2+y 2<1)=π4. 答案: C二、填空题(每小题5分,共15分)5.如图所示,在半径为2的半圆内放置一个长方形ABCD ,且AB =2BC ,向半圆内任投一点P ,则点P 落在长方形内的概率为 W.解析: P =2×112×π×(2)2=2π.答案:2π6.b 1是[0,1]上的均匀随机数,b =6(b 1-0.5),则b 是 上的均匀随机数. 解析: ∵b 1∈[0,1],∴b 1-0.5∈[-0.5,0.5], ∴6(b 1-0.5)∈[-3,3]. 答案: [-3,3]7.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”的概率为 W. 解析: 已知0≤a ≤1,事件“3a -1<0”发生时,0<a <13,由几何概型得到其概率为13. 答案: 13三、解答题(每小题10分,共20分)8.甲、乙两辆货车都要停靠在同一个站台卸货,它们可能在一个昼夜的任意时刻到达.设甲、乙两辆货车停靠站台的时间分别为6小时和4小时,用随机模拟的方法估算有一辆货车停站台时必须等待一段时间的概率.解析: 由于所求的事件概率与两辆货车到达的时刻有关,故需要产生两组均匀随机数.设货车甲在x 时刻到达,货车乙在y 时刻到达,若有一辆货车需要等待,则需货车甲比货车乙不早到6小时,或货车乙比货车甲不早到4个小时,用数学语言来描述即为-6<x -y <4.记事件A ={有一辆货车停靠站台时必须等待一段时间}.(1)利用计算机或计算器产生两组[0,1]上的均匀随机数x 1=RAND ,y 1=RAND ; (2)经过伸缩变换:x =x 1*24,y =y 1*24,得到[0,24]上的均匀随机数; (3)统计出试验总次数N 和满足条件-6<x -y <4的点(x ,y )的个数n ; (4)计算频率f n (A )=nN,即为事件A 的概率近似值.9.如图所示,向边长为2的大正方形内投飞镖,利用随机模拟的方法求飞镖落在中央边长为1的小正方形中的概率.(假设飞镖全部落在大正方形内)解析: 用几何概型概率计算公式得P =S 小正方形S 大正方形=14.用计算机随机模拟这个试验,步骤如下:第一步,用计数器n 记录做了多少次投飞镖的试验,用计数器m 记录其中有多少次投在中央的小正方形内,设置n =0,m =0;第二步,用函数rand( )*4-2产生两个-2~2之间的均匀随机数x ,y ,x 表示所投飞镖的横坐标,y 表示所投飞镖的纵坐标;第三步,判断(x ,y )是否落在中央的小正方形内,也就是看是否满足|x |<1,|y |<1,如果是,则m 的值加1,即m =m +1,否则m 的值保持不变;第四步,表示随机试验次数的计数器n 加1,即n =n +1,如果还需要继续试验,则返回步骤第二步继续执行,否则,程序结束.程序结束后飞镖投在小正方形内的频率mn 作为所求概率的近似值.。

高一数学人教A版必修三练习:第三章概率3.1.2含解析

高一数学人教A版必修三练习:第三章概率3.1.2含解析

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.下列正确的结论是()A.事件A的概率P(A)的值满足0<P(A)<1B.如P(A)=0.999,则A为必然事件C.灯泡的合格率是99%,从一批灯泡中任取一个,这是合格品的可能性为99%D.如P(A)=0.001,则A为不可能事件解析:根据必然事件和不可能事件的概念知,必然事件的概率为1,不可能事件的概率为0,从而排除A、B、D,故选C.答案: C2.根据某医疗所的调查,某地区居民血型的分布为:O型50%,A型15%,AB型5%,B型30%.现有一血型为O型的病人需要输血,若在该地区任选一人,那么能为病人输血的概率为()A.50%B.15%C.45%D.65%解析:仅有O型血的人能为O型血的人输血.答案: A3.事件A发生的概率接近于0,则()A.事件A不可能发生B.事件A也可能发生C.事件A一定发生D.事件A发生的可能性很大解析:不可能事件的概率为0,但概率接近于0的事件不一定是不可能事件.答案: B4.甲、乙两人做游戏,下列游戏中不公平的是()A.抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜B.同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜D.甲、乙两人各写一个数字1或2,如果两人写的数字相同则甲获胜,否则乙获胜解析: B 中,同时抛掷两枚硬币,恰有一枚正面向上的概率为12,两枚都正面向上的概率为14,所以对乙不公平. 答案: B二、填空题(每小题5分,共15分)5.利用简单抽样法抽查某校150名男学生,其中身高为1.65米的有32人,若在此校随机抽查一名男学生,则他身高为1.65米的概率大约为 (保留两位小数).解析: 所求概率为32150≈0.21. 答案: 0.216.某射击教练评价一名运动员时说:“你射中的概率是90%.”你认为下面两个解释中能代表教练的观点的为 W.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%.解析: 射中的概率是90%说明中靶的可能性,即中靶机会是90%,所以①不正确,②正确.答案: ②7.玲玲和倩倩下象棋,为了确定谁先走第一步,玲玲对倩倩说:“拿一个飞镖射向如图所示的靶中,若射中区域所标的数字大于3,则我先走第一步,否则你先走第一步”.你认为这个游戏规则公平吗?答: W.解析: 如题图所示,所标的数字大于3的区域有5个,而小于或等于3的区域则只有3个,所以玲玲先走的概率是58,倩倩先走的概率是38.所以不公平. 答案: 不公平三、解答题(每小题10分,共20分)8.已知5张票中有1张为奖票,5个人按照顺序从中各抽1张以决定谁得到其中的奖票,那么,先抽还是后抽(后抽人不知道先抽人抽出的结果),对每个人来说公平吗?解析: 公平,即每个人抽到奖票的概率相等.说明如下:不妨把问题转化为排序问题,即把5张票随机地排列在位置1,2,3,4,5上,对于这张奖票来说,由于是随机排列,因此它的位置有5种可能,故它排在任一位置上的概率都是15.5个人按排定的顺序去抽,比如甲排在第三位上,那么他抽得奖票的概率,即奖票恰好排在第三个位置上的概率为15,因此,不管排在第几个位置上去抽,在不知前面的人抽出的结果的前提下,得到奖票的概率都是15. 9.平面直角坐标系中有两个动点A 、B ,它们的起始坐标分别是(0,0)、(2,2),动点A 、B 从同一时刻开始每隔一秒钟向上、下、左、右四个方向中的一个方向移动1个单位.已知动点A 向左、右移动1个单位的概率都是14,向上、下移动1个单位的概率分别是13和p ;动点B 向上、下、左、右移动1个单位的概率都是q .求p 和q 的值.解析: 由于动点A 向四个方向移动是一个必然事件,所以14+14+13+p =1, 所以p =16;同理可得q =14.。

2018-2019学年人教A版数学必修三同步练习:第三章 概率 测评A Word版含解析

2018-2019学年人教A版数学必修三同步练习:第三章 概率 测评A Word版含解析

姓名,年级:时间:第三章测评A(基础过关卷)(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1。

抽查10件产品,设事件A:至多有两件次品,则A的对立事件为()A。

至多两件次品B。

至多一件次品[来源:Z§xx§]C。

至多两件正品D。

至少两件正品答案:C2.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,求发现大肠杆菌的概率为( )A.0.005B。

0。

004 C.0。

001D。

0.002解析:由于取水样的随机性,所求事件的概率等于水样的体积与总体积之比,即=0.005.答案:A3.如图,一颗豆子随机扔到桌面上,假设豆子不落在线上,则它落在阴影区域的概率为( )A. B.C。

D.解析:设一个小正方形面积为1,则桌面面积为9,阴影面积为3。

则所求概率为。

答案:4。

口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0。

42,摸出白球的概率是0。

28,那么摸出黑球的概率是()A.0.42B.0。

28C.0。

3D。

0.7解析:摸出黑球的概率是1-0.42-0。

28=0.3.答案:C5。

某部三册的小说,任意排放在书架的同一层上,则各册自左到右或自右到左恰好为第1,2,3册的概率为()[来源:学科网]A. B. C.D。

解析:按照自左到右的顺序,基本事件有:(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),符合条件的有(1,2,3)和(3,2,1)两个事件,所以概率为。

答案:B6.若从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为()A。

B. C.D。

解析:所有满足条件的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中大于40的有8个.所以所求概率为.答案:C7.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax—b2+π2有零点的概率为( )A。

高中数学必修三第三章《概率》章节练习题(含答案)

高中数学必修三第三章《概率》章节练习题(含答案)

高中数学必修三第三章《概率》章节练习题(含答案)高中数学必修三第三章《概率》章节练题一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有()。

A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是()。

A。

B。

C。

D。

补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()。

A。

B。

C。

D。

3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手。

若从中任选3人,则选出的火炬手的编号相连的概率为()。

A。

B。

C。

D。

4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为()。

A。

B。

C。

D。

5.在棱长为a的正方体ABCD-A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为()。

A。

B。

C。

D。

6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是()。

A。

P1=P2 B。

P1>P2 C。

P1<P2 D。

无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为()。

8.已知函数f(x)=log2x,x∈R。

在区间[1,8]上任取一点x,使f(x)≥-2的概率为()。

补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是()。

A。

B。

C。

D。

9.如图,利用随机模拟的方法可以估计图中由曲线y=√(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组[0,1]的均匀随机数,a=RAND,b=RAND;②做变换,令x=4a,y=√(b);③判断(x,y)是否在阴影部分中,若是则计数器加1;④重复上述步骤n次,估计S≈n×计数器/.则利用上述方法,当n=时,估计得到的阴影部分的面积S≈()。

高中数学必修三第三章概率综合训练(含答案)

高中数学必修三第三章概率综合训练(含答案)

高中数学必修三概率综合训练一、单选题1.下列事件中,是随机事件的是()①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;④异性电荷,相互吸引;⑤某人购买体育彩票中一等奖.A. ②③④B. ①③⑤C. ①②③⑤D. ②③⑤2.下列说法正确的是()A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定3.气象台预报“本市明天降雨概率是70%”,下列说法正确的是()A. 本市明天将有70%的地区降雨B. 本市明天将有70%的时间降雨C. 明天出行带雨具的可能性很大D. 明天出行不带雨具肯定要淋雨4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A. “至少有一个红球”与“都是黑球”B. “至少有一个黑球”与“都是黑球”C. “至少有一个黑球”与“至少有1个红球”D. “恰有1个黑球”与“恰有2个黑球”5.已知事件A与事件B发生的概率分别为、,有下列命题:①若A为必然事件,则;②若A与B互斥,则;③若A与B互斥,则.其中真命题有()个A. 0B. 1C. 2D. 36.设函数,若从区间内随机选取一个实数,则所选取的实数满足的概率为()A. 0.5B. 0.4C. 0.3D. 0.27.如图,在矩形中,AB=4cm,BC=2cm,在图形上随机撒一粒黄豆,则黄豆落到阴影部分的概率是()A. B. C. D.8.掷一个骰子,出现“点数是质数”的概率是()A. B. C. D.9.抽查10件产品,设事件A:至少有2件次品,则A的对立事件为()A. 至多有2件次品B. 至多有1件次品C. 至多有2件正品D. 至多有1件正品10.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续的时间为50秒,若一行人来到该路口遇到红灯,则至少需要等待20秒才出现绿灯的概率为()A. B. C. D.11.在边长为4的正方形内随机取一点,该点到正方形的四条边的距离都大于1的概率是()A. B. C. D.12.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上,则下列结果正确的是()A. P(M)=,P(N)=B. P(M)=,P(N)=C. P(M)=,P(N)=D. P(M)=,P(N)=13.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是()A. 3个都是正品B. 至少有1个是次品C. 3个都是次品D. 至少有1个是正品14.设实数p在[0,5]上随机地取值,使方程x2+px+1=0有实根的概率为()A. 0.6B. 0.5C. 0.4D. 0.315.在区间[0,1]上随机取两个数x,y,记P为事件“x+y≤”的概率,则P=()A. B. C. D.16.在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案(正确答案可能是一个或多个选项),有一道多选题考生不会做,若他随机作答,则他答对的概率是()A. B. C. D.17.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为()A. 0.9B. 0.2C. 0.7D. 0.518.某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x﹣y=1上的概率为()A. B. C. D.19.已知正方形ABCD的边长为2,H是边DA的中点.在正方形ABCD内部随机取一点P,则满足的概率为()A. B. C. D.20.袋中共有5个除颜色外完全相同的小球,其中1个红球,2个白球和2个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )A. B. C. D.21.甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且。

人教A版高中数学必修三练习:第三章概率分层训练进阶冲关3.2古典概型Word版含答案

人教A版高中数学必修三练习:第三章概率分层训练进阶冲关3.2古典概型Word版含答案

分层训练·进阶冲关A组基础练(建议用时20分钟)1.下列关于古典概型的说法中正确的是( B )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则P(A)=.A.②④B.①③④C.①④D.③④2.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件数是( D )A.3B.4C.5D.63.从甲、乙、丙三人中任选2人作代表,则甲被选中的概率为( C )A. B. C. D.14.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是( D )A. B. C. D.5.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( A )A. B. C. D.6.已知某运动员每次投篮命中的概率等于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458569 683 431 257 393 027 556 488730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( B )A.0.35B.0.25C.0.20D.0.157.从1,2,3,4,5这5个数字中,不放回地任取两数,两数都是奇数的概率是.8.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.9.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为0.2.10.若以连续掷两次骰子分别得到的点数m,n作为点P的坐标,则点P落在圆x2+y2=16内的概率是.11.一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:(1)基本事件总数;(2)事件“摸出2个黑球”包含多少个基本事件?(3)摸出2个黑球的概率是多少?【解析】由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.(1)将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,所有基本事件构成集合Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑黑2,白),(黑3,白)},共有6个基本事件.3),((2)事件“摸出2个黑球”={(黑1,黑2),(黑2,黑3),(黑1,黑3)},共3个基本事件.(3)基本事件总数n=6,事件“摸出两个黑球”包含的基本事件数m=3,故P=.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求n<m+2的概率.【解析】(1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P==.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,其一切可能的结果(m,n)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3), (4,4),共16个.又满足条件n≥m+2的事件有(1,3),(1,4),(2,4),共3个.所以满足条件n≥m+2的事件的概率为P1=.故满足条件n<m+2的事件的概率为1-P1=1-=.B组提升练(建议用时20分钟)13.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X,Y,则lo Y=1的概率为 ( C )A. B. C. D.14.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是 ( D )A. B. C. D.15.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为.16.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 7884 2604 3346 09526807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为.17.某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率.(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.【解析】(1)从身高低于1.80的4名同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.设“选到的2人身高都在1.78以下”为事件M,其包括事件有3个,故P(M)==.(2)从该小组5名同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D, E),共10个.设“选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中”为事件N,则事件N包括事件有:(C,D),(C,E),(D,E),共3个.则P(N)=.18.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数.(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.【解析】(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2, A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5, A6},共9种.因此,事件A发生的概率P(A)==.C组培优练(建议用时15分钟)19.有五根细木棒,长度分别为1,3,5,7,9(cm),从中任取三根,能搭成三角形的概率是 ( D )A. B. C. D.20.某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为,停车费多于14元的概率为,求甲的停车费为6元的概率.(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.【解析】(1)记“一次停车不超过1小时”为事件A,“一次停车1到2小时”为事件B,“一次停车2到3小时”为事件C,“一次停车3到4小时”为事件D.由已知得P(B)=,P(C+D)=.又事件A,B,C,D互斥,所以P(A)=1--=.所以甲的停车费为6元的概率为.(2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3), (4,4),共16个;而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,所以所求概率为.关闭Word文档返回原板块。

高一数学人教A版必修三练习第三章 概率3.2.2 Word版含解析

高一数学人教A版必修三练习第三章 概率3.2.2 Word版含解析

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题分,共分).用计算机随机模拟掷骰子的试验,估计出现点的概率,则下列步骤中不正确的是().用计算器的随机函数(,)或计算机的随机函数(,)产生个不同的到之间的取整数值的随机数,如果=,我们认为出现点.我们通常用计算器记录做了多少次掷骰子试验,用计数器记录其中有多少次出现点,置=,=.出现点,则的值加,即=+;否则的值保持不变.程序结束.出现点的频率作为概率的近似值解析:计算器的随机函数(,)或计算机的随机函数(,)产生的是到之间的整数(包括,),共个整数.答案:.小明同学的密码是由,,,,,,,,,这个数字中不同的个数字组成的六位数字,由于长时间未登录,小明忘记了密码的最后一个数字,如果小明登录时密码的最后一个数字随意选取,则恰好能登录的概率是( )解析:从,,,,,,,,,中任取一个数字有个基本事件,恰巧是密码最后一位数字有个基本事件,则恰好能登录的概率为.答案:.袋子中有四个小球,分别写有“伦”“敦”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生到之间取整数值的随机数,且用,,,表示取出小球上分别写有“伦”“敦”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了组随机数:据此估计,直到第二次就停止概率为( )解析:由随机模拟产生的随机数可知,直到第二次停止的有,,,,共个基本事件,故所求的概率为==.答案:.甲、乙两人一起去游“西安世园会”,他们约定,各自独立地从号到号景点中任选个进行游览,每个景点参观小时,则最后一小时他们同在一个景点的概率是( )解析:甲、乙最后一小时他们所在的景点共有×=种情况,甲、乙最后一小时他们同在一个景点共有种情况.由古典概型的概率公式知最后一小时他们同在一个景点的概率是==.答案:二、填空题(每小题分,共分).在利用整数随机数进行随机模拟试验中,整数到整数之间的每个整数出现的可能性是W.解析:[,]中共有-+个整数,每个整数出现的可能性相等,所以每个整数出现的可能性是.答案:.抛掷一枚均匀的正方体骰子两次,用随机模拟方法估计朝上面的点数和为的概率,共进行了两次试验,第一次产生了组随机数,第二次产生了组随机数,那么这两次估计的结果相比较,第次准确.解析:用随机模拟方法估计概率时,产生的随机数越多,估计的结果越准确,所以第二次比第一次准确.答案:二.一个小组有位同学,选位小组长,用随机模拟方法估计甲被选中的概率,给出下列步骤:①统计甲的编号出现的个数;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(数学3必修)第三章 概率
[基础训练A 组]
一、选择题 1 下列叙述错误的是( )
A . 频率是随机的,在试验前不能确定,随着试验次数的增加,
频率一般会越来越接近概率
B . 若随机事件A 发生的概率为()A p ,则()10≤≤A p
C . 互斥事件不一定是对立事件,但是对立事件一定是互斥事件
D 5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可能性相同 2 从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( ) A 41 B 21 C 8
1 D 无法确定 3 有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,
则所取3条线段能构成一个三角形的概率为( ) A
101 B 103 C 21 D 10
7 4 从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是( )
A. 3个都是正品 B 至少有1个是次品 C 3个都是次品 D 至少有1个是正品 5 某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为03.0,出现丙级品的概率为01.0,则对产品抽查一次抽得正品的概率是( ) A 09.0 B 98.0 C 97.0 D 96.0 6 从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[)85.4,8.4( g )范围内的概率是( ) A 0.62 B 0.38 C 0.02 D 0.68
二、填空题 1 有一种电子产品,它可以正常使用的概率为0.992,则它不能正常使用的概率是 2 一个三位数字的密码键,每位上的数字都在0到9这十个数字中任选,某人忘记后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为___ 3 同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是
4 从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品, 一件次品的概率是
5 在5张卡片上分别写有数字,5,4,3,2,1然后将它们混合,再任意排列成一行,则得到的数能
被2或5整除的概率是
三、解答题
1从甲、乙、丙、丁四个人中选两名代表,求:
(1)甲被选中的概率
(2)丁没被选中的概率
2现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率
3某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上)
4一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当你到达路口时看见下列三种情况的概率各是多少?
(1) 红灯(2) 黄灯(3) 不是红灯
数学3(必修) 第三章 概率 [基础训练A 组]
参考答案
一、选择题 1 A 频率所稳定在某个常数上,这个常数叫做概率, 2 B 23241()2
C A P A C ===包含的基本事件的个数基本事件的总数 3 B 能构成三角形的边长为(3,5,7),(3,7,9),(5,7,9),三种,
3533()10
A P A C ===包含的基本事件的个数基本事件的总数 4 D 至少有一件正品 5 D ()1()10.040.96P A P A =-=-= 6 C 0.320.30.02-=
二、填空题 1 0.008 ()1()10.9920.008P A P A =-=-= 2 110
1()10A P A ==包含的基本事件的个数基本事件的总数 3 14 4 13 1526151()153
C P A C ⨯=== 5 35 44445523()5
A A P A A +==,或者:个位总的来说有5种情况,符合条件的有3种 三、解答题 1 解:(1)记甲被选中为事件A ,则132431()62
C P A C === (2)记丁被选中为事件B ,则11()1()122
P B P B =-=-= 2 解:(1)有放回地抽取3次,按抽取顺序(,,)x y z 记录结果,则,,x y z 都有10种可能,所以试验结果有3
10101010⨯⨯=种;设事件A 为“连续3次都取正品”,则包含的基本事件共有3
8888⨯⨯=种,因此,3
38()0.51210P A == (2)可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(,,)x y z ,则x
有10种可能,y 有9种可能,z 有8种可能,所以试验的所有结果为1098720⨯⨯=种 设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为876⨯⨯, 所以 336()720P B = 3 解:可以认为人在任何时刻到站是等可能的 设上一班车离站时刻为a ,则该人到站的时刻的一切可能为(,5)a a Ω=+,若在该车站等车时间少于3分钟,则到站的时刻为(2,5)g a a =++,3()5P A ==Ωg 的长度的长度 4 解:总的时间长度为3054075++=秒,设红灯为事件A ,黄灯为事件B ,
(1)出现红灯的概率302()755
P A ===构成事件A 的时间长度总的时间长度 (2)出现黄灯的概率51()7515P B =
==构成事件B 的时间长度总的时间长度 (3)不是红灯的概率23()1()155
P A P A =-=-
=。

相关文档
最新文档