烟气脱硫设计计算
烟气脱硫系统烟气量及成份特性计算
烟气脱硫系统烟气量及成份特性计算烟气脱硫系统是一种用于减少燃煤工业锅炉排放的硫化物的技术。
烟气脱硫系统的主要工作原理是通过将烟气传导过一种吸收剂,使得烟气中的二氧化硫(SO2)被吸收并转化为石膏(CaSO4·2H2O),从而减少对环境的污染。
在设计烟气脱硫系统之前,需要进行烟气量及成份特性的计算。
烟气量的计算需要考虑工业锅炉的操作条件、燃料的种类和燃烧效率等因素。
下面是一种烟气量计算的简单方法:1.计算燃煤工业锅炉的额定蒸发量。
额定蒸发量是指燃煤工业锅炉在设计工况下产生的最大蒸汽量。
2.根据工况,计算燃煤工业锅炉的蒸汽产量。
蒸汽产量可以通过燃料的热值、燃烧效率和蒸汽锅炉的热效率来计算。
3.根据燃烧过程中煤炭中的硫含量和排放因子,计算燃煤工业锅炉的SO2排放量。
硫含量可以通过煤炭质量分析来确定,排放因子一般可以在烟气排放规范中找到。
4.通过测量或估算的SO2浓度来计算烟气中SO2的质量流量。
SO2浓度可以通过连续排放监测系统进行测量,或者通过计算和模型来估算。
除了烟气量的计算,还需要对烟气的成份特性进行考虑。
烟气的成份特性包括SO2浓度、煤炭的灰分、粉尘、氮氧化物(NOx)等。
这些特性对烟气脱硫工艺的选择和系统设计有重要影响。
在烟气脱硫系统中,常用的吸收剂有石灰石、石膏和氨水等。
不同的吸收剂对烟气中的SO2有不同的吸收效果和反应特性。
根据烟气的成份特性和工艺要求,可以选择合适的吸收剂和适当的脱硫工艺。
总的来说,烟气脱硫系统的烟气量及成份特性计算是设计和选择适当的脱硫工艺的基础。
通过合理的计算和分析,可以确定脱硫系统的设计参数和操作条件,以达到减少SO2排放和保护环境的目的。
烟气脱硫设计计算
烟气脱硫设计计算烟气脱硫是一种用于控制和减少燃烧过程中排放的二氧化硫(SO2)的技术手段。
SO2是一种有害气体,其排放对环境和人类健康造成严重影响。
烟气脱硫的设计计算涉及到多个方面,如脱硫剂选择、脱硫效率计算、废水处理等。
在烟气脱硫设计计算中,首先需要选择合适的脱硫剂。
常用的脱硫剂包括石灰石、石膏等。
脱硫剂的选择应考虑其成本、可获得性以及与废气中其他成分的相互作用等。
一般来说,选择含有较高钙含量的石灰石能够达到比较好的脱硫效果。
脱硫效率的计算是烟气脱硫设计的关键环节。
脱硫效率是指系统中硫的去除率。
常用的脱硫效率计算公式为:脱硫效率(%)=(SO2进-SO2出)/SO2进×100其中,SO2进和SO2出分别表示烟气中进入和出口的SO2浓度。
脱硫效率的计算需要准确测量这两个参数。
测量SO2浓度的方法包括湿法(如碘液法、苏金孚法等)和干法(如紫外线光谱法等)。
根据实际情况,选择合适的测量方法。
废水处理也是烟气脱硫设计中重要的环节。
在石灰石湿法脱硫中,产生的废水中含有大量的钙离子和硫离子。
废水的处理需要通过中和、沉淀等过程来除去其中的污染物。
一种常用的废水处理方法是利用石膏脱硫法中产生的石膏作为副产物,可以通过进一步的处理将其中的污染物去除。
在烟气脱硫设计计算中,还需要考虑一些其他因素,如烟气的温度、湿度、流量等,以及设备的尺寸、系统的布置等。
这些因素将直接影响脱硫效率和处理效果。
总之,烟气脱硫的设计计算是一项复杂的工程,需要考虑多个因素。
合理选择脱硫剂、准确测量SO2浓度、有效处理废水,以及考虑其他因素,能够有效地控制和减少烟气中的SO2排放,保护环境和人类健康。
烟气脱硫简单设计计算
烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量 285000m3/h引风机量 1台 .压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段.冷却至适合的温度后进入吸收塔.往上与逆向流下的吸收浆液反应.氧化镁法脱硫法脱去烟气中的硫份。
吸收塔顶部安装有除雾器.用以除去净烟气中携带的细小雾滴。
净烟气经过除雾器降低烟气中的水分后排入烟囱。
粉尘与脏东西附着在除雾器上.会导致除雾器堵塞、系统压损增大.需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。
吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HS O3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底.吸收塔底部主要为氧化、循环过程。
氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气.使得造成化学需氧量的MgSO3氧化成MgSO4。
这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。
塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整.而且与酸碱计连锁控制。
当塔底浆液pH低于设定值时.氢氧化镁浆液通过输送泵自动补充到吸收塔底.在塔底搅拌器的作用下使浆液混合均匀.至pH达到设定值时停止补充氢氧化镁浆液。
20 %氢氧化镁溶液由氧化镁粉加热水熟化产生.或直接使用氢氧化镁.因为氧化镁粉不纯.而且氢氧化镁溶解度很低.就使得熟化后的浆液非常易于沉积.因此搅拌机与氢氧化镁溶液输送泵必须连续运转.避免管线与吸收塔底部产生沉淀。
脱硫系统常用计算公式
1) 由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基湿基,标态实际态,实际O2 等),开始计算前一定要核算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。
常用折算公式如下:烟气量(dry)=烟气量(wet) >(1-烟气含水量%)实际态烟气量=标态烟气量>气压修正系数x温度修正系数烟气量(6%02) = ( 21-烟气含氧量)/ ( 21 -6%)S02 浓度(6%02 ) = ( 21 - 6%) / (21 -烟气含氧量)S02 浓度( mg/Nm3 ) =S02 浓度( ppm) x2.857物料平衡计算1 )吸收塔出口烟气量G2G2= (G1 x (1 - mw1) X(P2/(P2-Pw2)) (X —mw2 )+ G3X (1- 0.21/K) ) >(P2/(P2-Pw2))G1: 吸收塔入口烟气流量mw1: 入口烟气含湿率P2:烟气压力Pw2 :饱和烟气的水蒸气分压说明: Pw2 为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。
(计算步骤见热平衡计算)2) 氧化空气量的计算根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50 - 60 %。
采用氧枪式氧化分布技术,在浆池中氧化空气利用率n 02=25-30%,因此,浆池内的需要的理论氧气量为:S=(G1 x q1-G2 x q2) x(1-0.6)/2/22.41所需空气流量QreqQreq=S x22.4/(0.21 0.x3)G3= Qreq >KG3:实际空气供应量K :根据浆液溶解盐的多少根据经验来确定,一般在 2.0-3左右。
3) 石灰石消耗量计算W1=100x qs xnsW1: 石灰石消耗量qs: :入口S02 流量n S兑硫效率4) 吸收塔排出的石膏浆液量计算W2=172xx qs xn s/SsW2:石膏浆液量Ss石膏浆液固含量5) 脱水石膏产量的计算W3=172xx qs xn s/SgW3: 石膏浆液量Sg:脱水石膏固含量(1-石膏含水量)6) 滤液水量的计算W4=W3-W2W3: 滤液水量7) 工艺水消耗量的计算W5=18x (G4-G1-G3 x(1-0.21/K))+W3 (1x-Sg)+36x qs x n+W s WT蒸发水量石膏表面水石膏结晶水排放废水。
烟气脱硫设计计算
烟气脱硫工艺吸收塔设计和选型4.1吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。
4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H 0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
烟气脱硫设计计算
烟气脱硫工艺吸收塔设计和选型4.1吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。
4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H 0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
《烟气处理中的脱硫系统设计与计算》4500字
烟气处理中的脱硫系统设计与计算目录烟气处理中的脱硫系统设计与计算 ................................................................................................. 1 1.1脱硫工艺选择 (1)①工艺流程复杂程度和成熟度 ..................................................................................................... 1 ②吸收剂获得难易及工艺技术指标 ............................................................................................. 2 ③脱硫副产物的利用情况 ............................................................................................................. 2 ④一次性投资和脱硫运行成本 ..................................................................................................... 2 ③吸收剂中的碳酸钙与溶液中的水和氢离子反应解离出钙离子。
......................................... 2 ④吸收塔内溶液中SO2-4、Ca2+和水反应生成石膏。
.............................................................. 2 1.2脱硫工艺流程介绍 ...................................................................................................................... 2 1.3石灰石(石灰)/石膏湿法脱硫主要工艺设计与选型 (3)1.3.1吸收塔设备及选型 ................................................................................................................ 3 1.3.2脱硫系统工艺设计 ................................................................................................................ 4 1.4 吸收塔附属设备的选型和设计 .. (8)1.4.1 循环系统的设计 .................................................................................................................. 8 1.4.2 氧化风机的设计及选型 ....................................................................................................... 9 1.4.3 氧化吸收池搅拌机的选型 ................................................................................................... 9 1.5 脱硫设计参数汇总 (9)1.1脱硫工艺选择表5-1 目前国内外应用较成熟的脱硫工艺烟气脱硫技术 电子束法 石灰石/石膏法新氨法 新氨法 工艺简易度简单 复杂 复杂 复杂 工艺技术指标脱硫率可达90%以上,脱硫剂利用率30%脱硫率95%,钙硫比1:1,脱硫剂利用率90%脱硫率85%~90%,脱硫剂利用率90%脱硫率85%~90%,脱硫剂利用率90%吸收剂获得难易一般 容易 一般 一般 脱硫副产物副产物可用作氮源或复合肥料,无二次污染副产物石膏能被综合再利用,不会形成二次污染副产物可直接用于工业硫酸生产 副产物可直接用于工业硫酸生产一次性投资 中等 较高 少 少 脱硫运行成本高低高高①工艺流程复杂程度和成熟度石灰石/石膏法和新氨法的工艺流程较为复杂,设备数量和种类多,而喷雾干燥法工艺相比较则比较简单,电子束法是四种工艺中流程和设备最简单的工艺。
烟气脱硫设计计算范例
2.4.干烟气总量为:
( VCO2 VN2 VSO2 VO2 ) 83.89 1000 30.4355 Q 22.4 897455.93 (kg / hr )
2.5.冷却增湿水量
M水 =(0.07624-0.0391)×897455.93 = 33538.49(kg / hr) = 33.54 (t / hr)
6. 离心机
进口水量为: 44017.08 (kg/hr) 固体含量: 6846.447816(kg/hr) 进口含固量≤ 15.00% 出口含固量≥70.00% MgSO3.xH2O溶解度,47.54℃时为1.4(g/100g) xH2O质量 = 523.8033(kg/hr) 溶解的MgSO3· 出口混合物质量: 9032.3493 (kg/hr) xH2O质量: 6078.7592(kg/hr) 混合物中MgSO3· 混合物中杂质质量: 243.8854(kg/hr) 混合物中表液质量: 2953.5902(kg/hr) 出口分离液质量: 34984.7337(kg/hr) xH2O质量: 523.8033(kg/hr) 分离液中MgSO3·
水分68774.50(kg/hr)
除雾器冲洗水
吸
出烟量(标态,湿态) 782687.69 (Nm3/hr )
16000 (kg/hr) 循环浆液量
收
塔
水分69027.33 (kg/hr)
2821.86 (kg/hr)
补充水 27984.29(kg/hr)
浆液,20% 1hr)
MgO + H2O SO2+ Mg(OH)2+ 5H2O SO2+ MgSO3· 2O 6H Mg(OH)2 MgSO3· 2O 6H ——7-1 ——7-2
脱硫各项计算公式
脱硫各项计算公式脱硫是指通过化学或物理方法去除燃煤、燃油等燃料中的硫化物,以减少大气中的二氧化硫排放,保护环境。
在脱硫工程中,需要进行各项计算来确定设备的尺寸、操作参数等。
下面将介绍脱硫各项计算公式及其应用。
1. 脱硫效率计算公式。
脱硫效率是衡量脱硫设备去除硫化物的能力的重要指标。
脱硫效率的计算公式如下:脱硫效率 = (进口SO2浓度出口SO2浓度) / 进口SO2浓度× 100%。
其中,进口SO2浓度和出口SO2浓度分别表示进入脱硫设备的烟气中的二氧化硫浓度和离开脱硫设备后的二氧化硫浓度。
通过这个公式可以计算出脱硫设备的去除效果,为后续工艺设计和操作提供重要参考。
2. 石灰用量计算公式。
在石灰-石膏法脱硫工艺中,需要计算石灰的用量来保证脱硫效果。
石灰用量的计算公式如下:石灰用量 = (SO2排放浓度×烟气流量× 3600) / (100 × CaO含量×石灰利用系数)。
其中,SO2排放浓度表示烟气中的二氧化硫浓度,烟气流量表示单位时间内烟气的流量,CaO含量表示石灰中氧化钙的含量,石灰利用系数表示石灰的利用率。
通过这个公式可以计算出石灰的用量,为脱硫设备的运行提供指导。
3. 石膏产量计算公式。
在石灰-石膏法脱硫工艺中,石膏是脱硫产生的主要副产品,需要计算石膏的产量来合理处理。
石膏产量的计算公式如下:石膏产量 = SO2排放浓度×烟气流量× 3600 / 100。
通过这个公式可以计算出单位时间内产生的石膏量,为后续的石膏处理提供依据。
4. 脱硫塔液气比计算公式。
在湿法脱硫工艺中,需要计算脱硫塔的液气比来保证脱硫效果。
脱硫塔液气比的计算公式如下:液气比 = (进口SO2浓度×烟气流量) / (脱硫液循环速率× 3600)。
其中,进口SO2浓度和烟气流量表示进入脱硫塔的烟气中的二氧化硫浓度和烟气流量,脱硫液循环速率表示单位时间内脱硫液的循环速率。
朝阳公司烟气脱硫设计计算(师弟)
设计参数耗煤量:27t/d,全硫含量:0.8%-1%,烟气温度:150℃煤气硫含量:450mg/ m3, 发生炉煤气产量:4000 m3/t转化成二氧化硫的硫含量:847 mg/ m3设计计算1.烟气量计算单日产气总量=27x4000=108000m3则所选煤气的分子量M=2x13.33%+28x27.40%+16x1.5%+44x3.8%+28x49.6%+18x4.17%+32x0.2%=24.553则所选煤气24.553kg/kmol÷22.4Nm3/kmol=1.096kg/ m3低位发热值Qd=10805x13.33%+12650x27.40%=4906.4kJ/Nm3=4906.4/4.1868=1171.88kcal/N m3=4906.4/1.3053=3758.83kcal/kg设1立方米发生炉煤气完全燃烧,空气系数ɑ=1.5经计算,理论空气需要量Qv=1.11 m3实际空气量=1.11x1.5=1.67 m3理论需氧量=0.234 m3烟气中过剩氧气量=(a-1)x理论需氧量=0.5x0.234=0.117 m3过剩氮气量=过剩氧气量x78/21=0.117X78/21=0.435 m3理论烟气量=1.03 m3实际烟气量=理论生成物总量+过剩氧气量+过剩氮气量=1.03+0.117+0.435=1.582 m3则烟气量Q=108000x1.582/24=7119 m3/h(150度)进行温度修正后的烟气量Q’=7119*(273.15+20)/(273.15+150)=4908.7 m3/h(20度)锅炉烟尘最高允许排放浓度及黑度限值锅炉二氧化硫和氮氧化物最高允许排放浓度限值本设计中燃气锅炉属于二时段(2001年1月1日),即烟尘最高允许排放浓度为50mg/m3,二氧化硫最高允许排放浓度为100mg/ m3。
2.工艺流程见设计方案3.二氧化硫排放量Qs=847/1000/1000x7119=6.03kg/h;烟气脱硫主要设备设计计算1.喷淋塔设计计算烟道烟气流速取18m/s。
脱硫系统常用计算公式
1)由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基\湿基,标态\实际态,6%O2\实际O2等),开始计算前一定要核算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。
常用折算公式如下:烟气量(dry)=烟气量(wet)×(1-烟气含水量%)实际态烟气量=标态烟气量×气压修正系数×温度修正系数烟气量(6%O2)=(21-烟气含氧量)/(21-6%)SO2浓度(6%O2)=(21-6%)/(21-烟气含氧量)SO2浓度(mg/Nm3)=SO2浓度(ppm)×2.857物料平衡计算1)吸收塔出口烟气量G2G2=(G1×(1-mw1)×(P2/(P2-Pw2))×(1-mw2)+G3×(1-0.21/K))×(P2/(P2-Pw2))G1:吸收塔入口烟气流量mw1:入口烟气含湿率P2:烟气压力Pw2:饱和烟气的水蒸气分压说明:Pw2为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。
(计算步骤见热平衡计算)2)氧化空气量的计算根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50-60%。
采用氧枪式氧化分布技术,在浆池中氧化空气利用率ηo2=25-30%,因此,浆池内的需要的理论氧气量为:S=(G1×q1-G2×q2)×(1-0.6)/2/22.41所需空气流量QreqQreq=S×22.4/(0.21×0.3)G3=Qreq×KG3:实际空气供应量K:根据浆液溶解盐的多少根据经验来确定,一般在2.0-3左右。
3)石灰石消耗量计算W1=100×qs×ηsW1:石灰石消耗量qs::入口SO2流量ηs:脱硫效率4)吸收塔排出的石膏浆液量计算W2=172××qs×ηs/SsW2:石膏浆液量Ss:石膏浆液固含量5)脱水石膏产量的计算W3=172××qs×ηs/SgW3:石膏浆液量Sg:脱水石膏固含量(1-石膏含水量)6)滤液水量的计算W4=W3-W2W3:滤液水量7)工艺水消耗量的计算W5=18×(G4-G1-G3×(1-0.21/K))+W3×(1-Sg)+36×qs×ηs??+WWT? ?? ?蒸发水量? ?? ?? ?石膏表面水? ? 石膏结晶水??排放废水。
烟气脱硫设计有关计算
Ò由于烟气中含有腐蚀性的酸性气体和水蒸
气的存在,烟气温度的高低,对于系统烟道 的防腐有着直接的影响,它决定了防腐材料 及措施的选择。而烟气温度的高低与吸收塔 的热平衡有很大的关系。
系统热平衡示意图
净 烟 气热 (处理后的烟气) 散热
5、热平衡
计算公式如下:公式4
不含蒸发水的烟气热量 氧化空气热量 工艺水热量
Q y1C p1T 1−Q y 2 C p 2T2 + Q yk (C k 1T 3−C k 2T2 ) + G w (C w1T w1−C w 2T2 )
Θ + ΔH m = M zf ( h 2 − h1)+ G石膏 C 石膏T2+ YC wT2
CaCO 3
64
SO 2
CaCO 3
其中:钙硫比Ca/S<=1.05 CaCO3量为: G石灰石×ACaCO3 kg/h 杂质量为: G石灰石×(1-ACaCO3)kg/h 如使用工业水制备30%含固量浆液,则需水量:G石灰石/0.3×0.7 kg/h 如使用v%含固量的脱硫反应塔塔底浆液旋流分离液制备30%含固量 浆液,设v%含固量旋流分离液中的固体物量为S kg/h,以水平衡可列 下式: S/v%×(1-v%)=(S+ G石灰石)/30%×(1-30%) 计算得到S kg/h,则所需的水量为: G水=S/v%×(1-v%)kg/h 则需v%的塔底浆液旋流分离液为: G制浆水=S+G水kg/h 30%浆液量为:G浆液=G水/(1-30%)kg/h
(1 − 25.5%) X (t ) (1 − 25.5%) X 3%( s )
Y (t ) 1.3%Y ( s )
烟气脱硫简单设计计算讲解
镁法脱硫相对于钙法的最大优势是系统不会发生设备结垢堵塞问题,能保证整个脫硫系 统能够安全有效的运行,同时镁法PH值控制在6.0-6.5之间,在这种条件下设备腐蚀问题 也得到了一定程度的解决。总的来说,镁法脱硫在实际工程中的安全性能拥有非常有力的保
第二章设计计算
1
《通知》规泄二氧化硫的排放量可以按实际监测或物料衡算法计算,由于火力发电厂烟 气监测装置的应用并没有普及,因此大多采用物料平衡方法进行计算:
2、2旁路烟道尺寸
旁路烟道主要用于脱硫塔在检修或出现故障需要紧急停止运行,防止对塔体及内部设 备造成损害而设立的烟气旁路输送烟道。烟气的流速取15m/s,烟道与主烟道相连接,所以 其高度应与已有烟道相同,便于施工,取高为2.1m:烟气量为全部工况下最大烟气量,即285000m3/h,则烟道的宽度为2.5m。
镁法脱硫优点
技术成熟
氧化镁脱硫技术是一种成熟度仅次于钙法的脫硫工艺,氧化镁脱硫工艺在世界各地都有 非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法, 另外在美国、徳国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。
原料来源充足
在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其 次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃 肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。
273+130
脱硫塔进口二氧化硫的含量C1
2727-200
需要的脱硫效率为:n= —―x100%=92.7%
2727
2.
脱硫有关计算公式
脱硫有关计算公式一、锅炉每小时产生的SO2量:锅炉产生的SO2量(mg/Nm3)= 耗煤量(t/h)×含硫量(%)×2×燃烧率×109100×干烟气体积(N m3/h)我厂锅炉设计的干烟气体积为277920Nm3/h,如锅炉每小时耗煤量为35吨,煤的含硫量为1%,锅炉的燃烧率为95%,那么每台锅炉每小时产生的SO2量则为2393mg/Nm3。
二、每台吸收塔每小时脱除的SO2量:脱除的SO2量(t)=耗煤量(t/h)×含硫量(%)×2×燃烧率×脱硫率如锅炉每小时耗煤量为35吨,煤的含硫量为1%,锅炉的燃烧率为95%,设计脱硫率量则为0.6吨。
为90%,那么一台塔脱除的SO2三、脱硫系统每小时消耗的电石渣量:量(t)×56 脱硫系统消耗的电石渣(t/塔)= 脱除的SO264×0.65如锅炉每小时耗煤量为35吨,煤的含硫量为1%,那么一台吸收塔运行,每小时消耗的电石渣为0.8吨。
可以用下式对电石渣耗量进行估算:脱硫系统消耗的电石渣量(t/h)=80×锅炉(脱硫塔)运行台数×含硫量(%)四、脱硫系统每小时补充的钠碱量:脱硫系统补充的钠碱量(kg/塔)= 脱除的SO2量(t)×1000×0.05×4064×0.3如锅炉每小时耗煤量为35吨,煤的含硫量为1%,那么一台吸收塔运行,每小时补充的钠碱为62. 34kg。
可以用下式对钠碱量的补充量进行估算:脱硫系统补充的钠碱时(kg/h)=6234×锅炉(脱硫塔)运行台数×含硫量(%)。
(完整word版)烟气脱硫设计计算.
烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。
吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。
净烟气经过除雾器降低烟气中的水分后排入烟囱。
粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。
吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HS O3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。
氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。
这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。
塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。
当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。
20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。
烟气脱硫简单设计计算
烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。
吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。
净烟气经过除雾器降低烟气中的水分后排入烟囱。
粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。
吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HS O3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。
氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。
这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。
塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。
当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。
20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。
干货收藏烟气脱硫常用计算公式汇总!
干货收藏烟气脱硫常用计算公式汇总!一、钠碱法脱硫工艺:采用氢氧化钠(NaOH,又名烧碱,片碱)或碳酸钠(Na2CO3又名纯碱,块碱)。
1、NaOH 反应方程式:2NaOH+SO2=Na2SO3(亚硫酸钠)+H2O (PH 值大于 9)Na2SO3+H2O+SO2=2NaHSO3(亚硫酸氢钠) (5<PH<9)当 PH 值在 5-9 时,亚硫酸钠和 SO2反应生成亚硫酸氢钠。
2、Na2CO3反应方程式:Na2CO3+SO2=Na2SO3(亚硫酸钠)+CO2↑(PH 值大于 9)Na2SO3+H2O+SO2=2NaHSO3(亚硫酸氢钠) (5<PH<9)当 PH 值在 5-9 时,亚硫酸钠和 SO2反应生成亚硫酸氢钠。
二、双碱法脱硫工艺:1、脱硫过程:Na2CO3+SO2=Na2SO3+CO2↑2NaOH+SO2=Na2SO3+H2O用碳酸钠启动用氢氧化钠启动种碱和SO2 反应都生成亚硫酸钠Na2SO3+SO2 +H2O=2NaHSO3 (5<PH<9)当 PH 值在 5-9 时,亚硫酸钠和SO2 反应生成亚硫酸氢钠。
2、再生过程:CaO(生石灰)+H2O=Ca(OH)2(氢氧化钙)Ca(OH)2+2NaHSO3(亚硫酸氢钠)=Na2SO3 CaSO3↓ (亚硫酸钙)+2H2OCa(OH)2+Na2SO3 =2NaOH+CaSO3↓氢氧化钙和亚硫酸钠反应生成氢氧化钠。
三、煤初始排放浓度:按耗煤量按500kg/h,煤含硫量按1%,煤灰份按20%,锅炉出口烟气温度按 150℃。
1、烟气量:按 1kg 煤产生 16~20m3/h 烟气量,=500×20= 10000m3/h2、SO2初始排放量:=耗煤量t/h×煤含硫量%×1600(系数)=0.5×0.01×1600= 8kg/h也可以计算:=2×含硫量×耗煤量×硫转化率 80%=2×0.01×500×0.8=8kg/h3、计算标态烟气量:=工况烟气量×【273÷(273+150 烟气温度)】=10000×0.645=6450Nm3/h已知标况烟气量和烟气温度,计算其工况烟气量:=标况烟气量×【(273+150 烟气温度)÷273】=6450×1.55=10000 m3/h4、SO2初始排放浓度:=SO2初始排放量×106÷标态烟气量=8×106÷6450=8000000÷6450=1240mg/Nm35、粉尘初始排放量:=耗煤量t/h×煤灰份%×膛系数 20%=500×0.2×0.2=20kg/h6、粉尘初始排放浓度:=粉尘初始排放量×106÷标态烟气量=20×106÷6450=20000000÷6450=3100mg/Nm3四、运行成本计算:需先计算出 SO2初始排放量 kg/h,然后按化学方程式计算。
烟气脱硫计算公式汇总(烟气量、脱硫量、空气量、产物量等)
干烟气中SO2含量
ngSO2'
%
0.01866*0.375Sar/Vgy'
10)
湿烟气中N2含量
nshN2'
%
(0.79alfa'V0+0.008Nar)/Vy'
11)
干烟气中N2含量
ngN2'
%
(0.79alfa'V0+0.008Nar)/Vgy'
6
总燃烧产物实际湿体积
Vtshy
Nm3/h
Vy'*Bj*1000
Nm3/kg
0.79V0+0.008Nar
2)
二氧化物
VRO20
Nm3/kg
0.01866(Car+0.375Sar)
3)
水蒸汽
VH2O0
Nm3/kg
0.111Har+0.0124Mar+0.0161V0
3
燃烧产物实际体积
Vy'
Nm3/kg
Vy0+0.0161(alfa'-1)V0+(alfa'-1)V0
Cso2
mg/Nm3
M/Vtshy(标态,干基,6%O2)
ppm
Cso2*22.41/64
3
要求脱硫量
Ms
kg/h
M*η*n/100
kmol/h
Ms/64
4、吸收剂消耗量计算
1
石灰石(CaCO3)理论消耗量
M3
kmol/h
Ms/64*(Ca/S)
kg/h
M3*M1
2
石灰石(CaCO3)实际消耗量
M3'
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量% 工况满负荷烟气量 285000m3/h引风机量 1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。
吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。
净烟气经过除雾器降低烟气中的水分后排入烟囱。
粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。
吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HSO3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。
氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。
这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。
塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。
当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。
20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。
镁法脱硫优点技术成熟氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。
原料来源充足在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。
其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。
因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。
脱硫效率高在化学反应活性方面氧化镁要远远大于钙基脱硫剂,并且由于氧化镁的分子量较碳酸钙和氧化钙都比较小。
因此其它条件相同的情况下氧化镁的脱硫效率要高于钙法的脱硫效率。
一般情况下氧化镁的脱硫效率可达到95-98%以上,而石灰石/石膏法的脱硫效率仅达到90-95%左右。
投资费用少由于氧化镁作为脱硫本身有其独特的优越性,因此在吸收塔的结构设计、循环浆液量的大小、系统的整体规模、设备的功率都可以相应较小,这样一来,整个脱硫系统的投资费用可以降低20%以上。
运行费用低决定脱硫系统运行费用的主要因素是脱硫剂的消耗费用和水电汽的消耗费用。
氧化镁的价格比氧化钙的价格高一些,但是脱除同样的SO2氧化镁的用量是碳酸钙的40%;水电汽等动力消耗方面,液气比是一个十分重要的因素,它直接关系到整个系统的脱硫效率以及系统的运行费用。
对石灰石石膏系统而言,液气比一般都在15L/m3以上,而氧化镁在7 L/m3以下,这样氧化镁法脱硫工艺就能节省很大一部分费用。
同时氧化镁法副产物的出售又能抵消很大一部分费用。
运行可靠镁法脱硫相对于钙法的最大优势是系统不会发生设备结垢堵塞问题,能保证整个脱硫系统能够安全有效的运行,同时镁法PH值控制在之间,在这种条件下设备腐蚀问题也得到了一定程度的解决。
总的来说,镁法脱硫在实际工程中的安全性能拥有非常有力的保证。
第二章设计计算1、二氧化硫排放量的计算方法《通知》规定二氧化硫的排放量可以按实际监测或物料衡算法计算,由于火力发电厂烟气监测装置的应用并没有普及,因此大多采用物料平衡方法进行计算:GSO2=2BFS(1-NSO2)(1)式中 GSO2——二氧化硫排放量,kg;B——耗煤量,kg;F——煤中硫转化成二氧化硫的转化率(火力发电厂锅炉取0.90;工业锅炉、炉窑取0.85;营业性炉灶取0.80);S——煤中的全硫份含量,%;NSO2——脱硫效率,%,若未采用脱硫装置,NSO2=0。
由此可见,此计算方法涉及燃煤的重量(B )、含硫量(S ,全硫,下同)和锅炉的型式(F ,电站锅炉视为常数)及其脱硫效率(含湿式除尘器的脱硫率,NSO2)等量值的计算。
1t/h 锅炉的功率为,1W 为1焦耳/秒,一小时为3600秒,所以1t/h 一小时能产生00焦耳能量,合600000大卡,1公斤动力煤约5000大卡,这样可以算出,1t/h 一小时需耗煤120kg ,再除以锅炉效率,实际每小时耗煤150kg ,这是锅炉满负荷时的耗煤量。
(1T 煤=10050m3 烟气)1、1 条件:燃煤含硫量% 130t/h 流化床锅炉 燃煤量1T/h 需要150kg 煤GSO2=2BFS (1-NSO2)=2*150*130**%= Kg/h工况下满负荷烟气量285000m 3/h ,设工况温度为130则标况下烟气量为Q Q=130273273285000+⨯=193065Nm 3/h=s 脱硫塔进口二氧化硫的含量C1C1=193065526.5=2727mg/Nm 3需要的脱硫效率为:η=100%2727200-2727⨯=% 2、 烟道的尺寸2、1 主烟道尺寸工况下烟气流量为285000m 3/h ;取烟气在烟道里的流速为15m/s ,设烟道高宽比为1:;则烟道的尺寸为:高为,宽为;校核实际烟速为: (当多条烟道交汇一起时,所有烟道的高度都应相同,)v 实==⨯⨯36002.52.1285000s 2、2 旁路烟道尺寸旁路烟道主要用于脱硫塔在检修或出现故障需要紧急停止运行,防止对塔体及内部设备造成损害而设立的烟气旁路输送烟道。
烟气的流速取15m/s ,烟道与主烟道相连接,所以其高度应与已有烟道相同,便于施工,取高为;烟气量为全部工况下最大烟气量,即285000m3/h ,则烟道的宽度为。
3、脱硫塔的设计计算3、1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计3、1、1喷淋塔的直径设计根据锅炉排放的烟气,计算运行工况下的塔内烟气体积流量,此时要考虑以下几种引起烟气体体积流量变化的情况:塔内操作温度低于进口烟气温度,烟气容积变小;浆液在塔内蒸发水分以及塔下部送入空气的剩余氮气使得烟气体积流量增大。
喷淋塔内径在烟气流速和平均实际总烟气量确定的情况下才能算出来,而以往的计算都只有考虑烟道气进入脱硫塔的流量,为了更加准确,本方案将浆液蒸发水分V2(m3/s)和氧化风机鼓入空气氧化后剩余空气流量V3(m3/s) 均计算在内,以上均表示换算成标准准状态时候的流量。
(1)吸收塔进口烟气量Va(m3/s)计算该数值已经由设计任务书中给出,烟气进口量为:(m3/s)然而,该计算数值实质上仅仅指烟气在喷淋塔进口处的体积流量,而在喷淋塔内延期温度会随着停留时间的增大而降低,根据PVT气体状态方程,要算出瞬间数值是不可能的,因此只能算出在喷淋塔内平均温度下的烟气平均体积流量。
(2)蒸发水分流量V2(m3/s)的计算烟气在喷淋塔内被浆液直接淋洗,温度降低,吸收液蒸发,烟气流速迅速达到饱和状态,烟气水分由6%增至13%,则增加水分的体积流量 V2(m3/s)为:V2=×(m3/s)=(m3/s)(标准状态下)(3)氧化空气剩余氮气量V3(m3/s)在喷淋塔内部浆液池中鼓入空气,使得亚硫酸镁氧化成硫酸钙,这部分空气对于喷淋塔内气体流速的影响是不能够忽略的,因此应该将这部分空气计算在内。
假设空气通过氧化风机进入喷淋塔后,当中的氧气完全用于氧化亚硫酸镁,即最终这部分空气仅仅剩下氮气、惰性气体组分和水汽。
理论上氧化1摩尔亚硫酸钙需要摩尔的氧气。
(假设空气中每千克含有千克的氧气 )又VSO2= m3/s 质量流率GSO2=sg/644.2210000.05⨯⨯=≈s根据物料守蘅,总共需要的氧气质量流量GO2=×s=s该质量流量的氧气总共需要的空气流量为空气G= G O2/= Kg/s 标准状态下的空气密度为 m3 [2]故V空气=(m3/s)= (m3/s)V3= ×V空气=×s= m3/s综上所述,喷淋塔内实际运行条件下塔内气体流量Vg =Va+V2+V3=++= (m3/s) 标况(4)喷淋塔直径的计算假设喷淋塔截面为圆形,将上述的因素考虑进去以后,可以得到实际运行状态下烟气体积流量Vg,从而选取烟速u,则塔径计算公式为:Di = 2 ×uVgπ其中: Vg为实际运行状态下烟气体积流量, m3/s u为烟气速度,s (3-5m/s)因此喷淋塔的内径为 Di = 2 ×uVgπ=2×5.314.357.83⨯=≈3、1、2 喷淋塔的高度设计喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
3、1 、2、1喷淋塔吸收区高度设计为了更加准确,减少计算的误差,需要将实际的喷淋塔运行状态下的烟气流量考虑在内。
而这部分的计算需要用到液气比(L/G)、烟气速度u(m/s)。
本设计中的液气比L/G 是指吸收剂氢氧化镁液浆循环量与烟气流量之比值(L/M3)。
如果增大液气比L/G ,则推动力增大,传质单元数减少,气液传质面积就增大,从而使得体积吸收系数增大,可以降低塔高。
在一定的吸收高度内液气比L/G 增大,则脱硫效率增大。
但是,液气比L/G 增大,氢氧化镁浆液停留时间减少,而且循环泵液循环量增大,塔内的气体流动阻力增大使得风机的功率增大,运行成本增大。
在实际的设计中应该尽量使液气比L/G 减少到合适的数值同时有保证了脱硫效率满足运行工况的要求。
氧化镁湿法脱硫工艺的液气比的选择是关键的因素,对于喷淋塔,液气比范围<7 L/m 3之间,根据相关文献资料可知液气比选择5 L/m 3是最佳的数值。
烟气速度是另外一个因素,烟气速度增大,气体液体两相截面湍流加强,气体膜厚度减少,传质速率系数增大,烟气速度增大回减缓液滴下降的速度,使得体积有效传质面积增大,从而降低塔高。