高考物理法拉第电磁感应定律提高练习题压轴题训练及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理法拉第电磁感应定律提高练习题压轴题训练及答案
一、法拉第电磁感应定律
1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:
(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .
【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】
(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:
10.02N F BIL ==
可得:
10.02A 0.2A 1.00.1
F I BL =
==⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:
Q W =安310.020.1J 2.010J F L -==⨯=⨯
(2) 金属框拉出的过程中产生的热量:
2Q I Rt
=
线框的电阻:
3
22
2.010Ω 1.0Ω0.20.05
Q R I t -⨯===⨯
2.如图所示,垂直于纸面的匀强磁场磁感应强度为B 。
纸面内有一正方形均匀金属线框abcd ,其边长为L ,总电阻为R ,ad 边与磁场边界平行。
从ad 边刚进入磁场直至bc 边刚要进入的过程中,线框在向左的拉力作用下以速度v 匀速运动,求:
(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.
【答案】(1)P=
222
B L v
R
(2)Q=
23
4
B L v
R
【解析】
【详解】
(1)线圈中的感应电动势
E=BLv 感应电流
I=E R
拉力大小等于安培力大小
F=BIL 拉力的功率
P=Fv=
222 B L v R
(2)线圈ab边电阻
R ab=
4
R 运动时间
t=L v
ab边产生的焦耳热
Q=I2R ab t =
23 4
B L v
R
3.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6 Ω,线圈电阻R2=4Ω求:
(1)磁通量变化率,回路的感应电动势。
(2)a 、b 两点间电压U ab 。
【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】
(1)由B =(2+0.2t )T 得磁场的变化率为
0.2T/s B
t
∆=∆ 则磁通量的变化率为:
0.04Wb/s B
S t t
∆Φ∆==∆∆ 根据E n
t
∆Φ
=∆可知回路中的感应电动势为: 4V B
E n
nS t t
∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:
112
2.4V ab E
R R R U =+=
答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
(2)a 、b 两点间电压U ab 为2.4V 。
4.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:
(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量;
(3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】
(1)金属棒在AB 段匀速运动,由题中图象得:
v =
x
t ∆∆=7 m/s 根据欧姆定律可得:
I =
BLv
r R
+ 根据平衡条件有
mg =BIL
解得:
B =0.1T
(2)根据电量公式:
q =I Δt
根据欧姆定律可得:
I =
()R r t
∆Φ
+∆
磁通量变化量
ΔΦ=
S t
∆∆B 解得:
q =0.67 C
(3)根据能量守恒有:
Q =mgx -
12
mv 2 解得:
Q =0.455 J
所以
Q R =
R
r R
+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J
5.研究小组同学在学习了电磁感应知识后,进行了如下的实验探究(如图所示):两个足够长的平行导轨(MNPQ 与M 1P 1Q 1)间距L =0.2m ,光滑倾斜轨道和粗糙水平轨道圆滑连接,水平部分长短可调节,倾斜轨道与水平面的夹角θ=37°.倾斜轨道内存在垂直斜面方向向上的匀强磁场,磁感应强度B =0.5T ,NN 1右侧没有磁场;竖直放置的光滑半圆轨道PQ 、P 1Q 1分别与水平轨道相切于P 、P 1,圆轨道半径r 1=0.lm ,且在最高点Q 、Q 1处安装
了压力传感器.金属棒ab 质量m =0.0lkg ,电阻r =0.1Ω,运动中与导轨有良好接触,并且垂直于导轨;定值电阻R =0.4Ω,连接在MM 1间,其余电阻不计:金属棒与水平轨道间动摩擦因数μ=0.4.实验中他们惊奇地发现:当把NP 间的距离调至某一合适值d ,则只要金属棒从倾斜轨道上离地高h =0.95m 及以上任何地方由静止释放,金属棒ab 总能到达QQ 1处,且压力传感器的读数均为零.取g =l 0m /s 2,sin37°=0.6,cos37°=0.8.则:
(1)金属棒从0.95m 高度以上滑下时,试定性描述金属棒在斜面上的运动情况,并求出它在斜面上运动的最大速度;
(2)求从高度h =0.95m 处滑下后电阻R 上产生的热量; (3)求合适值d .
【答案】(1)3m /s ;(2)0.04J ;(3)0.5m . 【解析】 【详解】
(1)导体棒在斜面上由静止滑下时,受重力、支持力、安培力,当安培力增加到等于重力的下滑分量时,加速度减小为零,速度达到最大值;根据牛顿第二定律,有:
A 0mgsin F θ-=
安培力:A F BIL = BLv
I R r
=+ 联立解得:2222
()sin 0.0110(0.40.1)0.6
3m /s 0.50.2mg R r v B L θ+⨯⨯+⨯=
==⨯
(2)根据能量守恒定律,从高度h =0.95m 处滑下后回路中上产生的热量:
2211
0.01100.950.0130.05J 22
Q mgh mv ==⨯⨯-⨯⨯=-
故电阻R 产生的热量为:0.4
0.050.04J 0.40.1
R R Q Q R r =
=⨯=++ (3)对从斜面最低点到圆轨道最高点过程,根据动能定理,有:
()221111
222
mg r mgd mv mv μ--=-①
在圆轨道的最高点,重力等于向心力,有:2
11
v mg m r =②
联立①②解得:221535100.1
0.5m 220.410
v gr d g μ--⨯⨯=
==⨯⨯
6.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L =0.5 m ,上端接有阻值R =0.3 Ω的电阻.匀强磁场的磁感应强度大小B =0.4 T ,磁场方向垂直导轨平面向上.一质量m =0.2 kg ,电阻r =0.1 Ω的导体棒MN ,在平行于导轨的外力F 作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d =9 m 时,电阻R 上消耗的功率为P =2.7 W .其它电阻不计,g 取10 m/s 2.求:
(1)此时通过电阻R 上的电流; (2)这一过程通过电阻R 上的电荷量q ; (3)此时作用于导体棒上的外力F 的大小. 【答案】(1)3A (2)4.5C (3)2N 【解析】 【分析】 【详解】
(1)根据热功率:P =I 2R , 解得:3A P
I R
=
= (2)回路中产生的平均感应电动势:E n t
φ∆=∆ 由欧姆定律得:+E I R r
=
得电流和电量之间关系式:q I t n R r
φ
∆=⋅∆=+ 代入数据得: 4.5C BLd
q R r
=
=+ (3)此时感应电流I =3A ,由E BLv
I R r R r
==++ 解得此时速度:()6m/s I R r v BL
+=
=
由匀变速运动公式:v 2=2ax ,
解得:2
22m/s 2v a d
==
对导体棒由牛顿第二定律得:F -F 安-mgsin30°=ma , 即:F -BIL -mgsin30°=ma , 解得:F =ma +BIL +mgsin30°=2 N
【点睛】
本题考查电功率,电量表达式及电磁感应电动势表达式结合牛顿第二定律求解即可,难度不大,本题中加速度的求解是重点. 【考点】
动生电动势、全电路的欧姆定律、牛顿第二定律.
7.在如图所示的电路中,螺线管上线圈的匝数n=1500匝,横截面积.螺线管上
线圈的电阻r=1.0Ω,定值电阻
、
,电容器的电容C=30μF.在一段时间
内,螺线管中磁场的磁感应强度B 按如图所示的规律变化.
(1)求螺线管中产生的感应电动势.
(2)闭合开关S ,电路中的电流稳定后,求电阻的电功率.
(3)开关S 断开后,求流经电阻的电荷量. 【答案】(1)1.2V (2) (3)
【解析】 【详解】
(1)根据法拉第电磁感应定律得
(2)根据闭合电路欧姆定律得
电阻
的电功率
.
(3)开关S 断开后,流经电阻的电荷量即为S 闭合时电容器所带的电荷量.
电容器两端的电压
流经电阻
的电荷量
. 故本题答案是:(1)1.2V (2) (3)
【点睛】
根据法拉第电磁感应定律求出回路中的电动势,在结合闭合电路欧姆定律求电流,即可求解别的物理量。
8.如图所示,电阻不计且足够长的U 型金属框架放置在倾角37θ=︒的绝缘斜
面上,该装置处于垂直斜面向下的匀强磁场中,磁感应强度大小0.5B T =,质量
0.1m kg =、电阻0.4R =Ω的导体ab 垂直放在框架上,从静止开始沿框架无擦下滑,与
框架接触良好,框架的质量0.2M kg =、宽度0.4L m =,框架与斜面间的动摩擦因数
0.6μ=,与斜面间最大静摩擦力等于滑动摩擦力,g 取210/m s 。
(1)若框架固定,求导体棒的最大速度m v ;
(2)若框架固定,导体棒从静止下滑至某一置时速度为5/m s ,此过程程中共有3C 的电量通过导体棒,求此过程回路产生的热量Q ;
(3)若框架不固定,求当框架刚开始运动时棒的速度v 。
【答案】(1)6/m s (2)2.35J (3)2.4/m s 【解析】(1)棒ab 产生的电动势为: E BLv = 回路中感应电流为: E I R
=
棒ab 所受的安培力为: A F BIL =
对棒ab : 0
sin37mg BIL ma -= 当加速度0a =时,速度最大
最大速度为: 0
sin376/2
m mgR v m s =
=; (2)E BLx
q I t t R R R
∆Φ=∆=
⨯∆==
根据能量转化和守恒定律有: 02
1sin372
mgx mv Q =+ 代入数据可以得到: 2.35Q J = (3)回路中感应电流为: 1
1BLv I R
=
框架上边所受安培力为11F BI L =
对框架()0
1sin37cos37Mg BI L m M g μ+=+
代入数据可以得到: 1 2.4/v m s =。
9.如图所示,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l ,左侧接一阻值为R 的电阻.区域cdef 内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s .一质量为m 、电阻为r 的金属棒MN 置于导轨上,与导轨垂直且接触良好,受到F =0.5v +0.4(N)(v 为金属棒速度)的水平外力作用,从磁场的左边界由静止开始向右运动,测得电阻两端电压随时间均匀增大.(已知:l =1m ,m =1kg ,R =0.3Ω,r =0.2Ω,s =1m)
(1)求磁感应强度B 的大小;
(2)若撤去外力后棒的速度v 随位移x 的变化规律满足()
22
0B l v v x m R r =-+ (v 0是撤去外力
时,金属棒速度),且棒在运动到ef 处时恰好静止,则外力F 作用的时间为多少? (3)若在棒未出磁场区域时撤出外力,画出棒在整个运动过程中速度随位移变化所对应的各种可能的图线.
【答案】(1)B =0.5T (2) t =1s (3)可能的图像如图:
【解析】(1)R 两端电压U ∝I ∝E ∝v ,U 随时间均匀增大,即v 随时间均匀增大. 所以加速度为恒量.
22
B l F v ma R r
-=+
将F =0.5v +0.4代入得: 220.50.4B l v a R r ⎛⎫
-+= ⎪+⎝
⎭
因为加速度为恒量,与v 无关,所以a =0.4 m/s 2
22
0.50B l R r
-=+
代入数据得:B =0.5 T. (2)设外力F 作用时间为t .
2112
x at =
()
22
02B l v x at m R r ==+
x 1+x 2=s ,
所以
()22212m R r at at s B l
++= 代入数据得0.2t 2+0.8t -1=0, 解方程得t =1 s 或t =-5 s(舍去). (3)可能图线如下:
【点睛】根据物理规律找出物理量的关系,通过已知量得出未知量.要善于对物体过程分析和进行受力分析,运用牛顿第二定律结合运动学公式解决问题.
10.如图所示,两光滑平行金属导轨abcd d c b a ''''、,aa '之间接一阻值为R 的定值电阻,dd '之间处于断开状态,abb a ''部分为处于水平面内,且ab bb b a a a L ==='''=',
bcdb c d '''部分为处于倾角为θ的斜面内,bc cd dd d c c b b b
L ''''''======.abb a ''
区域存在一竖直向下的磁场1B ,其大小随时间的变化规律为1B kt =(k 为大于零的常数);cdd c ''区域存在一垂直于斜面向上的大小恒为2B 的磁场.一阻值为r 、质量为m 的导体棒MN 垂直于导轨从bb '处由静止释放.不计导轨的电阻,重力加速度为g .求:
(1)导体棒MN 到达cc '前瞬间,电阻R 上消耗的电功率; (2)导体棒MN 从bb '到达cc '的过程中,通过电阻R 的电荷量;
(3)若导体棒MN 到达cc '立即减速,到达dd '时合力恰好为零,求导体棒MN 从cc '到
dd '运动的时间.
【答案】(1)
()
242
k L R
R r + (2)2
2sin kL L
q R r
g θ
=
+(3)()()()23
23
2sin m R r v v B L t kB L mg R r θ+=-+'+-(式中()32222sin 2sin ,B kL mg R r v gL v B L
θ
θ'++==
【分析】 【详解】
(1)因磁场1B 随时间的变化规律为1B kt =,所以B
k t
∆=∆,abb a ''所组成回路产生的感应电动势22B
E L kL t t
ϕ∆∆=
==∆∆g 流过电阻R 的电流: E
I R r
=
+ 电阻R 消耗的功率: 2
R P I R =
联立以上各式求得: ()
242
R k L R
P R r =
+
(2)电阻R 的电荷量: q It =, 2
kL I I R r
==+
根据牛顿第二定律: sin mg ma θ=
导体棒从MN 从bb '到达cc '中,通过的位移:212
L at =
联立解得:
q =
(3)根据(2)问,求得导体棒到达cc '
时的速度:v =
到达dd '时合力为0,则: 222sin B Lv kL B L mg R r θ⎛⎫
-= ⎪+⎝'⎭
解得:()3222
2sin B kL mg R r v B L
θ
'++=
导体棒MN 从cc '到达dd '过程中,运用动量定理 :()2sin B I Lt mgt mv mv θ-'=--'-
从cc '到达dd '过程中,流过导体棒MN 的电荷量: q I t ''= 且 22
2B L kL q t R r R r
'=-
++ 联立以上式子,求得
()()()23
232sin m R r v v B L
t kB L mg R r θ
+=-+'+-
(式中v =,()3222
2sin B kL mg R r v B L
θ
'++=
)
11.如图甲所示,光滑的平行金属导轨水平放置,导轨间距L =1 m ,左侧接一阻值为R =0.5 Ω的电阻.在MN 与PQ 之间存在垂直轨道平面的有界匀强磁场,磁场宽度d =1 m .一质量m =1 kg 的金属棒a b 置于导轨上,与导轨垂直且接触良好,不计导轨和金属棒的电阻.金属棒ab 受水平力F 的作用从磁场的左边界MN 由静止开始运动,其中,F 与x (x 为金属棒距MN 的距离)的关系如图乙所示.通过电压传感器测得电阻R 两端电压随时间均匀增
(1)金属棒刚开始运动时的加速度为多少? (2)磁感应强度B 的大小为多少?
(3)若某时刻撤去外力F 后金属棒的速度v 随位移s 的变化规律满足v =v 0﹣
22
B L mR
s (v 0为撤去外力时的速度,s 为撤去外力F 后的位移),且棒运动到PQ 处时恰好静止,则金属棒从MN 运动到PQ 的整个过程中通过左侧电阻R 的电荷量为多少?外力F 作用的时间为多少?
【答案】(1)a=0.4m/s 2;(2)B=0.5T ;(3)t=1s 【解析】 【详解】
解:(1)金属棒开始运动时,0x =,0v =,金属棒不受安培力作用 金属棒所受合力为:0.4N F = 由牛顿第二定律得:20.4m/s F
a m
=
= (2)由题意可知,电阻R 两端电压随时间均匀增大,即金属棒切割磁感线产生的感应电动势随时间均匀增大,由E BLv =可知,金属棒的速度v 随时间t 均匀增大,则金属棒做初速度为零的匀加速运动.加速度:20.4m/s a = 由匀变速直线运动的位移公式可得:22v ax = 由图乙所示图象可知,0.8m x =时,0.8N F =
由牛顿第二定律得:22B L v
F ma R
-=
解得:0.5T B =
(3)金属棒经过磁场的过程中,感应电动势的平均值: B S BLd
E t t t
ϕ∆∆===∆∆∆ 感应电流的平均值:E
I R
=
通过电阻R 的电荷量:q I t =∆ 解得:1C BLd
q R R
ϕ∆=
==
设外力F 的作用时间为t ,力F 作用时金属棒的位移为:212
x at =
撤去外力后,金属棒的速度为:022
B s v v L Rm
=-
到PQ 恰好静止,0v =
则撤去外力后金属棒运动的距离为:22
mR
at B L s •=
则 22212B L at at d Rm
+•= 解得:1s t =
12.固定在匀强磁场中的正方形导线框abcd ,边长为l ,其中ab 是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜线.磁场的磁感应强度为B ,方向垂直纸面向里.现有一段与ab 段的材料、粗细、长度均相同的电阻丝PQ 架在导线框上,如图所示.若PQ 以恒定的速度v 从ad 滑向bc ,当其滑过1
3
l 的距离时,通过aP 段电阻的电流是多大?方向如何?
【答案】
611Blv
R
方向由P 到a 【解析】 【分析】 【详解】
PQ 右移切割磁感线,产生感应电动势,相当于电源,外电路由Pa 与Pb 并联而成,PQ 滑过
3
l
时的等效电路如图所示,
PQ 切割磁感线产生的感应电动势大小为E=Blv ,方向由Q 指向P . 外电路总电阻为
122
3312
93
3
R R
R R R R ⋅==+外
电路总电流为:
92119
E Blv Blv I R R R R R =
==
++外
aP 段电流大小为
26311ap Blv I I R
=
=, 方向由P 到a .
答:通过aP 段电阻的电流是为
611Blv
R
方向由P 到a
13.如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计).磁感应强度为B 的匀强磁场方向垂直于纸面向外.金属棒ab 的质量为m ,与导轨接触良好,不计摩擦.从静止释放后ab 保持水平而下滑.
试求:(1)金属棒ab 在下落过程中,棒中产生的感应电流的方向和ab 棒受到的安培力的方向.
(2)金属棒ab 下滑的最大速度v m .
【答案】(1)电流方向是b→a .安培力方向向上. (2)22m mgR v B L
= 【解析】
试题分析:(1)金属棒向下切割磁场,根据右手定则,知电流方向是b→a .根据左手定则得,安培力方向向上.
(2)释放瞬间ab 只受重力,开始向下加速运动.随着速度的增大,感应电动势E 、感应电流I 、安培力F 都随之增大,加速度随之减小.当F 增大到F=mg 时,加速度变为零,这
时ab 达到最大速度.
由22m
B L v F mg R
==,
可得22m mgR v B L
=
考点:电磁感应中的力学问题.
14.两根足够长的光滑直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,且接有阻值为R 的电阻。
整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于斜面向上。
导轨和金属杆的电阻可忽略。
让金属杆MN 由静止沿导轨开始下滑.求:
(1)当导体棒的速度为v (未达到最大速度)时,通过MN 棒的电流大小和方向; (2)导体棒运动的最大速度. 【答案】(1) Blv
I R =,方向为从N 到M (2)22
sin m mgR v B L θ= 【解析】 【详解】
(1)当导体棒的速度为v 时,产生的感应电动势为E Blv = 回路中的电流大小为Blv
I R
=
由右手定则可知电流方向为从N 到M
(2)导体棒在磁场中运动时,所受安培力大小为
22B L v
F ILB R
== 由左手定则可知,安培力方向沿斜面向上当导体棒的加速度为零时,速度最大即:
22sin m
B L v mg R
θ=
可解得最大速度为:
22
sin m mgR v B L θ
=
答:(1)当导体棒的速度为v (未达到最大速度)时,通过MN 棒的电流大小为Blv
I R
=,方向为从N 到M ;
(2)导体棒运动的最大速度22
sin m mgR v B L θ
=
15.如图所示,在磁感应强度B =0.2 T 、方向与纸面垂直的匀强磁场中,有水平放置的两平行导轨ab 、cd ,其间距l =50 cm ,a 、c 间接有电阻R .现有一电阻为r 的导体棒MN 跨放在两导轨间,并以v =10 m/s 的恒定速度向右运动,a 、c 间电压为0.8 V ,且a 点电势高.其余电阻忽略不计.问:
(1)导体棒产生的感应电动势是多大?
(2)通过导体棒电流方向如何?磁场的方向是指向纸里,还是指向纸外? (3)R 与r 的比值是多少?
【答案】(1)1V ;(2)电流方向N→M ;磁场方向指向纸里;(3)4. 【解析】 【分析】 【详解】
试题分析:(1)1V E Blv ==
(2)根据右手定则,可以判断:电流方向N→M ;磁场方向指向纸里 (3)根据电路关系有:
4R U r E U
==- 考点:法拉第电磁感应定律;右手定则及全电路欧姆定律.。