图形的相似(知识点)

合集下载

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结相似的图形在初中数学中占据非常重要的位置。

相似的图形具有相同的形状但不一定相等的大小。

在初三学习过程中,我们接触到了许多涉及相似图形的知识点。

本文将对初三相似的图形知识点进行归纳总结,以帮助同学们更好地理解和掌握这一内容。

一、相似三角形的判定条件1. AAA相似定理:如果两个三角形的对应角相等,则它们相似。

2. AA相似定理:如果两个三角形的一个角对应对应地相等,并且两个对应边成比例,则它们相似。

3. 相似三角形的对应边的比例关系:如果两个三角形相似,那么它们的对应边的长度之比等于相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)二、相似三角形的性质和应用1. 相似三角形的边长比例性质:两个相似三角形的相应边的比等于它们的相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)2. 相似三角形的高线比例性质:两个相似三角形的高线与底边之比等于相似比。

即\(\frac{h_1}{h_2} = \frac{AB}{A'B'} = \frac{BC}{B'C'} =\frac{CA}{C'A'}\)3. 相似三角形的面积比例性质:两个相似三角形的面积之比等于边长之比的平方。

即\(\frac{S_1}{S_2} = \left(\frac{AB}{A'B'}\right)^2 =\left(\frac{BC}{B'C'}\right)^2 = \left(\frac{CA}{C'A'}\right)^2\)4. 利用相似三角形性质解决实际问题。

如影子定理、塔楼高度的测量等。

中考数学知识点总结图形的相似

中考数学知识点总结图形的相似

中考数学知识点总结图形的相似在中考数学中,图形的相似是一个重要的知识点。

它不仅在几何题目中频繁出现,也是解决实际问题的有力工具。

下面就让我们一起来详细了解一下图形相似的相关知识。

一、相似图形的概念相似图形是指形状相同,但大小不一定相同的图形。

比如说,两个正方形,它们的边长可能不同,但形状是一样的,这就是相似图形。

相似多边形对应角相等,对应边的比相等。

如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形就是相似多边形。

二、相似三角形1、相似三角形的判定(1)两角分别相等的两个三角形相似。

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

(3)三边成比例的两个三角形相似。

如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

(1)相似三角形对应边的比等于相似比。

(2)相似三角形对应角相等。

(3)相似三角形周长的比等于相似比。

(4)相似三角形面积的比等于相似比的平方。

三、相似三角形的应用1、测量高度在实际生活中,我们常常需要测量一些物体的高度,比如旗杆、建筑物等。

这时就可以利用相似三角形的知识来解决。

通过测量一些已知长度的线段和对应的角度,构建相似三角形,从而求出物体的高度。

2、测量距离相似三角形还可以用于测量距离。

比如,在河的一岸要测量到对岸某一点的距离,可以在这一岸选取两个点,构建相似三角形,通过测量已知边的长度和角度,来计算出河的宽度。

四、位似图形1、位似图形的概念如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。

(1)位似图形上任意一对对应点到位似中心的距离之比等于位似比。

(2)位似图形的对应边互相平行或在同一条直线上。

3、位似图形的作图在位似图形的作图中,要先确定位似中心,然后根据位似比确定对应点的位置,最后连接各点得到位似图形。

(完整版)相似知识点总结

(完整版)相似知识点总结

相似【知识脉络】【基础知识】Ⅰ . 相关相似形的见解(1) 形状同样的图形叫相似图形,在相似多边形中,最简单的是相似三角形。

(2) 假如两个边数同样的多边形的 对应角相等,对应边成比率, 这两个多边形叫做相似多边形。

.............相似多边形对应边长度的比叫做相似比 ( 相似系数 ) 。

Ⅱ . 比率的性质(注意性质立的条件:分母不可以为 0)( 1)基天性质:① a : b c : dad bc ;② a : b b : c b 2 a c .注:由一个比率式只可化成一个等积式, 而一个等积式共可化成八个比率式, 如 adbc ,除了可化为 a : b c : d ,还可化为 a : c b : d c : d a : b b : d a : c b : a d : c。

, , ,a b,互换内项)c d (( 2)换比性质 ( 互换比率的内项或外项 ) :ac d c ,互换外项 ( )bdbadb.(同时互换内外项 ) c aⅢ . 平行线分线段成比率定理基础图形:定理:如上图,三条平行线截两条直线, 所得的对应线段成比率.推论:平行于三角形一边的直线截其余两边(或两边的延伸线)所得的对应线段成比率.Ⅳ . 相似三角形( 1)见解:对应角相等,对应边成比率的三角形,叫做相似三角形。

相似用符号“∽” 表示,读作“相似于”。

相似三角形对应边的比叫做相似比( 或相似系数 ) 。

注:①对应性:即两个三角形相似时,必定要把表示对应极点的字母写在对应地点上,这样写比较简单找到相似三角形的对应角和对应边;② 次序性:相似三角形的相似比是有次序的;③ 两个三角形形状同样,但大小不用然同样;④全等三角形是相似比为 1 的相似三角形。

两者的差别在于全等要求对应边相等,而相似要求对应边成比率。

( 2)判断:依据相似图形的特点来判断。

(对应边成比率,对应角相等)①. 平行于三角形一边的直线 ( 或两边的延伸线 ) 和其余两边订交 , 所组成的三角形与原三角形相似;② . 假如一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似;③. 假如两个三角形的两组对应边的比相等, 并且相应的夹角相等 , 那么这两个三角形相似;④ . 假如两个三角形的三组对应边的比相等, 那么这两个三角形相似;直角三角形相似判判断理 :直角三角形被斜边上的高分红的两个直角三角形和原三角形相似注:射影定理: 在直角三角形中,斜边上的高是两直角边在斜边上射影的比率中项。

相似图形的知识点总结(16篇)

相似图形的知识点总结(16篇)

相似图形的知识点总结(16篇)篇1:相似图形的知识点总结相似图形的知识点总结知识点1.概念把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点5.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点6.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理篇2:相似图形相似图形教学交流课教案:第四章相似图形教学目标:1、知道线段比的概念。

图形的相似知识点

图形的相似知识点

图形的相似知识点相似图形是几何学中的重要概念,它指的是在形状和比例上相似的图形。

本文将介绍图形的相似性,并讨论相似图形的性质和应用。

一、相似图形的定义和判断方法相似图形定义:如果两个图形的形状相同,并且对应边的长度比相等,那么这两个图形就是相似图形。

判断相似图形的方法:1.对应角相等法则:如果两个图形的对应角相等,则这两个图形相似。

2.对应边成比例法则:如果两个图形的对应边成比例,则这两个图形相似。

3.综合判断法则:根据对应角和对应边成比例的性质,综合判断两个图形是否相似。

二、相似图形的性质1.对应边成比例:相似图形的对应边的长度比相等。

2.对应角相等:相似图形的对应角相等。

3.面积成比例:相似图形的面积比等于对应边长度比的平方。

三、相似三角形相似三角形是相似图形中最常见的一种情况。

相似三角形有以下性质:1.对应角相等:如果两个三角形的对应角相等,则这两个三角形相似。

2.对应边成比例:如果两个三角形的对应边成比例,则这两个三角形相似。

3.高线成比例:如果两个三角形的高线成比例,则这两个三角形相似。

4.中线成比例:如果两个三角形的中线成比例,则这两个三角形相似。

四、相似图形的应用相似图形的概念在实际生活中有着广泛的应用,例如:1.地图比例尺:地图上的比例尺就是通过相似图形的概念来确定的。

2.影像放大:在影像处理中,可以通过相似图形的概念对影像进行放大或缩小。

3.三角测量:在测量中,可以利用相似三角形的性质来进行间接测量。

4.建筑设计:建筑设计中,相似图形的概念可以帮助设计师确定建筑物的比例和尺寸。

总结:相似图形是几何学中一个重要的概念,它指的是在形状和比例上相似的图形。

我们可以通过对应角相等和对应边成比例等方法来判断图形是否相似。

相似图形的性质包括对应边成比例、对应角相等和面积成比例等。

相似图形在地图制作、影像处理、测量和建筑设计等领域有着广泛的应用。

通过了解相似图形的知识,我们可以更好地理解和应用几何学的基本原理。

专题27.1 图形的相似(8个考点)(教师版) 2024-2025学年九年级数学下册(人教版)

专题27.1 图形的相似(8个考点)(教师版) 2024-2025学年九年级数学下册(人教版)

专题27.1 图形的相似(8个考点)【考点1 比例性质】【考点2 比例线段】【考点3 成比例线段】【考点4 相似图形】【考点5相似多边形的性质】【考点6 黄金分割比】【考点7 由平行线判断成比例的线段】【考点8 由平行截线求相关相关线段的长或比值】【考点1 比例性质】1.如果ad=bc(a,b,c,d均不为零),那么下列比例式正确的是()A.bc =adB.ba=cdC.ab=cdD.cb=ad2.若mn =38,则m+nn的值是()A.118B.311C.113D.811【答案】A3.若xy =32,且x ≠0,则x+yy 的值为( )A .23B .32C .53D .524.若ab = 23,则下列式子不正确的是( )A .ba = 32B .a+bb= 53C .a 2 = b3D .a a−b = 23【答案】D【分析】本题主要考查比例的性质,熟练掌握比例的性质是解题的关键.根据比例的性质判断即可.【详解】解:A ,B ,C 选项分别对应比例的反比性质、合比性质、更比性质,只有D 选项不正确.故选D .5.若ab =23,则aa+b =.6.已知线段a、b、c满足a:b:c=3:2:6,且a+2b+c=26.(1)求a、b、c的值;(2)若线段a,b,c,d是成比例线段,求d的值.【答案】(1)6,4,12(2)8【分析】本题主要考查了比例线段,解一元一次方程,(1)利用a:b:c=3:2:6,可设a=3k,b=2k,c=6k,代入a+2b+c=26求出k的值,即可求出a、b、c的值;(2)根据题意得bc=ad,代入求得d即可.【详解】(1)解:∵a:b:c=3:2:6,∴设a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,即3k+4k+6k=26,合并同类项,得:13k=26,系数化为1,得:k=2,∴a=3k=3×2=6,b=2k=2×2=4,c=6k=6×2=12;(2)解:∵线段a,b,c,d是成比例线段,∴bc=ad,∴4×12=6×d,即d=8,【考点2 比例线段】7.一种精密零件长2毫米,把它画在图纸上,图上零件长10厘米,这张图纸的比例尺是()A .1:500B .500:1C .1:50D .50:1【答案】D【分析】本题考查比例尺,关键是掌握比例尺的定义.比例尺=图上距离与实际距离的比,由此即可计算.【详解】解:∵10厘米=100毫米,∴100:2=50:1,∴这张图纸的比例尺是50:1.故选:D .8.若线段a =1m ,b =50cm ,则ba =( )A .2B .12cmC .12D .509.若在比例尺为1:10000的地图上,测得两地的距离为3.5厘米,则这两地的实际距离是 千米.【答案】0.35【分析】本题考查了比例尺的应用,设两地间的实际距离是x cm ,根据题意可得方程1:10000=3.5:x ,解方程即可求得x 的值,然后换算单位即可求得答案.【详解】解:设两地间的实际距离是x cm ,∵比例尺为1:10000,量得两地间的距离为3.5cm ,∴1:10000=3.5:x ,解得:x =35000,经检验,x =35000是原方程的解,∵35000cm=0.35km,∴两地间的实际距离是0.35千米,故答案为:0.35.10.已知线段a=9厘米,c=16厘米,则它们的比例中项b为.【答案】12厘米/12cm【分析】根据比例中项的性质:比例中项平方等于两外项的积直接求解即可得到答案;【详解】解:∵线段a=9厘米,c=16厘米,它们的比例中项为b,∴b2=9×16,解得:b=12(厘米),b=−12(厘米)(不符合题意舍去),故答案为:12厘米;11.如果线段a=4cm,b=5mm,那么a的值为.b【考点3 成比例线段】12.下列各组线段的长度成比例的是( )A.0.3m,0.6m,0.5m,0.9mB.30cm,20cm,90cm,60cmC.1cm,2cm,3cm,4cmD.2cm,3cm,4cm,5cm【答案】B【分析】本题主要考查相似图形,根据四条线段成比例的定义逐项判断即可.【详解】A、0.3×0.9≠0.6×0.5,各组线段的长度不成比例,该选项不符合题意;B、20×90=30×60,各组线段的长度成比例,该选项符合题意;C、1×4≠2×3,各组线段的长度不成比例,该选项不符合题意;D、2×5≠3×4,各组线段的长度不成比例,该选项不符合题意.故选:B13.下列各组中的四条线段成比例的是( )A.a=1,b=2,c=3,d=4B.a=2,b=3,c=4,d=5C.a=2,b=3,c=4,d=6D.a=2,b=4,c=6,d=8【答案】C【分析】此题考查了成比例线段,若ad=bc,则a,b,c,d成比例,据此进行计算判断即可.【详解】解:A、1×4≠2×3,故此选项中四条线段不成比例,不符合题意;B、2×5≠3×4,故此选项中四条线段不成比例,不符合题意;C、2×6=3×4,故此选项中四条线段成比例,符合题意;D、2×8≠4×6,故此选项中四条线段不成比例,不符合题意,故选:C.14.下列各组中的四条线段(单位:厘米)成比例线段的是()A.1、2、3、4;B.1、2、4、8;C.2、3、4、5;D.5、10、15、20.【答案】B【分析】本题主要考查了成比例线段的定义,熟练掌握对于给定的四条线段,如果其中两条线段的长度之比等于另外两条线段的长度之比,则这四条线段叫做成比例线段是解题的关键.根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【详解】解:A、4×1≠2×3,故本选项不符合题意;B、1×8=2×4,故本选项符合题意;C、2×5≠3×4,故本选项不符合题意;D、5×20≠10×15,故本选项不符合题意;故选:B.15.已知线段a,b,c,d成比例,且a=3b,c=12cm,则线段d的长为()A.4cm B.6cm C.9cm D.36cm16.已知四个数a,b,c,d成比例,且a=3,b=2,c=4,那么d的值为()A.2B.3C.43D.8317.已知四个数−3,9,2,d成比例,则d等于( )A.3B.6C.−3D.−6【答案】D【分析】本题主要考查了比例.熟练掌握比例的定义,比例的基本性质,是解决问题的关键.比例的定义:在四个数中,如果两个数的比等于另外两个数的比,就叫做这四个数成比例;比例的基本性质:两内项之比等于两外项之比.根据比例的定义,写出比例式,运用比例的基本性质解答.【详解】∵四个数−3,9,2,d成比例∴−3:9=2:d,∴−3d=18,解得,d=−6.故选:D.【考点4 相似图形】18.下列每个选项的两个图形,不是相似图形的是()A.B.C.D.【答案】D【分析】本题考查了图形相似的概念:形状相同,大小不同的两个图形;根据图形相似的概念即可作出判断.【详解】解:由图形相似的概念知,选项D中的两个图形不相似;故选:D.19.下列结论中正确的是()A.两个正方形一定相似B.两个菱形一定相似C.两个等腰三角形一定相似D.两个矩形一定相似【答案】A【分析】本题考查了相似形的判定,根据相似图形的定义逐项判断即可求解,掌握正方形、菱形、等腰三角形和矩形的性质是解题的关键.【详解】解:A、两个正方形角都是直角一定相等,四条边都相等一定成比例,所以一定相似,故A正确;B、两个菱形的边成比例,但角不一定相等,所以不一定相似,故B错误;C、两个等腰三角形的腰的比与底边的比不一定相等,角不一定相等,所以不一定相似,故C错误;D、两个矩形的角都是直角一定相等,但边不一定成比例,所以不一定相似,故D错误;故选:A.20.下列各组图形中,不一定相似的是()A.两个菱形B.两个有30°角的直角三角形C.两个正六边形D.两个正方形【答案】A【分析】题主要考查相似形.根据相似形的定义对各个选项进行分析,从而得到答案.【详解】解:A. 两个菱形得各边成比例,但角不一定相等,不一定相似,符合题意;B. 根据有两个角分别相等的两个三角形是相似三角形可知两个有30°角的直角三角形是相似性,不符合题意;C. 两个正六边形的各边成比例,各角相等,是相似形,不符合题意;D. 两个正方形的各边成比例,各角相等,是相似形,不符合题意;故选A.21.下列哪组图形是相似图形()A.B.C.D.【答案】C【分析】本题考查了相似图形的判定,属于简单题,熟悉相似图形的定义是解题关键.【详解】解:A、图形不是相似图形;B、图形不是相似图形;C、图形是相似图形;D、图形不是相似图形;故选:C.22.下列多边形一定相似的是()A.两个等腰三角形B.两个平行四边形C.两个正五边形D.两个六边形【答案】C【分析】本题主要考查了相似图形的判定,掌握相似形的定义(如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形相似)是解题的关键.根据相似三角形的定义逐项判断即可.【详解】解:A、两个等边三角形相似,但是两个等腰三角形并不一定相似,三个角度没有确定,故A 不正确;B、两个平行四边形对应角度及对应边都不一定成比例,所以不一定相似,故B不正确;C、两个正五边形角度相等,放大缩小后可以完全重合,两图形相似,故C正确;D 、两个正六边形相似,但是两个六边形并不一定相似,故D 不正确.故选C .【考点5相似多边形的性质】23.两个相似多边形的面积之比为1:4,则它们的对应边之比为( )A .B .1:2C .1:4D .1:8【答案】B【分析】本题主要考查相似多边形的性质质.根据相似图形的面积比等于相似比的平方即可.【详解】解:两个相似多边形的面积之比为1:4,则它们的对应边之比为1:2,故选:B .24.若四边形ABCD ∽四边形A ′B ′C ′D ′,且AB:A ′B ′=3:5,已知B ′C ′=15,则BC 的长是( )A .25B .9C .20D .15【答案】B【分析】本题考查相似多边形的性质,关键是掌握相似多边形的性质:相似多边形的对应边成比例.由相似多边形的性质推出AB:A′B′=BC:B′C′,代入有关数据,即可求出BC 的值.【详解】解:∵四边形ABCD ∽四边形A ′B ′C ′D ′,∴AB:A ′B ′=BC:B ′C ′,∵AB:A ′B ′=3:5,B ′C ′=15,∴BC =9.故选:B .25.如图,已知五边形ABCDE ∽五边形A 1B 1C 1D 1E 1,若ABA 1B 1=25,则S 五边形ABCDES五边形A 1B 1C 1D 1E 1=( )A .52B .25C .254D .425【答案】D【分析】本题主要考查了相似多边形的性质,解题的关键在于熟知相似多边形的面积之比等于相似比26.如图,在矩形ABCD中,AB=6,点EF分别在AD、BC边上,且EF⊥BC,若矩形ABFE∽矩形DEFC,且面积比为1:9,则AD长为()A.20B.18C.12D.927.如图,把一张矩形纸片ABCD沿着AD和BC边的中点连线EF对折,对折后所得的矩形正好与原来的矩形相似,则原矩形纸片长与宽的比为( )A.4:1B.2:1CD.【答案】C【分析】本题考查的是相似多边形的性质,根据对应边的比相等列出比例式,计算即可,掌握相似多28.如图,四边形ABCD和EFGH相似,则α和x的大小分别为()A.75°30B.75°33C.80°30D.80°33【考点6 黄金分割比】29.射影中有一种拍摄手法叫黄金分割构图法,其原理是:如图,将正方形ABCD的边BC取中点O,以O为圆心,线段OD为半径作圆,其与边BC的延长线交于点E,这样就把正方形ABCD延伸为黄金矩形ABEF,若CE=4,则AB=.30.若点C是线段AB的一个黄金分割点,AB=2,且AC>BC,则AC=(结果保留根号).31.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值.这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.如图,乐器上的一根弦长为2AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为cm.(结果保留根号)32.宽与长的比是黄金分割数计.如图,已知四边形ABCD是黄金矩形,若长AB+1,则该矩形ABCD的面积为.(结果保留根号)33.如图是意大利著名画家达・芬奇(daVinci,1452~1519年)的名画《蒙娜丽莎》.画面中脸部被围在矩形ABCD内,图中四边形BCEF为正方形.已知点F为线段AB的黄金分割点,且AF<FB,AB=20 cm.则FB=.【考点7 由平行线判断成比例的线段】34.在△ABC中,DE∥BC,AD:DB=2:3,AE=4,则EC等于( )A.10B.8C.9D.635.如图,直线AB ∥CD ∥EF ,则( )A .AC AE =BDBF B .AC AE =BDDFC .AC CE =BDBFD .AC CE =DFBD36.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点DE ∥BC ,点F 为BC 边上一点,连接AF 交DE 于点G .则下列结论中一定正确的是( )A.ADAB =AEECB.AGGF=AEBDC.BDAD=CEAED.AGGF=ACEC37.在△ABC中,点D、E、F分别在边BC、AB、AC上,连接DE、DF,如果DE∥AC,DF∥AB,且AE:EB=1:2,那么AF:FC的值是()A.3B.13C.2D.1238.如图,l 1∥l 2∥l 3,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F ,已知AB BC =32,若DF =10,则DE 的长为( )A .2B .3C .5D .639.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ,直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC与DF 相交于点H ,则下列式子不正确的是( )A .AB BC =DEEFB .AH CH =DHFHC.ABAC =DEDFD.ABBC=BECF40.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.下列结论:①ABAC=DEDF ;②ADBE=BECF;③ABDE=BCEF;④BCAB=EFDE.其中正确的个数为()A.1个B.2个C.3个D.4个41.如图,AD 、BC 相交于点O ,点E 、F 分别在BC 、AD 上,AB∥CD∥EF .若CE =6,EO =4,BO =5,AF =6,则AD = .【考点8 由平行截线求相关相关线段的长或比值】42.如图,AB ∥CD ∥EF ,AC =2,AE =5,BD =1.5,那么BF 的长为( )A .154B .94C .52D .7【答案】A【分析】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.根据平行线分线段成比例定理判断即可.43.已知,如图,直线l1∥l2∥l3,AB=3cm,BC=5cm,DE=2.4cm,则DF的长()A.3cm B.8cm C.6cm D.6.4cm44.如图,直线l1、l2与这三条平行线分别交于点A、D、F和点B、C、E.若BCCE=45,AD=4.4,则DF的长为()A.4.4B.5.5C.9.9D.10.145.如图,l1∥l2∥l3,DE=3,EF=4,AB=52,则BC的长为()A.3B.72C.103D.15846.已知l1∥l2∥l3,AM=3,BM=2,BC=4,DF=15,求DM,ED,EF.。

相似图形的性质和应用

相似图形的性质和应用

相似图形的性质和应用一、相似图形的定义知识点:相似图形的定义相似图形是指形状相同但大小不一定相同的两个图形。

在数学中,如果两个图形的对应角度相等,对应边成比例,则这两个图形是相似的。

二、相似图形的性质知识点:相似图形的性质1.对应角度相等:相似图形的对应角度相等。

2.对应边成比例:相似图形的对应边成比例。

3.对应边上的高、中线、角平分线成比例:相似图形的对应边上的高、中线、角平分线成比例。

4.面积比等于相似比的平方:相似图形的面积比等于相似比的平方。

5.周长比等于相似比:相似图形的周长比等于相似比。

三、相似图形的应用知识点:相似图形的应用1.图形放大与缩小:通过相似变换,可以将一个图形放大或缩小到所需的大小。

2.测量未知长度或角度:在实际问题中,可以通过相似图形的性质来测量未知的长度或角度。

3.计算面积和体积:在已知相似图形比例的情况下,可以通过相似图形的性质来计算未知图形的面积或体积。

4.解决实际问题:在实际生活中,相似图形可以用来解决诸如建筑设计、机械制造、生物学研究等领域的问题。

四、相似图形的判定知识点:相似图形的判定1.AA相似定理:如果两个三角形的两个角分别相等,则这两个三角形相似。

2.SAS相似定理:如果两个三角形的两边及其夹角分别相等,则这两个三角形相似。

3.RHS相似定理:如果两个直角三角形的斜边及一个锐角分别相等,则这两个直角三角形相似。

五、相似图形在几何学习中的应用知识点:相似图形在几何学习中的应用1.证明:在几何证明中,相似图形可以用来证明图形的性质或定理。

2.计算:在几何计算中,相似图形可以简化计算过程,降低解题难度。

3.转换:在解决几何问题时,可以通过相似图形将复杂问题转换为简单问题,便于解答。

4.拓展:相似图形的学习可以拓展到其他学科领域,如物理学、工程学等。

知识点:总结相似图形是数学中的重要概念,掌握相似图形的性质和应用对于中小学生的数学学习具有重要意义。

通过学习相似图形,学生可以更好地理解图形的变换、解决实际问题,并为后续学习更高级的数学知识打下基础。

数学图形相似九年级知识点

数学图形相似九年级知识点

数学图形相似九年级知识点数学中的图形相似是指两个或多个图形在形状上相似,即它们的对应角度相等,对应边的比例相等。

图形相似在几何学中有重要的应用,能够帮助我们分析和解决各种数学问题。

本文将介绍九年级数学中关于图形相似的知识点。

1. 判断图形相似的条件在九年级数学中,判断两个图形是否相似,需要满足以下三个条件:(1)对应角相等:两个图形的对应角度相等。

(2)对应边比例相等:两个图形中,对应边的长度之比相等。

(3)对应边平行:两个图形中,对应边之间相互平行。

2. 图形相似的性质图形相似具有以下性质:(1)对应角的性质:相似图形的对应角相等,即它们的内角相等,外角相等。

(2)对应边的比例:相似图形的对应边之比等于它们的周长、面积之比。

即若图形A与图形B相似,那么两个图形的对应边AB与A'B'的比例等于它们的周长或面积之比。

3. 相似三角形的定理在相似三角形中,我们可以应用以下定理来求解各种问题:(1)AAA相似定理:如果两个三角形的三个内角分别相等,则这两个三角形相似。

(2)AA相似定理:如果两个三角形的一个内角相等,并且两个三角形的对应边比例相等,则这两个三角形相似。

(3)SAS相似定理:如果两个三角形的一个内角相等,并且两个三角形的一个对边与这个角的对边的比例相等,则这两个三角形相似。

4. 图形相似应用图形相似在实际问题中有广泛的应用,比如:(1)计算高塔的高度:通过相似三角形的定理,我们可以计算高塔的高度。

例如,利用影子定理可以测量高塔的高度,其中就用到了相似三角形的概念。

(2)建模问题:在建模问题中,相似图形的概念可以帮助我们将实际物体或建筑的比例缩小或放大,以便进行实际测量或设计。

总结:数学图形相似是九年级数学中的重要知识点,它可以帮助我们分析和解决各种数学问题。

相似图形的判断条件、性质以及应用都需要我们掌握。

通过学习相似图形的知识,我们可以更好地理解几何学中的概念和应用,提升数学解题能力。

知识点1 图形相似的定义

知识点1 图形相似的定义

知识点1 图形相似的定义定义:我们把形状相同的图形叫做相似图形. (1)两个图形相似,其中一个图形可以看做是由 另一个图形放大或缩小得到的. (2)全等图形可以看成是一种特殊的相似图形, 即不仅形状相同,大小也相同. (3)判断两个图形是否相似,就是看两个图形是不是相同,与图形的大小、位置无关,这也 是相似图形的本质.【例1】下列图形不是相似图形的是( )A.同一张底片冲洗出来的两张不同尺寸的照片B.用放大镜将一个细小物体图案放大过程中原 有图案C.某人的侧身照片和正面照片D.大小不同的两张同版本中国地图 解析:依据图形相似的定义,某人的侧身照片和正 面照片是两个不同角度的照片,它们的形状不同,因此不是相似图形. 答案:C知识点2 线段成比例注意:在a cb d ,b=c 时,我们把b 叫做a,d 的比例中 项,此时b 2=ad. 点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC 是线段AB 和BC 的比例中项,且ACAB=BC AC =5-12≈0.618,则C 点叫做线段AB 的黄金分割点.【例2】已知线段a 、b 、c 、d 成比例线段,其中 a=2 m ,b=4 m ,c=5 m ,则d=()A.1 mB.10 mC. mD. m解析:根据比例线段的定义得到a∶b=c∶d,然后把a=2 m,b=4 m,c=5 m代入进行计算即可∵线段a、b、c、d是成比例线段∴a∶b=c∶d而a=2 m,b=4 m,c=5 m∴d= bca452⨯= =10 m答案:B知识点3 相似多边形及其性质定义:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.性质:相似多边形的对应角相等,对应边成比例.注意:(1)仅有角相等,或仅有对应边成比例的两个多边形不一定相似.(2)相似比的值与两个多边形的前后顺序有关.【例3】如图,四边形ABCD和四边形EFGH相似,求∠α、∠β的大小和EH 的长度解:∵四边形ABCD和四边形EFGH相似,∴∠α=∠B=83°,∠D=∠H=118°,∠β=360°-(83°+78°+118°)=81°,EH:AD=HG:DC∴EH24 2118=∴EH=28(cm).答:∠=83°,∠=81°,EH=28cm.ABC 相似,且 △DEF 的最大边长为20,则△DEF 的周长为 解:∵△DEF ∽△ABC ,△ABC 的三边之比为2:3:4 ∴△DEF 的三边之比为2:3:4 又∵△DEF 的最大边长为20∴△DEF 的另外两边分别为10、15 ∴△DEF 的周长为10+15+20=45 答案:45知识点1 相似三角形的判定定理1平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 因为DE ∥BC ,所以图中△ABC ∽△ADE.【例1】如图所示,已知在ABCD中,E 为AB 延长线 上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中各对相似三角形,并求出相应的相似比.解:∵四边形ABCD是平行四边形∴AB//CD,AD//BC∴△BEF∽△CDF,△BEF∽△AED∴△BEF∽△CDF∽△AED∴当△BEF∽△CDF时,相似比k1=BE/CD=1/3 ;当△BEF∽△AED时,相似比K2=BE/AE=1/4;当△CDF∽△AED时,相似比K3=CD/AE=3/4 .知识点2 相似三角形的判定定理2三边成比例的两个三角形相似.这种判定方法是常用的判定方法,也就是说两个三角形只要三条对应边的比相等,就可判定这两个三角形相似.C知识点1 相似三角形的判定定理3两边成比例且夹角相等的两个三角形相似.如图所示,在△ABC与△DEF中,∠B=∠E,23AB BCDE EF==,可判定△ABC∽△DEF.注意在利用该方法时,相等的角必须是已知两对应边的夹角,才能使这两个三角形相似,不要错误地认为是任意一角对应相等,两个三角形就相似.注意:在两个直角三角形中,若两组直角边的比相等,则这两个直角三角形相似.【例1】如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?知识点2 相似三角形的判定定理4两角分别相等的两个三角形相似如图所示,如果∠A=∠A′,∠B=∠B′,那么△ABC∽△A1B1C1.注意:在两个直角三角形中,若有一个锐角对应相等,则这两个直角三角形相似.知识点3 相似三角形的判定定理的综合运用判定三角形相似的几种基本思路:(1)条件中若有平行线,可采用相似三角形基本定理;(2)条件中若有一对等角,可再找一对等角或再找夹边成比例;(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)条件中若有等腰关系,可找顶角相等或一对底角相等,也可找底和腰对应成比例.知识点1 性质一:相似三角形对应线段的比等于似比相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.一般地,我们有:相似三角形对应线段的比等于相似比.已知一个三角形三边长为8,6,12,另一个三角形有一条边为4,要使这两个三角形相似,则另外两边长分别为.知识点2 性质二:相似三角形周长的比等于相似比两个相似三角形对应中线的比为1:4,它们的周长之差为27cm,则较大的三角形的周长为cm.解:令较大的三角形的周长为x cm 小三角形的周长为(x-27)cm由两个相似三角形对应中线的比为1:4得1:4=(x-27):x,解得x=36 cm答案:36知识点3 相似三角形面积的比等于相似比的平方两个相似三角形的周长是2:3,它们的面积之差是60cm2,那么它们的面积之和是.解:∵两个相似三角形的周长是2:3∴它们的相似比为2:3,面积的比为4:9设两个三角形的面积分别为4k,9k由题意得,9k-4k=60,解得k=12∴两个三角形的面积分别为48cm2,108cm2∴它们的面积之和是48+108=156cm2答案:156cm2。

第四章 图形的相似(知识点)

第四章  图形的相似(知识点)

第四章 图形的相似一.成比例线段1.线段的比※1.如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. ※2.成比例线段及比例的性质: (1)成比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※注意点:①a:b=k,说明a 是b 的k 倍; ②由于线段a 、b 的长度都是正数,所以k 是正数; ③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致.(2)比例的基本性质:若dc b a =, 则ad=bc ; 若ad=bc, 则d b c a d c b a ==或 ※合比性质:如果dc b a =,那么d d c b b a ±=±; ※等比性质:如果n m d c b a =⋅⋅⋅==(0≠+⋅⋅⋅++n d b ),那么n d b m c a +⋅⋅⋅+++⋅⋅⋅++=b a 注意:若没有“b+d+…+n ≠0”这个条件,需分类讨论.二.平行线分线段成比例※平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图1,1l //2l //3l ,则EFBC DE AB =.推广:过一点的一线束被平行线截得的对应线段成比例.定理推论:①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例.②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.三.黄金分割如图,点C 把线段AB 分成两条线段AC 和BC,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比, 一条线段有两个黄金分割点.≈-=215AB AC :0.618:1;AB BC 253-=四.相似多边形一般地,形状相同的图形称为相似图形.1.概念:对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.2.性质:相似多边形的对应角相等、对应边成比例;周长等于相似比;面积比等于相似比的平方.(3)判定:对应角相等、对应边成比例的两个多边形相似.(两个条件缺一不可)五.三角形的相似(“∽”不需分类讨论,“相似”需分类讨论)1.探索三角形相似的条件※相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.①两角对应相等;②两边对应成比例,且夹角相等;③三边对应成比例. ①一个锐角对应相等;②两条边对应成比例;a. 两直角边对应成比例;b.斜边和一直角边对应成比例.2.相似三角形的判定定理的证明3.利用相似三角形测高(3种方法)(1)利用太阳光线平行运用方法1:可以把太阳光近似地看成平行光线,计算时还要用到观测者的身高.(2)利用标杆运用方法2:观测者的眼睛必须与标杆的顶端和旗杆的顶端“三点共线”,标杆与地面要垂直,在计算时还要用到观测者的眼睛离地面的高度.(3)利用反射运用方法3:光线的入射角等于反射角.4.相似三角形的性质 (1)对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.(2)全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.(3)性质:①相似三角形对应角相等,对应边成比例;②相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方.※5.图形的位似:→位似图形的概念:如果两个图形不仅相似,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这样的两个图形叫做位似图形,这个点叫做位似中心.这时两个相似图形的相似比又叫做它们的位似比.→位似图形的性质:(1)位似图形是相似图形,具备相似图形的所有性质;(2)位似图形上的任意一对对应点到位似中心的距离之比等于相似比;(3)位似图形中的对应线段平行(或在一条直线上).→位似图形的画法:(1)画出基本图形; (2)选取位似中心;(3)根据条件确定对应点,并描出对应点;(4)顺次连结各对应点,所成的图形就是所求的图形.例题:如图,已知△ABC 和点O.以O 为位似中心,求作△ABC 的位似图形,并把△ABC 的边长扩大到原来的两倍.注意:给出基本图形和位似中心,可以做两个图形与原图形位似,分别在位似中心同侧和异侧各有一个,在具体的题中需根据实际情况作图.→位似变换与坐标在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k.例如:点A(x,y)的对应点为A ´,则A ´点的坐标可以这样确定xA ´=xA ×k ,yA ´=yA ×k 即A ´(kx,ky )或xA ´=xA ×(-k),yA ´=yA ×(-k) 即A ´(-kx,-ky ) 例题:在平面直角坐标系中, 四边形ABCD 的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O 为位似中心,相似比为21的位似图形.题:△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,点A的对应点A′的坐标为____________总结:至此,我们学过的图形变换有:平移,轴对称,旋转,位似.(1)平移:上下移:横坐标不变,纵坐标随之平移左右移:纵坐标不变,横坐标随之平移(2)轴对称:关于x轴对称:横坐标不变,纵坐标互为相反数关于y轴对称:纵坐标不变,横坐标互为相反数(3)旋转:绕原点旋转180度(中心对称):横坐标、纵坐标都互为相反数(4)位似:以原点为位似中心,相似比为k的位似图形对应点的坐标的比等于k或-k.。

图形相似知识点总结

图形相似知识点总结

图形相似知识点总结常见考(1)判断某两个图形是不是相似;(2)判断一组数据是不是成比例线段;(3)已知图上距离和比例尺大小求实际距离;(4)利用比例的性质求值。

误区提醒(1)在判断四条线段是否成比例问题时忽略单位统一;(2)在用图上距离求实际距离时忽略了单位换算问题。

【典型例题】(2010江苏淮安)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4.5 cm,则A,B两地间的实际距离为m.【解析】4.5×200=9000cm=9m1. 如果选用同一个长度单位量得的两条线段AB,CD的长度分别是m,n那么就说这两条线段的比AB:CD=m:n,或写成AB/CD=m/n。

分别叫做这个线段比的前项后项。

2. 在地图或工程图纸上,图上长度与实际长度的比通常称为比例尺。

3. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a/b=c/d,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段。

4. 如果a/b=c/d,那么ad=bc. 如果ad=bc(a,b,c,d都不等于0),那么a/b=c/d.5. 如果a/b=c/d,那么(a±b)/b=(c±d)/d;那么(a±kb)/b=(c ±kd)/d;那么a/b±ka=c/d±kc6如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b.7 如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,(√5-1)/2叫做黄金比。

8. 长于宽的比等于黄金比的矩形叫做黄金矩形。

9. 三角形ABC与三角形A’B’C’是形状形同的图形,其中10 各角对应相等、各边对应成比例的两个多边形叫做相似多边形。

11.相似多边形的比叫做相似比。

12.三角对应相等,三边对应成比例的两个三角形叫做相似三角形。

若三角形ABC与三角形DEF相似,记作:△ ABC∽△DEF,把对应定点的字母写在相应的位置上13.探索三角形相似的条件:①两角对应相等的两个三角形相似。

图形的相似 知识归纳+真题解析

图形的相似 知识归纳+真题解析

(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形相 似. 3.相似三角形的性质 (1)相似三角形周长的比等于相似比. (2)相似三角形面积的比等于相似比的平方. (3)相似三角形对应高、对应角平分线、对应中线的比等于相似比. 4.相似多边形的性质 (1)相似多边形周长的比等于相似比. (2)相似多边形面积的比等于相似比的平方. 5.位似图形 (1)定义 两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做位似中 心,对应边的比叫做位似比.位似是一种特殊的相似. (2)性质 (1)位似图形上的任意一对对应点到位似中心的距离的比等于位似比; (2)位似图形对应点的连线或延长线相交于 (3)位似图形对应边成比例; (4)位似图形对应角相等. 一 点;
a c b d
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 (二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角相等, 对应边的比成比例. 2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似; (2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,且夹角夹角相等,那么 这两个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相 似;
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 ( 二 ) 1. 相 似 图 形 定 义 : 形 状 相 同 的 图 形 称 为 相 似 图 形 . 相 似 图 形 的 性 质 : 对 应 角 ,对应边的比 .
2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应 似; (2)如果一个三角形的两条边与另一个三角形的两条边对应 个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应 似; (4)平行于三角形一边的直线和其他两边 (或延长线 )相交,所构成的三角形与原三角 形 . ,那么这两个三角形相 ,且夹角 ,那么这两 ,那么这两个三角形相

第二十七章_相似知识点

第二十七章_相似知识点

第二十七章 相似知识体系 第一节 图形的相似1.比例线段:①.如果a/b=c/d ,那么ad=bc ;②.如果ad=bc ,且bd≠0,那么a/b=c/d ; 如果a/b=c/d ,那么(a+b)/b=(c+d)/d 。

2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。

3.相似图形:形状相同的图形叫做相似图形①.相似图形的大小不一定相等。

形状、大小都相等的图形叫做全等图形②.全等图形是相似图形的特殊情况③.图形的相似具有传递性:如果图形A 与图形B 相似,图形B 与图形C 相似,那么图形A 与图形C 相似。

4.相似多边形的特征:①.对应边成比例,对应角相等②.两个相似多边形对应边的比叫做这两个多边形的相似比5.相似多边形的识别:如果两个多边形对应边成比例,对应角相等,那么这两个多边形相似6.黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。

A P B即:如图,如果点P 把线段AB 分成两条线段AP 和BP ,使得BP AP AP AB=,那么线段AB 被点P 黄金分割,线段AP 与AB 的比叫做黄金比,点P 叫做线段AB 的黄金分割点,即51AP AB -=. 第二节 相似三角形1.相似三角形的概念:两个对应角相等,对应边成比例的三角形叫做相似三角形。

即:如图,△ABC 和△A 'B 'C ',其中∠A=∠A ',∠B=∠B ',∠C=∠C ',B A ''AB =C B BC ''=A C CA '', 则有△ABC ∽△A 'B 'C '。

1.定义法 对应角相等,对应边成比例的三角形相似2.判定定理①平行于三角形一边的直线和其他两条相交,所构成的三角形与原三角形相似 3.判定定理②如果三角形的三组对应边相等,那么这两个三角形相似 4.判定定理③如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似 5.判定定理④ 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似 第二:腰和底对应成比例的两个等腰三角形相似。

九年级相似图形知识点归纳

九年级相似图形知识点归纳

九年级相似图形知识点归纳相似图形是几何学中的一个基本概念,它指的是形状相似但尺寸不同的两个或多个图形。

在九年级的数学学习中,相似图形是一个重要的知识点,涉及到比例、比例尺、相似比等概念。

本文将对九年级相似图形的相关知识进行归纳总结。

一、相似图形的定义相似图形是指在形状上相似但尺寸不同的两个或多个图形。

相似图形具有以下特点:1. 对应角相等:两个相似图形的对应角都相等;2. 对应边成比例:两个相似图形的对应边的长度成比例。

二、相似图形的判定方法1. AAA判定法:若两个图形的对应角分别相等,则它们是相似图形。

2. AA判定法:若两个图形的两组对应角分别相等,则它们是相似图形。

三、相似图形的性质和定理1. 三角形的相似定理:a. AA相似定理:如果两个三角形的两组对应角相等,则这两个三角形是相似的。

b. SSS相似定理:如果两个三角形的三组对边成比例,则这两个三角形是相似的。

c. SAS相似定理:如果两个三角形的一组对边成比例且对应角相等,则这两个三角形是相似的。

2. 相似三角形的性质:a. 对应边成比例:相似三角形的对应边的长度成比例。

b. 三角形内角对应:相似三角形的内角都对应相等。

四、相似图形的应用相似图形的知识在实际生活和实际问题中有广泛应用,例如:1. 测量:利用相似图形的知识可以进行测量,如通过测量一个三角形的边长和另一个相似三角形的边长,可以得到未知边长的长度。

2. 设计:在设计中,相似图形的概念可以应用于建筑、道路等方面,通过对已知图形进行放大或缩小,使其与实际需求相适应。

3. 地图测绘:地图上的比例尺就是利用相似图形的原理进行测绘的。

五、示例题目1. 已知两个三角形的对边成比例,但两个三角形的对应角不全等,是否可以判定这两个三角形是相似的?2. 若一个平面图形与一个已知的相似图形所对应的角相等,并且对应边成比例,能否判断这两个图形是相似的?六、总结九年级相似图形是一个重要的几何学知识点,它涵盖了相似图形的定义、判定方法、性质和应用等方面。

相似图形知识点总结

相似图形知识点总结

相似图形知识点总结一、相似图形的定义和性质1.1 相似图形的定义相似图形是指具有相同形状但大小可以不同的图形。

当两个图形的对应边成比例,并且对应的角度相等时,我们称这两个图形是相似的。

1.2 相似图形的性质相似图形具有以下性质:1) 对应角相等:相似图形中的对应角是相等的。

2) 对应边成比例:相似图形中的对应边的长度成比例。

3) 面积比例:相似图形的面积的比等于对应边的平方比。

1.3 相似图形与全等图形的区别相似图形和全等图形都具有相同的形状,但是它们之间有一个重要的区别:全等图形的对应边和对应角都相等,而相似图形的对应边成比例,对应角相等。

二、相似图形的判定条件2.1 AAA相似判定如果两个图形的对应角相等,则这两个图形是相似的。

2.2 AA相似判定如果两个图形的其中两组对应角相等,则这两个图形是相似的。

2.3 直角三角形的相似判定在直角三角形中,如两个直角三角形中对应角相等,则这两个三角形是相似的。

2.4 SSS相似判定如果两个图形的对应边成比例,则这两个图形是相似的。

2.5 SAS相似判定如果两个图形的其中两组对应边成比例,并且两组对应角相等,则这两个图形是相似的。

2.6 相似图形的判定定理在实际问题中,我们常常需要判定两个图形是否相似。

根据相似图形的性质,我们可以得到相似图形的判定定理,例如:角平分线定理、高度定理等。

三、相似图形的应用3.1 计算图形的面积相似图形的面积比例定理可以用于计算图形的面积。

根据相似图形的面积比例定理,我们可以得到如果两个图形相似,它们的面积的比等于对应边的平方比。

这个性质可以用于计算各种图形的面积,例如三角形、矩形、圆等。

3.2 计算图形的周长相似图形中的对应边成比例,这个性质可以用于计算图形的周长。

如果两个图形相似,它们的周长的比等于对应边的比例。

3.3 解决实际问题相似图形的性质和定理在解决各种实际问题中有着广泛的应用,例如解决建筑设计、地图测量、影视特效等问题。

九年级《图形的相似》知识点归纳

九年级《图形的相似》知识点归纳

苏科版九下《图形的相似》知识点归纳知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义: 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即512AC BC AB AC == 简记为:512长短==全长 注:①黄金三角形:顶角是360的等腰三角形 ②黄金矩形:宽与长的比等于黄金数的矩形(3)合、分比性质:a c a b c db d b d±±=⇔=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b n mf e d c b a , 那么ban f d b m e c a =++++++++ . 知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(上图)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.4、判定定理3:简述为:三边对应成比例,两三角形相似.5、判定定理4:直角三角形中,“斜边和一直角边对应成比例” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“斜边和一直角边对应成比例”(3如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则 ∽ ==> AD 2=BD ·DC ,∽ ==> AB 2=BD ·BC ,∽ ==> AC 2=CD ·BC .知识点5 相似三角形的性质(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)FE D CB A E BD E D(3)B C AE DBC(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。

图形的相似知识点总结

图形的相似知识点总结

图形的相似考点一、比例线段 1、比例线段的相关概念如果选用同一长度单位量得两条线段a;b 的长度分别为m;n;那么就说这两条线段的比是;或写成a :b=m :n在两条线段的比a :b 中;a 叫做比的前项;b 叫做比的后项.. 在四条线段中;如果其中两条线段的比等于另外两条线段的比;那么这四条线段叫做成比例线段;简称比例线段若四条a;b;c;d 满足或a :b=c :d;那么a;b;c;d 叫做组成比例的项;线段a;d 叫做比例外项;线段b;c 叫做比例内项;线段的d 叫做a;b;c 的第四比例项.. 如果作为比例内项的是两条相同的线段;即cbb a =或a :b=b :c;那么线段b 叫做线段a;c 的比例中项.. 2、比例的性质1基本性质①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔2 2更比性质交换比例的内项或外项dbc a =交换内项 ⇒=dcb a ac bd =交换外项abc d =同时交换内项和外项 3反比性质交换比的前项、后项:cd a b d c b a =⇒= 4合比性质:dd c b b a d c b a ±=±⇒= 5等比性质: 3、黄金分割把线段AB 分成两条线段AC;BCAC>BC;并且使AC 是AB 和BC 的比例中项;叫做把线段AB 黄金分割;点C 叫做线段AB 的黄金分割点;其中AC=215-AB ≈0.618AB 考点二、平行线分线段成比例定理三条平行线截两条直线;所得的对应线段成比例..推论:1平行于三角形一边的直线截其他两边或两边的延长线;所得的对应线段成比例..逆定理:如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例;那么这条直线平行于三角形的第三边..2平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例.. 考点三、相似三角形 1、相似三角形的概念nm b a =dc b a =对应角相等;对应边成比例的三角形叫做相似三角形..相似用符号“∽”来表示;读作“相似于”..相似三角形对应边的比叫做相似比或相似系数..2、相似三角形的基本定理平行于三角形一边的直线和其他两边或两边的延长线相交;所构成的三角形与原三角形相似..用数学语言表述如下:∵DE∥BC;∴△ADE∽△ABC相似三角形的等价关系:1反身性:对于任一△ABC;都有△ABC∽△ABC;2对称性:若△ABC∽△A’B’C’;则△A’B’C’∽△ABC3传递性:若△ABC∽△A’B’C’;并且△A’B’C’∽△A’’B’’C’’;则△ABC∽△A’’B’’C’’..3、三角形相似的判定1三角形相似的判定方法①定义法:对应角相等;对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边或两边的延长线相交;所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等;那么这两个三角形相似;可简述为两角对应相等;两三角形相似..④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等;并且夹角相等;那么这两个三角形相似;可简述为两边对应成比例且夹角相等;两三角形相似..⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例;那么这两个三角形相似;可简述为三边对应成比例;两三角形相似2直角三角形相似的判定方法①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例;那么这两个直角三角形相似③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似..4、相似三角形的性质1相似三角形的对应角相等;对应边成比例2相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比3相似三角形周长的比等于相似比4相似三角形面积的比等于相似比的平方..5、相似多边形1如果两个边数相同的多边形的对应角相等;对应边成比例;那么这两个多边形叫做相似多边形..相似多边形对应边的比叫做相似比或相似系数2相似多边形的性质①相似多边形的对应角相等;对应边成比例②相似多边形周长的比、对应对角线的比都等于相似比③相似多边形中的对应三角形相似;相似比等于相似多边形的相似比④相似多边形面积的比等于相似比的平方6、位似图形:如果两个图形不仅是相似图形;而且每组对应点所在直线都经过同一个点;那么这样的两个图形叫做位似图形;这个点叫做位似中心;此时的相似比叫做位似比..性质:每一组对应点和位似中心在同一直线上;它们到位似中心的距离之比都等于位似比..由一个图形得到它的位似图形的变换叫做位似变换..利用位似变换可以把一个图形放大或缩小..。

相似图形知识点总结文库

相似图形知识点总结文库

相似图形知识点总结文库一、相似图形的定义相似图形是指两个或多个图形之间的形状相同,但大小可能不同的情况。

在几何中,通常用符号∼表示两个相似图形之间的关系。

例如,若图形A和图形B是相似的,则可以表示为A∼B。

相似图形的定义可以用比例来表达,即如果两个三角形ABC和DEF是相似的,那么它们的对应边的比例是相等的,即AB/DE=BC/EF=AC/DF。

二、相似图形的判定1. AAA相似判定法:如果两个三角形的对应角相等,那么它们是相似的。

2. AA相似判定法:如果两个三角形的两个对应角相等,那么它们是相似的。

3. SSS相似判定法:如果两个三角形的对应边成比例,那么它们是相似的。

4. 直接判定法:如果两个四边形的对应边成比例,那么它们是相似的。

在判定相似图形时,可以根据题目条件选择不同的方法进行判定,以确定两个或多个图形之间是否是相似的关系。

三、相似图形的性质1. 相似三角形的性质:(1) 相似三角形的对应角相等;(2) 相似三角形的对应边成比例;(3) 相似三角形的高线成比例;(4) 相似三角形的中位线成比例。

2. 相似四边形的性质:(1) 相似四边形的对应角相等;(2) 相似四边形的对应边成比例。

3. 相似图形的周长、面积与比例关系:(1) 如果两个图形相似,那么它们的周长之比等于它们的任意一条边的比;(2) 如果两个图形相似,那么它们的面积之比等于它们的任意一条边的比的平方。

四、相似图形的应用1. 图形的放大与缩小:在工程设计、地图制作等领域,相似图形的概念经常被用来进行图形的放大与缩小,以便得到需要的大小。

2. 测量与估算:利用相似图形的性质,可以利用已知的尺寸进行图形的测量与估算,从而得到未知尺寸的大小。

3. 面积与体积的计算:利用相似图形的面积与比例关系,可以方便地计算出图形的面积与体积。

4. 几何问题的解决:在几何问题中,利用相似图形的性质,可以更快速地解决一些有关形状和比例的问题,如建筑设计、城市规划等。

相似图形知识点

相似图形知识点

相似图形知识点相似图形是几何学中的重要概念,它在数学和实际生活中有着广泛的应用。

相似图形指的是具有相同形状但大小不同的图形。

在本文中,我们将介绍相似图形的定义、判定条件以及相关的性质和应用。

通过学习相似图形知识点,我们可以更好地理解几何学中的形状和比例关系。

一、相似图形的定义在几何学中,如果两个图形具有相同的形状但大小不同,我们就说它们是相似图形。

相似图形之间存在比例关系,即它们的对应边长之比相等。

二、相似图形的判定条件1. AAA 相似判定:如果两个三角形的对应角度相等,则它们是相似的。

即三角形的三个内角对应相等时,它们是相似的。

2. AA 相似判定:如果两个三角形的一个角相等,并且两个对应边的比值相等,那么它们是相似的。

即当两个三角形的一个角对应相等且两个对应边之比相等时,它们是相似的。

3. 边比相等判定:如果两个图形的对应边长之比相等,则它们是相似的。

即当两个图形的对应边长之比相等时,它们是相似的。

三、相似图形的性质1. 相似图形的对应角度相等。

2. 相似图形的对应边长之比相等。

3. 相似图形的面积之比等于边长比的平方。

4. 相似图形的周长之比等于边长比。

四、相似图形的应用1. 测量不可达的高度:利用相似三角形的性质可以在无法直接测量的情况下,通过测量已知边长的三角形来计算不可达的高度。

2. 简化比例计算:相似图形的性质可以在计算中帮助简化复杂的比例关系,使计算更加方便和高效。

3. 三角形的判定:通过相似性的判定条件,我们可以判断给定的三角形是否相似。

这对于解决各种与三角形相关的问题非常有帮助。

4. 图形放大和缩小:相似图形的概念也应用于图形的放大和缩小。

通过保持相似性,我们可以按比例调整图形的大小。

总结:相似图形是几何学中重要的概念,它们具有相同的形状但大小不同。

我们可以通过比较图形的角度和边长来判断它们是否相似,并利用相似性的性质来解决各种问题。

相似图形的应用广泛,可以在测量、计算和问题解决中发挥重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似
考点一、比例线段
1、比例线段的相关概念
如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是 n
m b a =,或写成a :b=m :n 。

在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。

在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段。

若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项。

如果作为比例内项的是两条相同的线段,即
c
b b a =或a :b=b :
c ,那么线段b 叫做线段a ,c 的比例中项。

2、比例的性质
(1)基本性质:①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔2
(2)更比性质(交换比例的内项或外项) d
b c a =(交换内项) ⇒=d c b a a
c b
d =(交换外项) a b c d =(同时交换内项和外项) (3)反比性质(交换比的前项、后项):
c
d a b d c b a =⇒= (4)合比性质:
d
d c b b a d c b a ±=±⇒= (5)等比性质:
b
a n f d
b m e
c a n f
d b n m f
e d c b a =++++++++⇒≠++++==== )0( 3、黄金分割
把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=2
15-AB ≈0.618AB
考点二、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例。

推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对
应成比例。

考点三、相似三角形
1、相似三角形的概念
对应角相等,对应边成比例的三角形叫做相似三角形。

相似用符号“∽”来表示,读作“相似于”。

相似三角形对应边的比叫做相似比(或相似系数)。

2、相似三角形的基本定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

用数学语言表述如下:∵DE∥BC,∴△ADE∽△ABC
相似三角形的等价关系:
(1)反身性:对于任一△ABC,都有△ABC∽△ABC;
(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC
(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。

3、三角形相似的判定
(1)三角形相似的判定方法
①定义法:对应角相等,对应边成比例的两个三角形相似
②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似
(2)直角三角形相似的判定方法
①以上各种判定方法均适用
②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

4、相似三角形的性质
(1)相似三角形的对应角相等,对应边成比例
(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。

5、相似多边形
(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比(或相似系数)
(2)相似多边形的性质
①相似多边形的对应角相等,对应边成比例
②相似多边形周长的比、对应对角线的比都等于相似比
③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比
④相似多边形面积的比等于相似比的平方
6、位似图形
如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。

性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。

由一个图形得到它的位似图形的变换叫做位似变换。

利用位似变换可以把一个图形放大或缩小。

相关文档
最新文档