2012年高考理科数学试题(湖北卷 WORD)

合集下载

2012年湖北高考试题(理数_word解析版)

2012年湖北高考试题(理数_word解析版)

12012年普通高等学校招生全国统一考试(湖北卷)数学(理科)本试题卷共5页,共22题,其中第15、16题为选考题。

满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑。

考生应根据自己选做的题目准确填涂题号,不得多选。

答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程26130x x ++=的一个根是A .32i -+B .32i +C .23i -+D .23i + 考点分析:本题考察复数的一元二次方程求根. 难易度:★解析:根据复数求根公式:6x 322i -==-±,所以方程的一个根为32i -+ 答案为A.2.命题“0x ∃∈R Q ,30x ∈Q ”的否定是A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉R Q ,3x ∈QD .x ∀∈R Q ,3x ∉Q考点分析:本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别.难易度:★2解析:根据对命题的否定知,是把谓词取否定,然后把结论否定。

因此选D3.已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为A .2π5B .43C .32D .π2考点分析:本题考察利用定积分求面积. 难易度:★解析:根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为12311114(1)()33S x dx x x --=-+=-+=⎰.4.已知某几何体的三视图如图所示,则该几何体的体积为 A .8π3B .3πC .10π3D .6π考点分析:本题考察空间几何体的三视图. 难易度:★解析:显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.5.设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a = A .0B .1C .11D .12考点分析:本题考察二项展开式的系数. 难易度:★侧视图正视图43解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a ,0≤a<13,所以a=12选D.6.设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++A .14B .13C .12D .34考点分析:本题主要考察了柯西不等式的使用以及其取等条件.难易度:★★解析:由于222222)())((2cz by ax z y x c b a ++≥++++等号成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x cb a z y xc b a z c y b x a 所以,答案选C.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a , {()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函 数:①2()f x x =; ②()2x f x =;③()f x = ④()ln ||f x x =. 则其中是“保等比数列函数”的()f x 的序号为 A .① ② B .③ ④ C .① ③ D .② ④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质,212++=n n n a a a ,①()()()()122212222++++===n n n n n n a f a a a a f a f ; ②()()()12221222222+++=≠==+++n a a a a a n n a f a f a f n n n n n ;③()()()122122++++===n n n n n n a f a a a a f a f ;④()()()()122122ln ln ln ++++=≠=n n n n n n a f a a a a f a f .选C48.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π- C .2π D .1π考点分析:本题考察几何概型及平面图形面积求法.难易度:★解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点。

2012年全国普通高等学校招生统一考试理科数学(湖北卷)

2012年全国普通高等学校招生统一考试理科数学(湖北卷)

2021年全国普通高等学校招生统一考试理科数学(湖北卷)学校:___________姓名:___________班级:___________考号:___________一、单选题1.方程的一个根是 A . B .C .D . 2.命题“0R x Q ∃∈,”的否定是A .0x ∃∉R Q ,B .0R x Q ∃∈,C .x ∀∉R Q ,D .x ∀∈R Q ,3.已知二次函数的图象如图所示,则它与轴所围图形的面积为A .B .C .D . 4.已知某几何体的三视图如图所示,则该几何体的体积为A .B .C .D .()y f x=5.设a ∈Z ,且0≤a <13,若512012+a 能被13整除,则a =( )A .0B .1C .11D .12 6.设是正数,且,,,则A .B .C .D . 7.定义在上的函数,如果对于任意给定的等比数列, 仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:①; ②; ③; ④.则其中是“保等比数列函数”的的序号为A 、① ②B 、③ ④C 、① ③D 、② ④8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .B .C .D .9.函数在区间上的零点个数为 A .4B .5C .6D .710.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式. 人们还用过一些类似的近似公式. 根据判断,下列近似公式中最精确的一个是A 、...二、填空题(,0)(0,)-∞+∞{()}n f a (,0)(0,)-∞+∞2()f x x =()2x f x =()f x =()ln ||f x x =d ≈π =3.14159d ≈d d ≈d ≈11.设△的内角,,所对的边分别为,,. 若,则角 .12.阅读如图所示的程序框图,运行相应的程序,输出的结果 .13.回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有 个;(2)位回文数有个. 14.如图,双曲线的两顶点为,,虚轴两端点为,,两焦点为,. 若以为直径的圆内切于菱形,切点分别为. 则(Ⅰ)双曲线的离心率 ;(Ⅱ)菱形的面积与矩形的面积的比值 .15.(选修4-1:几何证明选讲)如图,点D 在的弦AB 上移动,,连接OD ,过点D 作的垂线交于点C ,则CD 的最大值为 .()()a b c a b c ab +-++=4AB =16.选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知射线与曲线(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为 .三、解答题17.(本小题满分12分)已知向量,,设函数的图象关于直线对称,其中,为常数,且. (Ⅰ)求函数的最小正周期;(Ⅱ)若的图象经过点,求函数在区间上的取值范围. 18.已知等差数列前三项的和为,前三项的积为.(Ⅰ)求等差数列的通项公式;(Ⅱ)若,,成等比数列,求数列的前项和 19.如图1,,,过动点A 作,垂足D 在线段BC 上且异于点B ,连接AB ,沿将△折起,使(如图2所示).(Ⅰ)当的长为多少时,三棱锥的体积最大;(Ⅱ)当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小.21,(1)x t y t =+⎧⎨=-⎩(cos sin ,sin )x x x ωωω=-a (cos sin ,)x x x ωωω=--b ()f x λ=⋅+a b ()x ∈R 1(,1)2ω∈()y f x =3π[0,]545ACB ∠=3BC =AD BC ⊥90BDC ∠=A BCD -A BCD -第15题图20.本小题满分12分)根据以往的经验,某工程施工期间的降水量X (单位:mm )对工期的影响如下表:历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9. 求:(Ⅰ)工期延误天数的均值与方差;(Ⅱ)在降水量X 至少是的条件下,工期延误不超过6天的概率.21.(本小题满分13分)设是单位圆上的任意一点,是过点与轴垂直的直线,是直线与轴的交点,点在直线上,且满足. 当点在圆上运动时,记点M 的轨迹为曲线.(Ⅰ)求曲线的方程,判断曲线为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为的直线交曲线于,两点,其中在第一象限,它在轴上的射影为点,直线交曲线于另一点. 是否存在,使得对任意的,都有?若存在,求的值;若不存在,请说明理由.22.(1)已知函数,其中为有理数,且. 求的最小值;(2)试用(1)的结果证明如下命题:设,为正有理数. 若,则;(3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当为正有理数时,有求导公式.DA B C AC DB 图2图1 ME . ·参考答案1.A【解析】本题考察复数的一元二次方程求根.根据复数求根公式:,所以方程的一个根为答案为A.2.D【解析】本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别.根据对命题的否定知,是把谓词取否定,然后把结论否定.因此选D3.B【解析】本题考察利用定积分求面积.根据图像可得: ,再由定积分的几何意义,可求得面积为4.B【解析】由三视图我们易知原几何体为一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为.选B.【考点定位】本小题考查立体几何中的三视图,三视图是新课标新增内容,是高考的重点和热点,年年必考,一般以选择或填空题的形式出现,经常与表面积.体积相结合来考查. 5.D【解析】【分析】由题意首先利用二项式定理将512012展开,然后结合题意得到关于a 的方程,解方程即可求得实数a 的值.【详解】2()1y f x x ==-+12311114(1)()33S x dx x x --=-+=-+=⎰由于2012201202012120112011120122012201251(521)5252521a a C C C a ⨯+=-+=-+⨯⨯-++, 又由于13|52,所以只需13|1+a ,0≤a <13,所以a =12.故选:D .【点睛】本题主要考查二项式定理研究整除问题的方法,属于基础题.6.C【解析】本题主要考察了柯西不等式的使用以及其取等条件.由于等号成立当且仅当则a="t" x b="t" y c="t" z ,所以由题知又,答案选C 。

2012年湖北高考理科数学试题(解析版)

2012年湖北高考理科数学试题(解析版)
由 , 知,△ 为等腰直角三角形,所以 .
由折起前 知,折起后(如图2), , ,且 ,
所以 平面 .又 ,所以 .于是

当且仅当 ,即 时,等号成立,
故当 ,即 时,三棱锥 的体积最大.
解法2:
同解法1,得 .
令 ,由 ,且 ,解得 .
当 时, ;当 时, .
所以当 时, 取得最大值.
故当 时,三棱锥 的体积最大.
解析:令 ,扇形OAB为对称图形,ACBD围成面积为 ,围成OC为 ,作对称轴OD,则过C点。 即为以OA为直径的半圆面积减去三角形OAC的面积, 。在扇形OAD中 为扇形面积减去三角形OAC面积和 , , ,扇形OAB面积 ,选A.
9.函数 在区间 上的零点个数为
A.4B.5
C.6D.7
考点分析:本题考察三角函数的周期性以及零点的概念.
考点分析:本题考查排列、组合的应用.
难易度:★★
解析:(Ⅰ)4位回文数只用排列前面两位数字,后面数字就可以确定,但是第一位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4位回文数有 种。
答案:90
(Ⅱ)法一、由上面多组数据研究发现,2n+1位回文数和2n+2位回文数的个数相同,所以可以算出2n+2位回文数的个数。2n+2位回文数只用看前n+1位的排列情况,第一位不能为0有9种情况,后面n项每项有10种情况,所以个数为 .
(Ⅱ)由概率的加法公式,
又 .
由条件概率.
21.(本小题满分13分)
设 是单位圆 上的任意一点, 是过点 与 轴垂直的直线, 是直线 与 轴的交点,点 在直线 上,且满足 .当点 在圆上运动时,记点M的轨迹为曲线 .

高考-2012年高考数学试卷及解析湖北卷(理科)

高考-2012年高考数学试卷及解析湖北卷(理科)

2012年高考数学试卷及解析湖北卷(理科)2012年高考湖北理科数学试卷选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.方程2x +6x +13 =0的一个根是( )A .-3+2i B.3+2i C.-2 + 3i D.2 + 3i2.命题“?x 0∈C R Q ,30x ∈Q ”的否定是( )A.?x 0?C R Q ,30x ∈QB.?x 0∈C R Q ,30x ?QC.?x 0?C R Q ,30x ∈QD.?x 0∈C R Q ,30x ?Q3. 已知二次函数y =f(x)的图像如图所示,则它与X 轴所围图形的面积为( )A.25πB.43C.32D.2π 4.已知某几何体的三视图如图所示,则该几何体的体积为( ) A.83π B.3π C. 103π D.6π 5.设a ∈Z ,且0≤a≤13,若512012+a 能被13整除,则a=( )A.0B.1C.11D.126.设a,b,c,x,y,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax+by+cz=20,则a b c x y z++=++( ) A. 14 B. 13 C. 12 D,347.定义在(-∞,0)∈(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”。

现有定义在(-∞,0)∈(0,+∞)上的如下函数:①f (x )=x2;②f (x )=2x ;③;④f (x )=ln|x |。

则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④8.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆。

在扇形OAB内随机取一点,则此点取自阴影部分的概率是( )A.21π- B.112π-. C.2πD.1π9.函数f(x)=2cosx x在区间[0,4]上的零点个数为( )A.4B.5C.6D.710.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d人们还用过一些类似的近似公式。

完整版2012年湖北省高考数学试卷理科答案及解析

完整版2012年湖北省高考数学试卷理科答案及解析

2012年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的2+6x+13=0的一个根是(湖北)方程x)1.(2012? A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i,∈Q”的否定是(“?x∈CQ)2.(2012?湖北)命题R0,?CQQQ ∈D.?xQ,?Q C.?x?CQ∈,C A.?x?Q.,∈Q B?x∈C R0R0RR003.(2012?湖北)已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为().. C AD.B.4.(2012?湖北)已知某几何体的三视图如图所示,则该集合体的体积为().D.6π.B.3πAC2012+a能被13整除,则a=()51Z(2012?湖北)设a∈,且0≤a≤13,若5.A.0 B.1 C.11 D.12222222,则=()x=10,+y+zax+by+cz=20=40,azyxcba?(6.2012湖北)设,,,,,是正数,且+b+cCBA ....D1}a),{f(f(0,+∞)上的函数(x),如果对于任意给定的等比数列{a}.7(2012?湖北)定义在(﹣∞,0)∪nn)x①f(+.现有定义在(﹣∞,0)∪(0,∞)上的如下函数:f仍是等比数列,则称(x)为“保等比数列函数”x2)=ln|x|).则其中是“保等比数列函数”的f(=2;②f(x)x;③f(x))的序号为(=;④f(x=x D.②④B.③④C.①③.A①②内随机为直径作两个半圆.在扇形OAB(2012?湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB8.)取一点,则此点取自阴影部分的概率是(.D﹣A.1C﹣B..2)在区间[0,4]上的零点个数为(湖北)函数9.(2012?f(x)=xcosx7 .5 C.6 D.A.4 B曰:置积尺数,以十六乘之,九而一,所得开立方2012?湖北)我国古代数学名著《九章算术》中“开立圆术”(10..人们还用过一≈的一个近似公式,求其直径dd除之,即立圆径,“开立圆术”相当于给出了已知球的体积V )判断,下列近似公式中最精确的一个是(些类似的近似公式.根据x=3.14159…..≈≈C.d.≈Dd A.d≈B.d分.请将答案5分,共25二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.,则角_________C=.cb所对的边分别是a,,c.若(a+b﹣)(a+b+c)=ab,,△201211.(?湖北)设ABC的内角AB,C_________.(2012?湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=12.位回2等.显然,3443,942492213.(2012?湖北)回文数是指从左到右与从右到左读都一样的正整数.如,,11 999,.则:191,202,…,个:,22,,33…99.3位回文数有90101,111121,…,119文数有个:_________位回文数有个;Ⅰ()4(Ⅱ)2n+1(n∈N)位回文数有_________个.+2,,两焦点为F.(2012?B湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A,A,虚轴两端点为,B1411122 D为直径的圆内切于菱形F.若以AAFBFB,切点分别为A,B,C,.则:2112221;(Ⅰ)双曲线的离心率_________e=(Ⅱ)菱形FBFB的面积S与矩形ABCD的面积S的比值=_________.212211二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(2012?湖北)(选修4﹣1:几何证明选讲)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_________.16.(2012?湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线_________.来两点,则线段AB的中点的直角坐标为(t为参数)相较于A,B75分.解答应写出文字说明、证明过程或演算步骤.三、解答题:本大题共6小题,共λ?+)f(x=,设函数cos,(﹣=cosωx﹣sinωx2ωx)xxx=(17.2012?湖北)已知向量(cos ω﹣sinω,sinω),,1)(λπ∈(xR)的图象关于直线x=对称,其中ω,为常数,且ω∈)的最小正周期;f(1)求函数(x上的取值范围.,)在区间(,)的图象经过点(0)求函数fx[0]xy=f2()若(18.(2012?湖北)已知等差数列{a}前三项的和为﹣3,前三项的积为8.n(1)求等差数列{a}的通项公式;n 3项和.|}的前naa,,a成等比数列,求数列{|a(2)若n213,AB上且异于点B,连接⊥BC,垂足D在线段BC1,∠ACB=45°,BC=3,过动点A作AD(19.2012?湖北)如图,(如图2所示)ABD折起,使∠BDC=90°沿AD将△的体积最大;A﹣BCD(1)当BD的长为多少时,三棱锥,BMEN⊥CD上确定一点N,使得设点E,M分别为棱BC,AC 的中点,试在棱(2)当三棱锥A﹣BCD的体积最大时,所成角的大小.与平面BMN并求EN20.(2012?湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:X≥900 降水量X X<300 300≤X<700 700≤X<900工期延误天数Y 02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.22=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i湖北)设21.(2012?A是单位圆x与+yx轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x=rxf湖北).22(2012?(I)已知函数(x)﹣x)的最小值;b1b2≤ab+aab;a+b为正有理数,若b≥≥I(II)试用()的结果证明如下命题:设a0,a0,,bb=1,则222121121112(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求r1﹣αα.α道公式(x)=x42012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(2012?湖北)考点:复数相等的充要条件。

2012年湖北高考理科数学试卷

2012年湖北高考理科数学试卷

2012年湖北省高考理科数学试卷湖北省2012年高考试卷数学理本试卷共5页,共22题,其中第15、16题为选考题。

满分150分。

考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则使M∩N=N成立的的值是()A.1B.0 C.-1 D.1或-12.若,其中,是虚数单位,复数()A.1+2i B.-1+2i C.-1-2i D.1-2i 3.如果随机变量ξ~N(μ,σ2),且Eξ=3,Dξ=1,则P(-1<ξ≤1)=()A.2Φ(1)-1 B.Φ(-4)-Φ(-2)C.Φ(2)-Φ(4)D.Φ(4)-Φ(2)4.设,下列向量中,与向量Q=(1,-1)一定不平行的向量是()A.b=(k,k)B.c=(-k,-k)C.d=(k2 +1,k2 +1)D.e=(k2一l,k2—1)5.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是()m2.正视图侧视图俯视图A.B.C.D.6.设函数的图像关于直线对称,它的周期是,则()A.的图象过点B.在上是减函数C.的一个对称中心是D.将的图象向右平移个单位得到函数的图象.7.执行如图所示的程序框图,则输出的S=()A.258 B.642C.780 D.15388.双曲线的离心率为2,则的最小值为().A.B.C.2 D.9.若满足,满足,函数,则关于的方程的解的个数是( )A.4 B.3 C.2 D. 110.设是正三棱锥的底面⊿的中心,过的动平面与交于,与、的延长线分别交于、,则( ) A、有最大值而无最小值B、有最小值而无最大值C、无最大值也无最小值D、是与平面无关的常数二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分. 请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)11.对任意的实数x,有,则a2的值是。

2012年湖北省高考数学试卷(理科)附送答案

2012年湖北省高考数学试卷(理科)附送答案

2012年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)方程x2+6x+13=0的一个根是()A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i2.(5分)命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x0∉∁R Q,x03∈Q D.∀x0∈∁R Q,x03∉Q3.(5分)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为()A. B.C.D.4.(5分)已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3πC.D.6π5.(5分)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0 B.1 C.11 D.126.(5分)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()A.B.C.D.7.(5分)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④8.(5分)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.9.(5分)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.710.(5分)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是()A.d≈B.d≈ C.d≈D.d≈二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果s=.13.(5分)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有个;)位回文数有个.(Ⅱ)2n+1(n∈N+14.(5分)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD 的垂线交⊙O于点C,则CD的最大值为.16.(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.18.(12分)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.19.(12分)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.20.(12分)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:降水量X X<300300≤X<700700≤X<900X≥90002610工期延误天数Y历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.21.(13分)设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.22.(14分)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.2012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2012•湖北)方程x2+6x+13=0的一个根是()A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i【分析】由方程x2+6x+13=0中,△=36﹣52=﹣16<0,知=﹣3±2i,由此能求出结果.【解答】解:∵方程x2+6x+13=0中,△=36﹣52=﹣16<0,∴=﹣3±2i,故选A.2.(5分)(2012•湖北)命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x0∉∁R Q,x03∈Q D.∀x0∈∁R Q,x03∉Q【分析】根据特称命题“∃x∈A,p(A)”的否定是“∀x∈A,非p(A)”,结合已知中命题,即可得到答案.【解答】解:∵命题“∃x0∈C R Q,∈Q”是特称命题,而特称命题的否定是全称命题,∴“∃x0∈C R Q,∈Q”的否定是∀x0∈C R Q,∉Q故选D3.(5分)(2012•湖北)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为()A. B.C.D.【分析】先根据函数的图象求出函数的解析式,然后利用定积分表示所求面积,最后根据定积分运算法则求出所求.【解答】解:根据函数的图象可知二次函数y=f(x)图象过点(﹣1,0),(1,0),(0,1)从而可知二次函数y=f(x)=﹣x2+1∴它与X轴所围图形的面积为=()=(﹣+1)﹣(﹣1)=故选B.4.(5分)(2012•湖北)已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3πC.D.6π【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:=3π.故选B.5.(5分)(2012•湖北)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0 B.1 C.11 D.12【分析】由二项式定理可知512012+a=(52﹣1)2012+a的展开式中的项含有因数52,要使得能512012+a能被13整除,只要a+1能被13整除,结合已知a的范围可求【解答】解:∵512012+a=(52﹣1)2012+a=+…++a由于含有因数52,故能被52整除要使得能512012+a能被13整除,且a∈Z,0≤a≤13则可得a+1=13∴a=12故选D6.(5分)(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()A.B.C.D.【分析】根据所给条件,利用柯西不等式求解,利用等号成立的条件即可.【解答】解:由柯西不等式得,(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2,当且仅当时等号成立∵a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,∴等号成立∴∴=故选C.7.(5分)(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f (x)的序号为()A.①②B.③④C.①③D.②④【分析】根据新定义,结合等比数列性质,一一加以判断,即可得到结论.【解答】解:由等比数列性质知,①=f2(a n),故正确;+1),故不正确;②≠=f2(a n+1),故正确;③==f2(a n+1④f(a n)f(a n+2)=ln|a n|ln|a n+2|≠=f2(a n+1),故不正确;故选C8.(5分)(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB 为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.【分析】求出阴影部分的面积即可,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的面积﹣直角三角形AOB的面积.【解答】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A.9.(5分)(2012•湖北)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.7【分析】令函数值为0,构建方程,即可求出在区间[0,4]上的解,从而可得函数f(x)=xcosx2在区间[0,4]上的零点个数【解答】解:令f(x)=0,可得x=0或cosx2=0∴x=0或x2=,k∈Z∵x∈[0,4],则x2∈[0,16],∴k可取的值有0,1,2,3,4,∴方程共有6个解∴函数f(x)=xcosx2在区间[0,4]上的零点个数为6个故选C10.(5分)(2012•湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是()A.d≈B.d≈ C.d≈D.d≈【分析】根据球的体积公式求出直径,然后选项中的常数为,表示出π,将四个选项逐一代入,求出最接近真实值的那一个即可.【解答】解:由V=,解得d=设选项中的常数为,则π=选项A代入得π==3.375;选项B代入得π==3;选项C代入得π==3.14;选项D代入得π==3.142857由于D的值最接近π的真实值故选D.二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)(2012•湖北)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.【分析】利用已知条件(a+b﹣c)(a+b+c)=ab,以及余弦定理,可联立解得cosB 的值,进一步求得角B.【解答】解:由已知条件(a+b﹣c)(a+b+c)=ab可得a2+b2﹣c2+2ab=ab即a2+b2﹣c2=﹣ab由余弦定理得:cosC==又因为0<C<π,所以C=.故答案为:12.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.【分析】用列举法,通过循环过程直接得出S与n的值,得到n=3时退出循环,即可.【解答】解:循环前,S=1,a=3,第1次判断后循环,n=2,s=4,a=5,第2次判断并循环n=3,s=9,a=7,第3次判断退出循环,输出S=9.故答案为:9.13.(5分)(2012•湖北)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有90个;(Ⅱ)2n+1(n∈N)位回文数有9×10n个.+【分析】(I)利用回文数的定义,四位回文数只需从10个数字中选两个可重复数字即可,但要注意最两边的数字不能为0,利用分步计数原理即可计算4位回文数的个数;(II)将(I)中求法推广到一般,利用分步计数原理即可计算2n+1(n∈N)位+回文数的个数【解答】解:(I)4位回文数的特点为中间两位相同,千位和个位数字相同但不能为零,第一步,选千位和个位数字,共有9种选法;第二步,选中间两位数字,有10种选法;故4位回文数有9×10=90个故答案为90(II)第一步,选左边第一个数字,有9种选法;第二步,分别选左边第2、3、4、…、n、n+1个数字,共有10×10×10×…×10=10n 种选法,)位回文数有9×10n个故2n+1(n∈N+故答案为9×10n14.(5分)(2012•湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.【分析】(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为,根据以A1A2为直径的圆内切于菱形F1B1F2B2,可得,由此可求双曲线的离心率;(Ⅱ)菱形F1B1F2B2的面积S1=2bc,求出矩形ABCD的长与宽,从而求出面积S2=4mn=,由此可得结论.(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为【解答】解:∵以A1A2为直径的圆内切于菱形F1B1F2B2,∴∴(c2﹣a2)c2=(2c2﹣a2)a2∴c4﹣3a2c2+a4=0∴e4﹣3e2+1=0∵e>1∴e=(Ⅱ)菱形F1B1F2B2的面积S1=2bc设矩形ABCD,BC=2n,BA=2m,∴∵m2+n2=a2,∴,∴面积S2=4mn=∴==∵bc=a2=c2﹣b2∴∴=故答案为:,二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)(2012•湖北)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为2.【分析】由题意可得CD2=OC2﹣OD2,故当半径OC最大且弦心距OD最小时,CD取得最大值,故当AB为直径、且D为AB的中点时,CD取得最大值,为AB的一半.【解答】解:由题意可得△OCD为直角三角形,故有CD2=OC2﹣OD2,故当半径OC最大且弦心距OD最小时,CD取得最大值.故当AB为直径、且D为AB的中点时,CD取得最大值,为AB的一半,由于AB=4,故CD的最大值为2,故答案为2.16.(2012•湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为(2.5,2.5).【分析】化极坐标方程为直角坐标方程,参数方程为普通方程,联立可求线段AB的中点的直角坐标.【解答】解:射线θ=的直角坐标方程为y=x(x≥0),曲线(t为参数)化为普通方程为y=(x﹣2)2,联立方程并消元可得x2﹣5x+4=0,∴方程的两个根分别为1,4∴线段AB的中点的横坐标为2.5,纵坐标为2.5∴线段AB的中点的直角坐标为(2.5,2.5)故答案为:(2.5,2.5)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖北)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx ﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.【分析】(1)先利用向量数量积运算性质,求函数f(x)的解析式,再利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k型函数,最后利用函数的对称性和ω的范围,计算ω的值,从而得函数的最小正周期;(2)先将已知点的坐标代入函数解析式,求得λ的值,再求内层函数的值域,最后将内层函数看做整体,利用正弦函数的图象和性质即可求得函数f(x)的值域.【解答】解:(1)∵f(x)=•+λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx ×2cosωx+λ=﹣(cos2ωx﹣sin2ωx)+sin2ωx+λ=sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣)+λ∵图象关于直线x=π对称,∴2πω﹣=+kπ,k∈z∴ω=+,又ω∈(,1)∴k=1时,ω=∴函数f(x)的最小正周期为=(2)∵f()=0∴2sin(2××﹣)+λ=0∴λ=﹣∴f(x)=2sin(x﹣)﹣由x∈[0,]∴x﹣∈[﹣,]∴sin(x﹣)∈[﹣,1]∴2sin(x﹣)﹣=f(x)∈[﹣1﹣,2﹣]故函数f(x)在区间[0,]上的取值范围为[﹣1﹣,2﹣]18.(12分)(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.【分析】(I)设等差数列的公差为d,由题意可得,,解方程可求a1,d,进而可求通项(II)由(I)的通项可求满足条件a2,a3,a1成等比的通项为a n=3n﹣7,则|a n|=|3n ﹣7|=,根据等差数列的求和公式可求【解答】解:(I)设等差数列的公差为d,则a2=a1+d,a3=a1+2d由题意可得,解得或由等差数列的通项公式可得,a n=2﹣3(n﹣1)=﹣3n+5或a n=﹣4+3(n﹣1)=3n ﹣7(II)当a n=﹣3n+5时,a2,a3,a1分别为﹣1,﹣4,2不成等比当a n=3n﹣7时,a2,a3,a1分别为﹣1,2,﹣4成等比数列,满足条件故|a n|=|3n﹣7|=设数列{|a n|}的前n项和为S n当n=1时,S1=4,当n=2时,S2=5当n≥3时,S n=|a1|+|a2|+…+|a n|=5+(3×3﹣7)+(3×4﹣7)+…+(3n﹣7)=5+=,当n=2时,满足此式综上可得19.(12分)(2012•湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.【分析】(1)设BD=x,先利用线面垂直的判定定理证明AD即为三棱锥A﹣BCD 的高,再将三棱锥的体积表示为x的函数,最后利用导数求函数的最大值即可;(2)由(1)可先建立空间直角坐标系,写出相关点的坐标和相关向量的坐标,设出动点N的坐标,先利用线线垂直的充要条件计算出N点坐标,从而确定N 点位置,再求平面BMN的法向量,从而利用夹角公式即可求得所求线面角【解答】解:(1)设BD=x,则CD=3﹣x∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D∴AD⊥平面BCD=×AD×S△BCD=×(3﹣x)××x(3﹣x)=(x3﹣6x2+9x)∴V A﹣BCD设f(x)=(x3﹣6x2+9x)x∈(0,3),∵f′(x)=(x﹣1)(x﹣3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数∴当x=1时,函数f(x)取最大值∴当BD=1时,三棱锥A﹣BCD的体积最大;(2)以D为原点,建立如图直角坐标系D﹣xyz,由(1)知,三棱锥A﹣BCD的体积最大时,BD=1,AD=CD=2∴D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E (,1,0),且=(﹣1,1,1)设N(0,λ,0),则=(﹣,λ﹣1,0)∵EN⊥BM,∴•=0即(﹣1,1,1)•(﹣,λ﹣1,0)=+λ﹣1=0,∴λ=,∴N(0,,0)∴当DN=时,EN⊥BM设平面BMN的一个法向量为=(x,y,z),由及=(﹣1,,0)得,取=(1,2,﹣1)设EN与平面BMN所成角为θ,则=(﹣,﹣,0)sinθ=|cos<,>|=||==∴θ=60°∴EN与平面BMN所成角的大小为60°20.(12分)(2012•湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:降水量X X<300300≤X<700700≤X<900X≥900工期延误天数02610Y历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.【分析】(I)由题意,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,结合某程施工期间的降水量对工期的影响,可求相应的概率,进而可得期延误天数Y的均值与方差;(Ⅱ)利用概率的加法公式可得P(X≥300)=1﹣P(X<300)=0.7,P(300≤X <900)=P(X<900)﹣P(X<300)=0.9﹣0.3=0.6,利用条件概率,即可得到结论【解答】(I)由题意,P(X<300)=0.3,P(300≤X<700)=P(X<700)﹣P(X <300)=0.7﹣0.3=0.4,P(700≤X<900)=P(X<900)﹣P(X<700)=0.9﹣0.7=0.2,P(X≥900)=1﹣0.9=0.1Y的分布列为Y02610P0.30.40.20.1∴E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3D(Y)=(0﹣3)2×0.3+(2﹣3)2×0.4+(6﹣3)2×0.2+(10﹣3)2×0.1=9.8∴工期延误天数Y的均值为3,方差为9.8;(Ⅱ)P(X≥300)=1﹣P(X<300)=0.7,P(300≤X<900)=P(X<900)﹣P (X<300)=0.9﹣0.3=0.6由条件概率可得P(Y≤6|X≥300)=.21.(13分)(2012•湖北)设A是单位圆x2+y2=1上的任意一点,l是过点A与x 轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m 丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.【分析】(I)设M(x,y),A(x0,y0),根据丨DM丨=m丨DA丨,确定坐标之间的关系x0=x,|y0|=|y|,利用点A在圆上运动即得所求曲线C的方程;根据m∈(0,1)∪(1,+∞),分类讨论,可确定焦点坐标;(Ⅱ)∀x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(﹣x1,﹣y1),N(0,y1),利用P,H两点在椭圆C上,可得,从而可得可得.利用Q,N,H三点共线,及PQ⊥PH,即可求得结论.【解答】解:(I)如图1,设M(x,y),A(x0,y0)∵丨DM丨=m丨DA丨,∴x=x0,|y|=m|y0|∴x0=x,|y0|=|y|①∵点A在圆上运动,∴②①代入②即得所求曲线C的方程为∵m∈(0,1)∪(1,+∞),∴0<m<1时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为(),m>1时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为(),(Ⅱ)如图2、3,∀x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(﹣x1,﹣y1),N(0,y1),∵P,H两点在椭圆C上,∴①﹣②可得③∵Q,N,H三点共线,∴k QN=k QH,∴∴k PQ•k PH=∵PQ⊥PH,∴k PQ•k PH=﹣1∴∵m>0,∴故存在,使得在其对应的椭圆上,对任意k>0,都有PQ⊥PH22.(14分)(2012•湖北)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r 为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.【分析】(I)求导函数,令f′(x)=0,解得x=1;确定函数在(0,1)上是减函数;在(0,1)上是增函数,从而可求f(x)的最小值;(II)由(I)知,x∈(0,+∞)时,有f(x)≥f(1)=0,即x r≤rx+(1﹣r),分类讨论:若a1,a2中有一个为0,则a1b1a2b2≤a1b1+a2b2成立;若a1,a2均不为0,,可得a1b1a2b2≤a1b1+a2b2成立(III)(II)中的命题推广到一般形式为:设a1≥0,a2≥0,…,a n≥0,b1,b2,…,b n为正有理数,若b1+b2+…+b n=1,则a1b1a2b2…a n bn≤a1b1+a2b2+…a n b n;用数学归纳法证明:(1)当n=1时,b1=1,a1≤a1,推广命题成立;(2)假设当n=k时,推广命题成立,证明当n=k+1时,利用a1b1a2b2…a k bk a k+1bk+1=(a1b1a2b2…a k bk)a k+1bk+1=a k+1bk+1,结合归纳假设,即可得到结论.【解答】(I)解:求导函数可得:f′(x)=r(1﹣x r﹣1),令f′(x)=0,解得x=1;当0<x<1时,f′(x)<0,所以f(x)在(0,1)上是减函数;当x>1时,f′(x)>0,所以f(x)在(0,1)上是增函数所以f(x)在x=1处取得最小值f(1)=0;(II)解:由(I)知,x∈(0,+∞)时,有f(x)≥f(1)=0,即x r≤rx+(1﹣r)①若a1,a2中有一个为0,则a1b1a2b2≤a1b1+a2b2成立;若a1,a2均不为0,∵b1+b2=1,∴b2=1﹣b1,∴①中令,可得a1b1a2b2≤a1b1+a2b2成立综上,对a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;②(III)解:(II)中的命题推广到一般形式为:设a1≥0,a2≥0,…,a n≥0,b1,b2,…,b n为正有理数,若b1+b2+…+b n=1,则a1b1a2b2…a n bn≤a1b1+a2b2+…a n b n;③用数学归纳法证明(1)当n=1时,b1=1,a1≤a1,③成立(2)假设当n=k时,③成立,即a1≥0,a2≥0,…,a k≥0,b1,b2,…,b k为正有理数,若b1+b2+…+b k=1,则a1b1a2b2…a k bk≤a1b1+a2b2+…a k b k.当n=k+1时,a1≥0,a2≥0,…,a k+1≥0,b1,b2,…,b k+1为正有理数,若b1+b2+…+b k+1=1,>0则1﹣b k+1于是a1b1a2b2…a k bk a k+1bk+1=(a1b1a2b2…a k bk)a k+1bk+1=a k+1bk+1∵++…+=1∴…≤++…+=bk+1≤•(1∴a k+1﹣b k)+a k+1b k+1,+1∴a1b1a2b2…a k b ka k+1bk+1≤a1b1+a2b2+…a k b k+a k+1b k+1.∴当n=k+1时,③成立由(1)(2)可知,对一切正整数,推广的命题成立.。

2012年湖北省高考数学试卷(理科)答案与解析

2012年湖北省高考数学试卷(理科)答案与解析

2012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的2,知=3,,∉3.(5分)(2012•湖北)已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为()B轴所围图形的面积为)+1﹣=4.(5分)(2012•湖北)已知某几何体的三视图如图所示,则该几何体的体积为()B=32012+6.(5分)(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()Bx y ax+by+cz 当且仅当=7.(5分)(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;,①②≠③8.(5分)(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()﹣﹣的面积为﹣∴此点取自阴影部分的概率是.210.(5分)(2012•湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..≈≈,表示出V=,解得设选项中的常数为,则==3.375=3=3.14=3.142857二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)(2012•湖北)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.cosC==.故答案为:12.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.13.(5分)(2012•湖北)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有90个;(Ⅱ)2n+1(n∈N+)位回文数有9×10n个.14.(5分)(2012•湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.到直线的距离为,根据以,到直线的距离为,∴,==故答案为:二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)(2012•湖北)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为2.16.(2012•湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为(2.5,2.5).=,曲线三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖北)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.•2)=+,又()的最小正周期为(××﹣)(﹣)﹣,x∈,x),x)﹣=f﹣﹣,,18.(12分)(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.,由题意可得,,根据等差数列的求和公式可求或=综上可得19.(12分)(2012•湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD 上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.××××(=((,且,则=,•=0,+=,DN=的一个法向量为,由及,,取==(﹣,﹣,>|=|=20.(12分)(2012•湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率..21.(13分)(2012•湖北)设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.|y|上,可得,从而可得可得在圆上运动,∴的方程为()上,∴可得,∴,∴,使得在其对应的椭圆上,对任意22.(14分)(2012•湖北)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.,a中令a+≤+a•。

2012年理数高考试题答案及解析-湖北

2012年理数高考试题答案及解析-湖北

2012年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程26130x x ++=的一个根是A .32i -+B .32i +C .23i -+D .23i + 考点分析:本题考察复数的一元二次方程求根. 难易度:★解析:根据复数求根公式:6x 322i -==-±,所以方程的一个根为32i -+ 答案为A.2.命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q考点分析:本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别. 难易度:★解析:根据对命题的否定知,是把谓词取否定,然后把结论否定。

3.已知二次函数()y f x =的图象如图所示,则它与xA .2π5B .43C .32D .π2考点分析:本题考察利用定积分求面积. 难易度:★解析:根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为12311114(1)()33S x dx x x --=-+=-+=⎰.4.已知某几何体的三视图如图所示,则该几何体的体积为 A .8π3B .3π俯视图侧视图正视图第4题图C .10π3D .6π考点分析:本题考察空间几何体的三视图. 难易度:★解析:显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.5.设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a = A .0B .1C .11D .12考点分析:本题考察二项展开式的系数. 难易度:★ 解析:由于51=52-1,152...5252)152(1201120122011120122012020122012+-+-=-C C C ,又由于13|52,所以只需13|1+a ,0≤a<13,所以a=12选D.6.设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++A .14B .13C .12D .34考点分析:本题主要考察了柯西不等式的使用以及其取等条件.难易度:★★解析:由于222222)())((2cz by ax z y x c b a ++≥++++等成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x cb a z y xc b a z c y b x a 所以,答案选C.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a , {()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =; ③()f x =; ④()ln ||f x x =.则其中是“保等比数列函数”的()f x 的序为 A .① ② B .③ ④ C .① ③ D .② ④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质,212++=n n n a a a ,①()()()()122212222++++===n n n n n n a f a a a a f a f ;②()()()12221222222+++=≠==+++n a a a a an n a f a f a f n n n n n ;③()()()122122++++===n n n n n n a f a a a a f a f ;④()()()()122122ln ln ln ++++=≠=n n n n n n a f a a a a f a f .选C8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .21π-B .112π- C .2π D .1π考点分析:本题考察几何概型及平面图形面积求法.难易度:★解析:令1=OA ,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点。

2012年理数高考试题答案及解析湖北

2012年理数高考试题答案及解析湖北

....2012 年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共10 小题,每小题 5 分,共 50 分 . 在每小题给出的四个选项中,只有一项是符合题目要求 的 .1.方程x 26 x 13 0 的一个根是 A . 3 2iB . 3 2iC . 2 3iD . 2 3i 考点分析: 本题考察复数的一元二次方程求根 .难易度 : ★ 解析: 根据复数求根公式: x 6 6213 4 3 2i ,所以方程的一个根为2 答案为 A.2.命题“ x 0 e R Q , x 03 Q ”的否定是 A . x0 eR Q , x0 3 B . x0 eR Q , x03 Q Q C . x e R Q , x 3 Q D . x e R Q , x 3 Q 考点分析: 本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别. 难易度 :★解析: 根据对命题的否定知,是把谓词取否定, 然后把结论否定。

因此选 D 3.已知二次函数 y f ( x) 的图象如图所示,则它与 x 轴所围图形的面积为 A . 2πB . 45 3C . 3 πD . 2 2 考点分析: 本题考察利用定积分求面积 .难易度 :★解析: 根据图像可得: y f ( x)x 2 1,再由定积分的几何意 2 1 1 x 34 4义,可求得面积为x 2 1)dx ( x)1 2S( 14.已知某几何体的三视图如图所示,则该几 何体的体积为 A . 8π B .π 3....3 2iy111 O 1 x1第 3 题图142侧视图第 4 题图C .10πD . 6π 3 考点分析: 本题考察空间几何体的三视图 .难易度:★解析: 显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2 的圆柱体,底面圆的半径为1,圆柱体的高为 6,则知所求几何体体积为原体积的一半为 .选 B. 3π 5.设 a Z ,且 0a 13 ,若 512012 a 能被 13 整除,则 aA .0 B .1 C .11D . 12 考点分析: 本题考察二项展开式的系数 .难易度:★解析:由于51=52-1 , (52 1)2012C 20120 522012 C 20121 522011 ... C 20122011521 1 , 又由于 13|52,所以只需 13|1+a , 0≤ a<13, 所以a=12 选 D.6.设 a,b, c, x, y, z 是正数,且 a 2b2 c 210 , x 2 y 2 z 240 , ax by cz 20 ,则 a b c x y zA . 1B . 14 3 C . 1 D . 32 4考点分析: 本题主要考察了柯西不等式的使用以及其取等条件.难易度: ★★解析: 由于 ( a 2b 2 2 )( x 2 y 2 z 2 ) ( ax by cz)2c等号成立当且仅当a b c t , 则 a=t x b=t y c=t z , t 2( x 2 y 2 z 2 ) 10 x y z所以由题知 t1/ 2 , 又 a b c a b c , 所以 a b c t 1/ 2,答案选 C.x y z x y z x y z7.定义在 ( ,0) (0, ) 上的函数 f ( x) ,如果对于任意给定的等比数列{ a n}, { f(a n )} 仍是等比数列,则称f ( x) 为“保等比数列函数”. 现有定义在( ,0) (0,) 上的如下函数:① f( x) x2;② f ( x) 2x;③ f ( x)| x | ;④ f (x) ln | x | .第 2 页共 15 页则其中是“保等比数列函数”的 f ( x) 的序号为A .① ②B .③ ④C.① ③ D .② ④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质, a n a n a n21,①f a n f a n 2 a n2a n22 a n22f 2 a n 1;2 12a n2a n2 2a n a n2 22a n 1 f 2 an 1;③ f a n f a n 222 an 1;② f a n f a n 2a n a n 2a n 1 f④ f a n f a n 2ln a n ln a n 22f 2 an 1.选 C ln a n 18.如图,在圆心角为直角的扇形OAB 中,分别以 OA,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是A .1 2 B .11π 2 πC.2D.1ππ考点分析:本题考察几何概型及平面图形面积求法.难易度:★解析:令OA 1,扇形 OAB 为对称图形, ACBD 围成面积为S1,围成 OC 为 S2,作对称轴 OD ,则过 C 点。

【专家解析】2012年高考数学(理)真题精校精析(湖北卷)(纯word书稿)

【专家解析】2012年高考数学(理)真题精校精析(湖北卷)(纯word书稿)

2012·湖北卷(数学理科)1.[2012·湖北卷] 方程x 2+6x +13=0的一个根是( ) A .-3+2i B .3+2i C .-2+3i D .2+3i1.A [解析] (解法一)x =-6±62-4×132=-3±2i ,故选A.(解法二)将A ,B ,C ,D 各项代入方程验证,发现只有A 项中的-3+2i ,满足()-3+2i 2+6()-3+2i +13=9-12i -4-18+12i +13=0.故选A.2.[2012·湖北卷] 命题“∃x 0∈∁,x 30∈”的否定是( ) A .∃x 0∉∁,x 30∈ B .∃x 0∈∁,x 30∉C .∀x ∉∁,x 3∈D .∀x ∈∁,x 3∉2.D [解析] 本命题为特称命题,写其否定的方法是:先将存在量词改为全称量词,再否定结论,故所求否定为“∀x ∈∁,x 3∉”. 故选D.3.[2012·湖北卷] 已知二次函数y =f (x )的图象如图1-1所示,则它与x 轴所围图形的面积为( )图1-1A.2π5B.43C.32D.π23.B [解析] (解法一)设f (x )=ax 2+bx +c ()a ≠0.因为函数f (x )的图象过(-1,0),(1,0),(0,1),代入得⎩⎨⎧a -b +c =0,a +b +c =0,c =1,解得⎩⎨⎧a =-1,b =0,c =1,故f (x )=1-x 2.故S =⎠⎛1-1()1-x 2d x =⎝⎛⎭⎪⎫x -x 33⎪⎪ 1-1=43.故选B .(解法二)设f(x)=a ()x -1()x +1,将x =0,y =1代入f(x)=a ()x -1()x +1,得a =-1,所以f(x)=-()x -1()x +1=1-x 2,所以S =⎠⎛1-1()1-x 2d x =⎝⎛⎭⎪⎫x -x 33⎪⎪ 1-1=43.故选B .(解法三)观察函数图象可知,二次函数f(x)的顶点坐标为(0,1),故可设f(x)=ax 2+1,又函数图象过点(1,0),代入得a =-1,所以f(x)=-x 2+1.所以S =⎠⎛1-1()1-x 2d x =⎝ ⎛⎭⎪⎫x -x 33⎪⎪ 1-1=43.故选B . 4.G2[2012·湖北卷] 已知某几何体的三视图如图1-2所示,则该几何体的体积为( )图1-2A.8π3 B .3π C.10π3 D .6π4.B [解析] 根据三视图知几何体的下面是一个圆柱,上面是圆柱的一半,所以V =2π+12×2π=3π.故选B.5.J3[2012·湖北卷] 设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1C .11D .125.D [解析] 512 012+a =a +(1-13×4)2 012=a +1-C 12 01213×4+C 22 012(13×4)2+…+C 2 0122 012(13×4)2 012, 显然当a +1=13k ,k ∈Z ,即a =-1+13k ,k ∈Z 时,512 012+a =13×4[-C 12 012+C 22 012(13×4)1+…+C 2 0122 012(13×4)2 011],能被13整除.因为0≤a <13, 故a =12.故选D.6.N4[2012·湖北卷] 设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +c x +y +z=( )A.14B.13C.12D.346.C [解析] 由柯西不等式得(a 2+b 2+c 2)(x 2+y 2+z 2)=10×40≥(ax +by +cz )2=202,显然上式应取等号,此时a =kx ,b =ky ,c =kz ,则a 2+b 2+c 2=k 2(x 2+y 2+z 2)=40k 2=10,得k =12(舍去负值),所以a +b +c x +y +z =a x =k =12.故选C.7.D3[2012·湖北卷] 定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x ;③f (x )=|x |;④f (x )=ln|x |. 则其中是“保等比数列函数”的f (x )的序号为( ) A .①② B .③④ C .①③ D .②④7.C [解析] 设数列{a n }的公比为q .对于①,f (a n +1)f (a n )=a 2n +1a 2n =q 2,故数列{f (a n )}是公比为q 2的等比数列;对于②,f (a n +1)f (a n )=2a n +12a n =2a n +1-a n (不为常数),故数列{f (a n )}不是等比数列;对于③,f (a n +1)f (a n )=|a n +1||a n |=⎪⎪⎪⎪⎪⎪a n +1a n =|q |,故数列{f (a n )}是等比数列;对于④, f (a n +1)f (a n )=ln|a n +1|ln|a n |(不为常数),故数列{f (a n )}不是等比数列.由“保等比数列函数”的定义知应选C.8.K3[2012·湖北卷] 如图1-3所示,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )图1-3A .1-2π B.12-1πC.2πD.1π8.A [解析] 如下图所示,不妨设扇形的半径为2a ,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =14π(2a )2=πa 2①,而S 1+S 3与S 2+S 3的和恰好为一个半径为a 的圆的面积,即S 1+S 3+S 2+S 3=πa 2②.由①-②得S 3=S 4;又由图可知S 3=S 扇形EOD +S 扇形COD -S 正方形OEDC =12πa 2-a 2,所以S 阴影=πa 2-2a 2.故由几何概型概率公式可得,所求概率P =S 阴影S 扇形OAB =πa 2-2a 2πa 21-2π.故选A.9.B9[2012·湖北卷] 函数f (x )=x cos x 2在区间[0,4]上的零点个数为( ) A .4 B .5 C .6 D .79. C [解析] 令f (x )=0,得x =0或cos x 2=0,由x ∈[]0,4,得x 2∈[]0,16.因为cos ⎝ ⎛⎭⎪⎫π2k π=0()k ∈Z ,故方程cos x 2=0中x 2的解只能取x 2=π2,3π2,5π2,7π2,9π2∈[]0,16.所以零点个数为6.故选C.10.G8[2012·湖北卷] 我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一.所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈3169V .人们还用过一些类似的近似公式.根据π=3.14159…判断,下列近似公式中最精确的一个是( )A .d ≈3169VB .d ≈32VC .d ≈3300157VD .d ≈32111V10.D [解析] 设球的直径为d ,则球的体积为V =43π⎝ ⎛d 23,所以d =36πV ≈31.909 9V .A 项中,d ≈3169V ≈31.78V ;C 项中,d ≈3300157V ≈31.910 8V ;D 项中,d ≈32111V ≈31.909 0V ;比较各选项可知, D 项中的d 与d =36πV ≈31.909 9V 最接近,故选D.11.C8[2012·湖北卷] 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.11.2π3[解析] 由已知条件(a +b -c )(a +b +c )=ab ,化简得a 2+b 2-c 2=-ab ,所以cos C=a2+b2-c22ab=-ab2ab=-12.又C是三角形的内角,则C∈()0,π,所以C=2π3.12.L1[2012·湖北卷] 阅读如图1-4所示的程序框图,运行相应的程序,输出的结果s=________.图1-412. 9[解析] 因为已知a=1,s=0,n=1,所以第一次运行后:s=s+a=1,a=a+2=3,n=1<3成立,满足判断条件;第二次运行后:n=n+1=2,s=s+a=1+3=4,a=a+2=5,n=2<3成立,满足判断条件;第三次运行后:n=n+1=3,s=s+a=4+5=9,a=a+2=7,n=3<3不成立,不满足判断条件,输出s的值(s=9).13.M1[2012·湖北卷] 回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.13.(1)90(2)9×10n[解析] 由题意,1位回文数有9个,2位回文数有9个,3位回文数有90=9×10个,4位回文数有1001,1111,1221,...,1991,2002, (9999)共90个,故归纳猜想2n+2位回文数与2n+1位回文数个数相等,均为9×10n个.14.H6、H8[2012·湖北卷] 如图1-5所示,双曲线x2a2-y2b2=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A ,B ,C ,D .则(1)双曲线的离心率e =________;(2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值S 1S 2=________.图1-514.(1)5+12 (2)5+22 [解析] (1)由图可知,点O 到直线F 1B 2的距离d 与圆O的半径OA 1相等,又直线F 1B 2的方程为x -c +yb =1,即bx -cy +bc =0.所以d =bc b 2+c 2=a ,整理得b 2(c 2-a 2)=a 2c 2,即(c 2-a 2)2=a 2c 2,得c 2-a 2=ac .所以e 2-e -1=0,解得e =5+12(负值舍去). (2)连结OB ,设BC 与x 轴的交点为E ,由勾股定理可求得|BF 1|=c 2-a 2. 由等面积法可求得|BE |=|F 1B ||OB ||F 1O |=abc ,所以|OE |=|OB |2-|BE |2=a 2c.所以S 2=2|OE |·2|EB |=4a 3bc2.而S 1=12|F 1F 2||B 1B 2|=2bc, 所以S 1S 2=c 32a 3=12e 3=5+22.15.N1[2012·湖北卷] (选修4-1:几何证明选讲)如图1-6所示,点D 在⊙O 的弦AB 上移动,AB =4,连结OD ,过点D 作OD 的垂线交⊙O 于点C ,则CD 的最大值为________.图1-615. 2 [解析] 因为CD =OC 2-OD 2,且OC 为⊙O 的半径,是定值,所以当OD 取最小值时,CD 取最大值.显然当OD ⊥AB 时,OD 取最小值,故此时CD =12AB =2,即为所求的最大值.16.N3[2012·湖北卷] (选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立坐标系.已知射线θ=π4与曲线⎩⎨⎧x =t +1,y =(t -1)2(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.16.⎝ ⎛⎭52,52 [解析] 曲线⎩⎨⎧x =t +1,y =()t -12 化为直角坐标方程是y =()x -22,射线θ=π4化为直角坐标方程是y =x ()x ≥0.联立⎩⎨⎧y =()x -22,y =x ()x ≥0, 消去y 得x 2-5x +4=0,解得x 1=1,x 2=4.所以y 1=1,y 2=4.故线段AB 的中点的直角坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,即⎝⎛⎭⎪⎫52,52.17.C4、C6、C7、F3[2012·湖北卷] 已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ).设函数f (x )=a·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1. (1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,3π5上的取值范围.17.解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos2ωx +3sin2ωx +λ =2sin ⎝ ⎛⎪⎫2ωx -π6+λ.由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝ ⎛⎪⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0, 即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,即λ=- 2. 故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2, 由0≤x ≤3π5,有-π6≤53x -π6≤5π6,所以-12≤sin ⎝ ⎛⎭⎪⎫53x -π6≤1,得-1-2≤2sin 53x -π6-2≤2- 2. 故函数f (x )在⎣⎢⎡⎦⎥⎤0,3π5上的取值范围为[-1-2,2-2].18.D2、D3、D5[2012·湖北卷] 已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.18.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d . 由题意得⎩⎨⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎨⎧ a 1=2,d =-3,或⎩⎨⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7. 故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n -7|=⎩⎨⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.19.G7、G11[2012·湖北卷] 如图1-7所示,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连结AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图1-8).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大?(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.图1-7 图1-819.解:(1)方法1:在题图所示的△ABC 中,设BD =x (0<x <3),则CD =3-x . 由AD ⊥BC ,∠ACB =45°知,△ADC 为等腰直角三角形,所以AD =CD =3-x . 由折起前AD ⊥BC 知,折起后,AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D ,所以AD ⊥平面BCD .又∠BDC =90°,所以S △BCD =12BD ·CD =12x (3-x ).于是V A -BCD =13AD ·S △BCD =13(3-x )·12x (3-x )=112·2x (3-x )(3-x )≤112⎣⎢⎡⎦⎥⎤2x +(3-x )+(3-x )33=23. 当且仅当2x =3-x ,即x =1时,等号成立,故当x =1,即BD =1时,三棱锥A -BCD 的体积最大.方法2:同方法1,得V A -BCD =13AD ·S △BCD =13(3-x )·12x (3-x )=16(x 3-6x 2+9x ).令f (x )=16x 3-6x 2+9x ),由f ′(x )=12(x -1)(x -3)=0,且0<x <3,解得x =1.当x ∈(0,1)时,f ′(x )>0,当x ∈(1,3)时,f ′(x )<0,所以当x =1时,f (x )取得最大值. 故当BD =1时,三棱锥A -BCD 的体积最大.(2)方法1:以点D 为原点,建立如图(a)所示的空间直角坐标系D -xyz . 由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =DC =2.于是可得D (0,0,0),B (1,0,0),C (0,2,0),A (0,0,2),M (0,1,1),E ⎝ ⎛⎭⎪⎫12,1,0,且BM →=(-1,1,1).设N (0,λ,0),则EN→=⎝ ⎛⎭⎪⎫-12,λ-1,0. 因为EN ⊥BM 等价于EN →·BM→=0,即⎝ ⎛⎭⎪⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12,N⎝ ⎛⎭⎪⎫0,12,0. 所以当DN =12(即N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM .设平面BMN 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ⊥BN→,n ⊥BM →,及BN→=⎝ ⎛⎭⎪⎫-1,12,0, 得⎩⎨⎧y =2x ,z =-x .可取n =(1,2,-1).设EN 与平面BMN 所成角的大小为θ,则由EN→=⎝ ⎛⎭⎪⎫-12,-12,0,n =(1,2,-1),可得 sin θ=cos(90°-θ)=⎪⎪⎪⎪⎪⎪⎪⎪n ·EN →|n |·|EN →|=⎪⎪⎪⎪⎪⎪-12-16×22=32,即θ=60°. 故EN 与平面BMN 所成角的大小为60°.方法2:由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =CD =2. 如图(b),取CD 的中点F ,连结MF ,BF ,EF ,则MF ∥AD . 由(1)知AD ⊥平面BCD ,所以MF ⊥平面BCD .如图(c),延长FE 至P 点使得FP =DB ,连BP ,DP ,则四边形DBPF 为正方形, 所以DP ⊥BF .取DF 的中点N ,连结EN ,又E 为FP 的中点,则EN ∥DP , 所以EN ⊥BF ,因为MF ⊥平面BCD ,又EN ⊂平面BCD ,所以MF ⊥EN . 又MF ∩BF =F ,所以EN ⊥面BMF ,又BM ⊂面BMF ,所以EN ⊥BM . 因为EN ⊥BM 当且仅当EN ⊥BF ,而点F 是唯一的,所以点N 是唯一的. 即当DN =12即N 是CD 的靠近点D 的一个四等分点),EN ⊥BM .连结MN ,ME ,由计算得NB =NM =EB =EM =52, 所以△NMB 与△EMB 是两个共底边的全等的等腰三角形. 如图(d)所示,取BM 的中点G .连结EG ,NG ,则BM ⊥平面EGN ,在平面EGN 中,过点E 作EH ⊥GN 于H , 则EH ⊥平面BMN .故∠ENH 是EN 与平面BMN 所成的角.在△EGN中,易得EG=GN=NE=22,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.20.K6、K7[2012·湖北卷] 根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.20.解:(1)由已知条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2.P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为于是,E(Y)=0×0.3+D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的均值为3,方差为9.8.(2)由概率的加法公式,P(X≥300)=1-P(X<300)=0.7,又P(300≤X<900)=P(X<900)-P(X<300)=0.9-0.3=0.6.由条件概率,得P(Y≤6|X≥300)=P(X<900|X≥300)=P(300≤X<900)P(X≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.21.H5、H3、H8[2012·湖北卷] 设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.21.解:(1)如图(1),设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1), 可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |.①因为点A 在单位圆上运动,所以x 20+y 20=1.②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(1-m 2,0),(1-m 2,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).(2)方法1:如图(2)、(3),对任意的k >0,设P (x 1,kx 1),H (x 2,y 2),则Q (-x 1,-kx 1),N (0,kx 1),直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得(m 2+4k 2)x 2+4k 2x 1x +k 2x 21-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由韦达定理可得 -x 1+x 2=-4k 2x 1m 2+4k 2,即x 2=m 2x 1m 2+4k 2.因为点H 在直线QN 上, 所以y 2-kx 1=2kx 2=2km 2x 1m 2+4k 2.于是PQ →=(-2x 1,-2kx 1),PH →=(x 2-x 1,y 2-kx 1)=⎝ ⎛⎭⎪⎫-4k 2x 1m 2+4k 2,2km 2x 1m 2+4k 2.而PQ ⊥PH 等价于PQ →·PH →=4(2-m 2)k 2x 21m 2+4k 2=0,即2-m 2=0,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH .方法2:如图(2)、(3),对任意x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (-x 1,-y 1),N (0,y 1).因为P ,H 两点在椭圆C 上,所以⎩⎨⎧m 2x 21+y 21=m 2,m 2x 22+y 22=m 2,两式相减可得m 2(x 21-x 22)+(y 21-y 22)=0.③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故(x 1-x 2)(x 1+x 2)≠0.于是由③式可得 (y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-m 2.④又Q ,N ,H 三点共线,所以k QN =k QH ,即2y 1x 1=y 1+y 2x 1+x 2.于是由④式可得k PQ ·k PH =y 1x 1·y 1-y 2x 1-x 2=12·(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-m 22.而PQ ⊥PH 等价于k PQ ·k PH =-1,即-m 22=-1,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH .22.B12、M3、M2[2012·湖北卷] (1)已知函数f (x )=rx -x r +(1-r )(x >0),其中r 为有理数,且0<r <1.求f (x )的最小值;(2)试用(1)的结果证明如下命题:设a 1≥0,a 2≥0,b 1,b 2为正有理数.若b 1+b 2=1,则ab 11ab 22≤a 1b 1+a 2b 2; (3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题. 注:当α为正有理数时,有求导公式(x α)′=αx α-1.22.解:(1)f ′(x )=r -rx r -1=r (1-x r -1),令f ′(x )=0,解得x =1. 当0<x <1时,f ′(x )<0,所以f (x )在(0,1)内是减函数; 当x >1时,f ′(x )>0,所以f (x )在(1,+∞)内是增函数. 故函数f (x )在x =1处取得最小值f (1)=0.(2)由(1)知,当x ∈(0,+∞)时,有f (x )≥f (1)=0,即x r ≤rx +(1-r ). ① 若a 1,a 2中有一个为0,则ab 11ab 22≤a 1b 1+a 2b 2成立; 若a 1,a 2均不为0,又b 1+b 2=1,可得b 2=1-b 1,于是 在①中令x =a 1a 2,r =b 1,可得⎝ ⎛⎭⎪⎫a 1a 2b 1≤b 1·a 1a 2+(1-b 1),即ab 11a 1-b 12≤a 1b 1+a 2(1-b 1),亦即ab 11ab 22≤a 1b 1+a 2b 2.综上,对a 1≥0,a 2≥0,b 1,b 2为正有理数且b 1+b 2=1,总有ab 11ab 22≤a 1b 1+a 2b 2.②(3)(2)中命题的推广形式为:若a 1,a 2,…,a n 为非负实数,b 1,b 2,…,b n 为正有理数. 若b 1+b 1+…+b n =1,则ab 11ab 22…ab nn ≤a 1b 1+a 2b 2+…+a n b n .③ 用数学归纳法证明如下:①当n =1时,b 1=1,有a 1≤a 1,③成立.②假设当n =k 时,③成立,即若a 1,a 2,…,a k 为非负实数,b 1,b 2,…,b k 为正有理数,且b 1+b 2+…+b k =1,则ab 11ab 22…ab kk ≤a 1b 1+a 2b 2+…+a k b k .当n =k +1时,已知a 1,a 2,…,a k ,a k +1为非负实数,b 1,b 2,…,b k ,b k +1为正有理数,且b 1+b 2+…+b k +b k +1=1,此时0<b k +1<1,即 1-b k +1>0,于是 ab 11ab 22…ab kk ab k +1k +1=(ab 11ab 22…ab kk )ab k +1k +1=(a b 11-b k +11a b 21-b k +12…a b k1-b k +1k )1-b k +1ab k +1k +1.因b 11-b k +1b 21-b k +1+…+b k 1-b k +1=1,由归纳假设可得 a b 11-b k +11a b 21-b k +12…a b k 1-b k +1k ≤a 1·b 11-b k +1+a 2·b 21-b k +1+…+a k ·b k 1-b k +1=a 1b 1+a 2b 2+…+a k b k1-b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1ab k +1k +1.又因(1-b k +1)+b k +1=1,由②得⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2+…+a k b k 1-b k +11-b k +1ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k1-b k +1·(1-b k +1)+a k +1b k +1=a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k +a k +1b k +1. 故当n =k +1时,③成立.由①②可知,对一切正整数n ,所推广的命题成立.说明:(3)中如果推广形式中指出③式对n ≥2成立,则后续证明中不需讨论n =1的情况.。

2012年湖北省高考数学试卷理科答案及解析

2012年湖北省高考数学试卷理科答案及解析
所求几何体的体积为: =3π.
故选B.
点评:本题考查三视图与几何体的关系,正确判断几何体的特征就是解题的关键,考查计算能力.
5.(2012•湖北)
考点:二项式定理的应用。
专题:计算题。
分析:由二项式定理可知512012+a=(52﹣1)2012+a的展开式中的项 含有因数52,要使得能512012+a能被13整除,只要a+1能被13整除,结合已知a的范围可求
8.(2012•湖北)
考点:几何概型。
专题:计算题。
分析:设OA的中点就是D,则∠CDO=90°,这样就可以求出弧OC与弦OC围成的弓形的面积,从而可求出两个圆的弧OC围成的阴影部分的面积,用扇形OAB的面积减去两个半圆的面积,加上两个弧OC围成的面积的2倍就就是阴影部分的面积,最后根据几何概型的概率公式解之即可.
考点:一般形式的柯西不等式。
专题:综合题。
分析:根据所给条件,利用柯西不等式求解,利用等号成立的条件即可.
解答:解:由柯西不等式得,(a2+b2+c2)( x2+ y2+ z2)≥( ax+ by+ cz)2,
当且仅当 时等号成立
∵a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,
(Ⅰ)4位回文数有_________个;
(Ⅱ)2n+1(n∈N+)位回文数有_________个.
14.(2012•湖北)如图,双曲线 ﹣ =1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷类型A
2012年普通高等学校招生全国统一考试(湖北卷)
数学(理工类)
本试卷共5页,共22题,其中第15、16题为选考题,满分150分。

考试用时120分钟。

注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方块涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内。

答在试卷、草稿纸上无效。

4.选考题的作答:先把所选题目的题号答在答题卡上指定的位置用统一提供的2B 铅笔涂黑。

考生应该根据直接的选做的题目准确填涂题号,不得多选,答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分 ,在每小题给出的四个选项中,只
有一项是符合题目要求的 1. 方程 2x +6x +13 =0的一个根是
A -3+2i
B 3+2i
C -2 + 3i
D 2 + 3i
2 命题“∃x 0∈C R Q , 3
0x ∈Q ”的否定是
A ∃x 0∉C R Q ,30x ∈Q
B ∃x 0∈
C R Q ,3
0x ∉Q
C ∀x 0∉C R Q , 30x ∈Q
D ∀x 0∈C R Q ,3
0x ∉Q
3 已知二次函数y =f(x)的图像如图所示 ,则它与X 轴所围图形的面积为
A.25
π B.43
C.32
D.2
π
4.已知某几何体的三视图如图所示,则该集合体的体积为
A. 83
π B.3π C. 103
π D.6π
5.设a ∈Z ,且0≤a ≤13,若512012
+a 能被13整除,则a=
A.0
B.1
C.11
D.12
6.设a,b,c,x,y,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax+by+cz=20,则
a b c x y z
++=++
A.
14
B.
13
C.
12
D,
34
7.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”。

现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x ²;②f (x )=2x
;③;④f (x )=ln|x |。

则其中是“保等比数列函数”的f (x )的序号为
A.①②
B.③④
C.①③
D.②④
8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。

在扇形OAB 内随机取一点,则此点取自阴影部分的概率是
A.
B.
C.
D.
9.函数f(x)=xcosx²在区间[0,4]上的零点个数为
A.4
B.5
C.6
D.7
10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一
个近似公式。

人们还用过一些类似的近似公式。

根据x=3.14159…..判断,下列近似公式中最精确的一个是
二、填空题:本大题共6小题,考试共需作答5小题,每小题5分,共25分。

请将答案填在答题卡对应题号
.......的位置上。

答错位置,书写不清,模棱两可均不得分。

(一)必考题(11-14题)
11.设△ABC的内角A,B,C,所对的边分别是a,b,c。

若(a+b-c)(a+b+c)=ab,
则角C=______________。

12.阅读如图所示的程序框图,运行相应的程序,输出的结果s=___________.
13.回文数是指从左到右与从右到左读都一样的正整数。

如22,,11,3443,94249等。

显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。


(Ⅰ)4位回文数有______个;
(Ⅱ)2n+1(n∈N+)位回文数有______个。

14.如图,双曲线的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2。

若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D。


(Ⅰ)双曲线的离心率e=______;
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值__________。

(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分。


15.(选修4-1:几何证明选讲)
如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_____________。

16.(选修4-4:坐标系与参数方程)
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,
已知射线与曲线(t为参数)相较于A,B来两点,则线段AB
的中点的直角坐标为_________。

三、解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分12分)
已知向量a=,b=,设函数f(x)
=a·b+的图像关于直线x=π对称,其中为常数,且
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图像经过点求函数f(x)在区间上的取值范围。

18.(本小题满分12分)
已知等差数列{a n}前三项的和为-3,前三项的积为8.
(1)求等差数列{a n}的通项公式;
(2)若a2,a3,a1成等比数列,求数列{}n a的前n项的和。

19.(本小题满分12分)
如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),
(1)当BD的长为多少时,三棱锥A-BCD的体积最大;
(2)当三棱锥A-BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD 上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小
20.(本小题满分12分)
根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(I)工期延误天数Y的均值与方差;
(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率。

21.(本小题满分13分)
设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1)。

当点A在圆上运动时,记点M的轨迹为曲线C。

(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由。

22.(本小题满分14分)
(I)已知函数f(x)=rx-x r+(1-r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:
设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;
(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题。

注:当α为正有理数时,有求道公式(xα)r=αxα-1。

相关文档
最新文档