橡胶工艺原理

合集下载

橡胶注塑成型工艺

橡胶注塑成型工艺

橡胶注塑成型工艺橡胶注塑成型工艺是一种常用的生产橡胶制品的方法。

该工艺具有生产效率高、产品质量稳定、生产成本低等优点,被广泛应用于汽车、电子、机械、医疗、日用品等领域。

一、橡胶注塑成型工艺的原理橡胶注塑成型工艺是通过将橡胶原料加热至熔化状态,然后将其注入模具中,经过一定时间的冷却和固化,最终得到所需的橡胶制品。

该工艺主要包括以下几个步骤:1. 橡胶原料的制备:将橡胶原料按一定比例混合,加入助剂、颜料等,制成橡胶混合料。

2. 橡胶混合料的加热:将橡胶混合料加热至熔化状态,使其具有流动性。

3. 橡胶混合料的注入:将熔化的橡胶混合料注入模具中,填充整个模腔。

4. 橡胶制品的冷却和固化:经过一定时间的冷却和固化,橡胶制品在模具中成型。

5. 橡胶制品的脱模:将模具打开,取出成型的橡胶制品。

二、橡胶注塑成型工艺的工艺参数橡胶注塑成型工艺的工艺参数对成型质量有着重要的影响。

以下是一些常用的工艺参数:1. 温度:橡胶混合料的加热温度应该控制在一定范围内,一般为150℃~200℃。

2. 压力:橡胶混合料的注入压力应该控制在一定范围内,一般为70~140kg/cm2。

3. 时间:橡胶混合料在模具中的停留时间应该控制在一定范围内,一般为20~60秒。

4. 模具温度:模具温度应该控制在一定范围内,一般为60℃~100℃。

5. 模具压力:模具压力应该控制在一定范围内,一般为10~20kg/cm2。

三、橡胶注塑成型工艺的优缺点橡胶注塑成型工艺具有以下优点:1. 生产效率高:橡胶注塑成型工艺可以实现自动化生产,生产效率高。

2. 产品质量稳定:橡胶注塑成型工艺可以保证产品尺寸和外观的一致性,产品质量稳定。

3. 生产成本低:橡胶注塑成型工艺可以减少人工操作和原材料浪费,生产成本低。

但是,橡胶注塑成型工艺也存在一些缺点:1. 模具制造成本高:橡胶注塑成型工艺需要制造模具,模具制造成本比较高。

2. 模具寿命短:橡胶注塑成型工艺的模具寿命比较短,需要经常更换。

橡胶 工艺 原理

橡胶 工艺 原理

橡胶工艺原理
橡胶是一种由橡胶树的乳液经过加工制成的具有弹性的材料。

橡胶的工艺原理主要包括以下几个方面。

1. 采集橡胶乳液:橡胶树的树干被割开后,乳液会自然流出。

采集工人使用刮刀将乳液慢慢刮下,收集到容器中。

2. 乳液稳定化:采集到的橡胶乳液中含有大量的水分和其他杂质,需要经过稳定化处理。

常用的稳定化剂包括氨水和醋酸,它们可以使乳液保持稳定状态,并防止乳液中的橡胶团聚。

3. 合成橡胶:乳液经过稳定化处理后,需要加入硫化剂、填充剂和加工助剂等多种化学物质进行合成橡胶的加工。

其中,硫化剂可以使橡胶分子之间的交联结构更加牢固,增加橡胶材料的强度和耐磨性;填充剂可以提高橡胶材料的硬度和耐磨性;加工助剂则可以调整橡胶材料的流动性和加工性能。

4. 橡胶成型:合成橡胶经过调配后,可以通过各种成型方法将其制成不同形状的橡胶制品。

常见的成型方法包括压延、压缩模压、浇注和挤出等。

5. 硫化和固化:成型后的橡胶制品需要进行硫化或固化处理,使其获得所需的弹性和耐磨性。

硫化是将成型的橡胶制品置于加热的硫化炉中,在一定温度下与硫化剂反应,形成较为稳定的交联结构;固化则是使用特定的固化剂或光线照射,使成型的橡胶制品的分子链交联,增加其硬度和强度。

通过以上的工艺原理,橡胶可以被制备成各种应用于工业、交通、建筑和日常生活中的橡胶制品,如轮胎、密封件、橡胶管、橡胶鞋等。

橡胶加工原理

橡胶加工原理

橡胶加工原理
橡胶是一种重要的材料,广泛应用于汽车轮胎、橡胶制品、橡胶管等领域。

橡胶的加工原理是指将橡胶原料通过一系列的加工工艺,使其具有特定的物理和化学性能,以满足不同领域的需求。

橡胶加工原理主要包括橡胶混炼、压延、硫化等过程。

首先,橡胶混炼是橡胶加工的第一步。

橡胶混炼的目的是将橡胶原料与各种添加剂充分混合,以提高橡胶的可加工性和性能。

混炼过程中,橡胶原料经过粗炼、精炼、压片等工艺,最终形成均匀的橡胶混炼胶。

橡胶混炼的质量直接影响着后续加工工艺和成品的质量。

其次,橡胶压延是橡胶加工的重要环节。

橡胶压延是指将橡胶混炼胶通过压延机进行塑炼,使其成为具有一定形状和尺寸的橡胶片或橡胶带。

在压延过程中,橡胶混炼胶经过预热、压延、冷却等工艺,最终形成具有一定厚度和宽度的橡胶半成品。

橡胶压延的质量直接影响着成品的外观和性能。

最后,橡胶硫化是橡胶加工的关键环节。

橡胶硫化是指将橡胶半成品通过硫化机进行硫化处理,使其具有良好的耐热、耐老化和
弹性等性能。

在硫化过程中,橡胶半成品经过加热、硫化、冷却等工艺,最终形成具有一定硬度和弹性的橡胶成品。

橡胶硫化的质量直接影响着成品的使用寿命和性能稳定性。

总之,橡胶加工原理是橡胶加工过程中的核心内容,它直接影响着成品的质量和性能。

只有深入理解橡胶加工原理,并严格控制每个环节的质量,才能生产出高质量的橡胶制品,满足不同领域的需求。

希望本文对橡胶加工原理有所帮助,谢谢阅读!。

橡胶的压延工艺

橡胶的压延工艺

橡胶的压延工艺1压延工艺及压延原理在制造橡胶制品中,预先将混炼胶料制成一定厚度、宽度或一定形状的胶片,或在纺织物上挂薄胶层的工艺过程称做压延。

运用压延可以完成压片、压型、贴胶、擦胶、贴合、薄通和滤胶等作业。

压延原理:当胶料加入到压延机的两个工作辊筒之间时,由于辊筒的旋转,把胶料带入辊隙中,将胶料辗延成具有一定厚度和宽度的胶片。

压延过程中,胶料一方面发生粘性流动,一方面又发生弹性变形。

因此,压延中的各种工艺现象与胶料的流动性有关,又与胶料的粘弹性有关。

2压延机有哪几种?规格和型号如何表示?压延机是比较精密复杂的机械设备,各类很多。

分类方法有下列几种:按工作辊筒数来分:双辊、三辊、四辊。

按用途来分有:压片压延机:用于压片或纺织物贴胶,通常为三辊或四辊,各辊转速相同。

擦胶压延机:用于纺织物擦胶,通常为三辊,各辊之间有一定速比。

通用(万能)压延机:这种压延机兼有上述两种压延机的功能,通常为三辊或四辊,各辊的速比可借辅助齿轮调节。

压型压延机:用于制造表面带有花纹或有一定形状的胶片,其中有一个辊筒刻有花纹。

钢丝压延机:用于钢丝帘布的贴胶,由四个辊筒组成。

按辊筒的排列形式有:I型、△型、T型、L型、Z型、S型等。

压延机规格可用辊筒外直径×辊筒工作部分长度来表示,如压延机规格Φ610×1730。

我国压延机型号可表示为XY —4T—1730。

其中XY 表示橡胶胶压延机,4T表示四辊筒型排列。

1730表示辊筒工作部分的长度(mm)。

3在设计压延机时为什么需采用补偿措施在压延机加工过程中,当胶料通过辊距时,给予辊筒的横压力很高,加上辊筒自身的重量,致使辊筒会产生一定的弹性弯曲(其弯曲度称为挠度)结果使压延胶片出现中间厚两边薄的现象。

为了克服为种弊病,通常在设计压延机时,都采取一些补偿措施,以确保压延的精密度,常用的补偿方法有;凹凸系数法(中高法);轴交叉法和反弯曲法(予负荷法)等。

4什么叫压延效应,它对制品的性能有何影响?压延后的制品在纵横方向性能差异的现象叫做压延效应,即沿胶片纵方向(压延方向)的扯断强度大,伸长率小,收缩率大;而沿胶片横向的扯断强度小,伸长率大,收缩率小。

橡胶配方设计原理及工艺

橡胶配方设计原理及工艺
二 设计程序 1确定胶料技术要求 进行调查研究;了解产品使用时的负荷、工作温度、接触介质、使用寿命以及胶料在产品结构中所起的作用,作为配方设计依据; 2收集技术资料 收集国内外有关同类产品或类似产品研制的技术资料作为配方设计参考。
3制定基本配方和性能试验项目 制定基本配方步骤如下: 1确定生胶的品种和用量; 根据主要性能指标确定主体胶料品种;用量与含胶率有关。 2)确定硫化体系。根据生胶的类型和品种,硫化工艺及产品性能要求来确定。 3)确定补强剂品种和用量。根据胶料性能 比重及成本确定。 4)确定软化剂品种和用量。根据生胶及填料种类,胶料性能及加工条件确定。 5)确定防老剂品种和用量。根据产品使用环境的条件来确定。 6)确定其它专用配合剂的品种和用量。如着色剂,发泡剂等)
20˚C
75˚C
150˚C
偏差加大:包容胶活动性增强所致;
Ef/Eg
胶种
纯胶基本硬度
填料品种
估算硬度
NBR
44
FEF,HAF
+1/2份数
CR
44
ISAF
+1/2份数+2
NR
40
SAF
+1/2份数+4
SBR
40
SRF
+1/3份数
IIR
35
陶土
+1/4份数
碳酸钙
+1/7份数

-1/2份数
填料与硬度的关系
一 配方设计定义 橡胶材料是生胶与多种配合剂构成的多相体系; 橡胶制品的性能取决于橡胶分子本身;以及各种配合剂性质及它们之间的相互作用关系。 定义:根据产品的性能要求及工艺条件,合理选用原材料,制订各种原材料的用量配比关系的设计方法。 配方设计决定着产品质量、成本和加工性能。

橡胶加工工艺—橡胶压出工艺(高分子成型课件)

橡胶加工工艺—橡胶压出工艺(高分子成型课件)
有时为调整料流速度,有 的机头内还开有流胶孔, 或者提高流道局部阻力大 部位的温度,或在阻力小 的部位设置阻流器或阻力 调节装置。
二、橡胶的挤出(压出)工艺
(一)压出机工作原理及胶料的运动状态 3 物料在口型中的流动状体和挤出变形 胶料经机头进入口型后,由于口型形状不同及内表 面对物料流动的阻碍,物料流动速度也存在有与机 头类似的速度分布。中间流速大,越接近口型壁流 速越小 。 一般粘弹性的物料,从口型挤出后就不可避免地存 在松弛现象,即:胶条的长度会沿挤出方向缩短, 厚度沿垂直挤出方向增加(离模膨胀现象或称作挤 出变形现象)。挤出后的变形(收缩和膨胀)可以控制 在一定范围,但不可能完全消除。要求收缩率为 2~5%。 物料可塑性小、含胶率大,填充剂用量小,物料挤 出快,机头和口型温度低,膨胀和收缩率就大。
二、橡胶的挤出(压出)工艺
在挤出机(压出机)螺杆的挤压作用下,使受热 熔融的胶料通过具有一定断面形状的口型(口模) 而进行连续造型的工艺过程。
工艺特性: ① 半成品质地均匀致密。应用面广,成形速度快、工效高、成本低、有利 于自动化生产。 ② 设备占地面积小,重量轻,结构简单,造价低;能连续操作,生产能 力大。 ③ 口型模具结构简单、加工易、拆装方便、使用寿命长、易于保管和维 修。 常见制品: 胎面、内胎、胶管、电线、电缆护套、防水卷材及各种异型断面制品。
二、橡胶的挤出(压出)工艺
(一)压出机工作原理及胶料的运动状态
1 胶料在挤出机中的运动状态
加料段:加入的条状胶料,受到旋转螺杆的推挤作用形成连续的胶 团,并沿着螺槽的空间一边旋转,一边不断前进。 压缩段:加料段输送过来的松散胶团在压缩段被逐渐压实、软化, 并把夹带的空气向加料段排出。同时胶团间间隙缩小,密度增高, 进而粘在一起,再加上受到剪切和搅拌作用,因而胶团逐渐被加热 塑化形成连续的粘流体。 挤出段:在挤出段,压缩段输送过来的物料进一步塑化均匀,并输 送到机头和口模处挤出成型。

橡胶怎么快速凝固的原理

橡胶怎么快速凝固的原理

橡胶怎么快速凝固的原理一、原料制备
1. 选择好质量的天然橡胶或合成橡胶作为主要原料。

2. 加入硫化剂、促进剂、老化防护剂等配料。

3. 使用开式混炼机充分混炼,使配料均匀分散。

二、加速硫化原理
1. 硫化反应是形成橡胶网络结构的关键过程。

2. 加入硫化促进剂,可以缩短硫化反应时间,提高硫化速率。

3. 常用的硫化促进剂有肽类、硫脲类等有机物。

4. 促进剂可与硫化剂生成活性硫化中间体,加速硫化反应。

三、提高温度
1. 硫化反应属于化学反应,反应速率随温度升高而加快。

2. 通过选择高温硫化工艺,可以大幅缩减硫化用时。

3. 一般采用140-160C进行高温硫化,速度比常温快数倍。

4. 但温度过高会引起橡胶TEXTURE劣化,需控制适宜温度。

四、使用高能辐射
1. 采用电子束或γ射线辐照混炼橡胶,可引发硫化反应。

2. 高能辐射产生的自由基可直接发生硫化反应。

3. 辐射硫化法快速、环保,可精确调控,是新兴的快速硫化技术。

五、注意事项
1. 硫化速率过快会影响产品质量,需要控制适宜。

2. 不同配方及硫化工艺要进行定制优化。

3. 保证硫化均匀一致非常关键,否则会影响制品性能。

4. 快速硫化技术投入使用还需大量数据支撑。

天然橡胶的制造原理及过程

天然橡胶的制造原理及过程

天然橡胶的制造原理及过程
天然橡胶的制造原理及过程主要涉及橡胶树的生长、橡胶树的采集、橡胶乳的提取和橡胶的加工四个步骤。

1. 橡胶树的生长:天然橡胶主要来自橡胶树的乳液,橡胶树可以在热带和亚热带地区生长。

橡胶树通过进行光合作用吸收二氧化碳,并将其转化为有机物和乳液。

乳液主要由橡胶微粒、水分、蛋白质和其他成分组成。

橡胶树的生长和养护需要适宜的土壤质量和气候条件。

2. 橡胶树的采集:橡胶树的采集主要是通过切割橡胶树的树皮来获取乳液。

采集时,工作人员会在橡胶树的主干上进行切割,使乳液从切割处流出,然后将乳液收集到容器中。

乳液在流出后会遇到空气氧化,形成橡胶凝胶。

3. 橡胶乳的提取:橡胶乳的提取是将采集到的乳液进行加工处理,以分离出纯净的橡胶。

首先,乳液会被过滤,去除其中的杂质。

然后,将乳液加入到混凝剂中,使乳液中的橡胶微粒凝结成团。

最后,通过压榨和水洗等工艺,将团状的橡胶微粒从乳液中分离出来,得到橡胶凝胶。

4. 橡胶的加工:橡胶凝胶经过加工处理后,可以得到不同形状和用途的橡胶制品。

加工过程包括塑化、压制、硫化等工艺。

首先,将橡胶凝胶进行塑化处理,使其柔软可塑。

然后,将塑化后的橡胶放入模具中进行压制,形成所需的形状和尺寸。

最后,通过硫化(加热)处理使橡胶成为耐磨、耐老化和具有弹性的橡胶
制品。

以上就是天然橡胶的制造原理及过程。

天然橡胶制造过程的细节和具体工艺可能因不同的工厂或生产线而有所不同。

HCR工艺原理及特点

HCR工艺原理及特点

HCR工艺原理及特点HCR (High Consistency Rubber) 工艺是一种橡胶加工工艺,主要用于生产高浓度橡胶浆料,具有以下原理和特点:1.工艺原理:HCR工艺主要由橡胶破碎、粘度调节、混合和成套设备等组成。

首先,将橡胶颗粒破碎成为一定大小的颗粒;然后,通过添加粘度调节剂调节橡胶浆料的粘度,以满足不同需求;接下来,橡胶颗粒和粘度调节剂在混合机中充分混合,形成高浓度的橡胶浆料;最后,橡胶浆料可以通过输送设备直接投入到橡胶成型机中进行成型。

2.工艺特点:(1)适应性强:HCR工艺适用于各种类型的橡胶,包括天然橡胶、合成橡胶和再生橡胶等。

同时,可以根据需要调节粘度和浓度,以适应不同产品的要求。

(2)成本低:与传统的橡胶加工工艺相比,HCR工艺具有较低的生产成本。

这是因为HCR工艺不需要使用大量的溶剂和高温高压设备,节省了能源和原材料成本。

(3)生产效率高:HCR工艺具有较高的生产效率。

由于采用了高浓度橡胶浆料,可以减少麻胶的体积,提高输送效率。

此外,混合机搅拌速度快,可以快速将橡胶颗粒和粘度调节剂充分混合。

(4)产品质量好:HCR工艺可以获得优良的产品质量。

因为高浓度橡胶浆料可以提高橡胶的分散性和充填性,使得成型的橡胶制品具有良好的物理性能和外观质量。

(5)环保性好:HCR工艺对环境的影响较小。

与传统的橡胶加工工艺相比,HCR工艺不需要使用大量的溶剂和污水处理设备,减少了废物的排放和处理成本。

(6)工艺控制精度高:HCR工艺可以精确控制橡胶浆料的粘度、浓度和颗粒大小。

通过调节粘度调节剂的添加量和搅拌时间等参数,可以满足不同产品的要求。

总结起来,HCR工艺是一种适应性强、成本低、生产效率高、产品质量好、环保性好且工艺控制精度高的橡胶加工工艺。

该工艺在橡胶制品行业具有广泛应用前景。

橡胶加工工艺—橡胶注射工艺(高分子成型课件)

橡胶加工工艺—橡胶注射工艺(高分子成型课件)
三、橡胶的注射工艺
橡胶注射定义: 将胶料加热塑化成粘流态(熔融态),施以高压注射进入模具 热压硫化,然后开启模具取出成型制品的工艺过程。
三、橡胶的注射工艺
工艺特点
① 成型过程和硫化过程同时进行,工序简单,制品性能优异、质量稳 定; ② 胶料利用率高,可获得形状复杂的制品; ③ 自动化和半自动化程度高,劳动强度低,硫化速度快,生产效率高, 但需严格控制硫化工艺,否则胶料易过硫; ④属于周期性生产工艺,一次性投资大,模具结构复杂,加工成本高。 应用范围
6 成型周期—时间
高温快速硫化体系配方可大大缩短硫化时间。 厚制品硫化时由于制品内外层存在一定的温差,因此仍需适当延长硫化 时间保证制品质量。 一般情况下,充模时间与保压时间之和应小于焦烧时间,以防胶料在喷 嘴和模型流道处硫化,同时保证在硫化前完成压力均化过程,消除物料流 动中造成的内应力现象。
三、橡胶的注射工艺
适合于尺寸精度高、形状复杂、产量高的橡胶制品的生产,主要用于 密封圈、带金属骨架的模制品、减震垫及鞋类制品的生产。
三、橡胶的注射工艺
(一)注射过程及原理 1 注射成型过程
塑化
脱模
注射
热压 硫化
橡胶注射成型过程:塑化、注射、热压硫化,脱模。注射之前要求胶 料温度较低,防止发生焦烧,同时胶料应有较好的流动性,保证顺利注 模。注射保压后快速升温,且模具中内外层胶料温度均匀一致,提高 体系硫化效率。
三、橡胶的注射工艺
(二)注射工艺条件分析
5 喷嘴结构 喷嘴结构十分重要,喷嘴锥形部位斜度为30°-75°时,胶温上升最慢, 压力损失小。 减小喷嘴直径,注射时间延长,通过喷嘴摩擦生热高,易引起焦烧; 喷嘴直径增加,注射时间减小,焦烧危险性减小,但硫化时间增加。一 般情况下,喷嘴直径控制在2-6mm。

橡胶模压成型工艺原理

橡胶模压成型工艺原理

橡胶模压成型工艺原理橡胶模压成型工艺是一种常用的工业制造方法,通过将加热软化的橡胶放置在模具内,施加压力后使其在固化过程中得以成型。

这一工艺原理在各种行业中被广泛应用,如汽车制造、电子产品生产等领域。

下面将介绍橡胶模压成型的工艺原理及其主要步骤。

工艺原理橡胶模压成型工艺主要依靠橡胶材料的热塑性和弹性来完成成型过程。

通常,橡胶材料在加热后会软化,使得其可塑性增强。

然后将软化后的橡胶放置在模具中,施加一定的压力,使其填充模具的空腔。

在施加压力的同时,橡胶会逐渐冷却硬化,最终形成所需的产品形状。

主要步骤1.橡胶准备:首先需要准备橡胶原料,通常是橡胶颗粒或片状橡胶。

选择合适的橡胶材料对成型品质具有重要影响。

2.橡胶混炼:将橡胶材料与其他成分如硫化剂、填料等混炼均匀,以提高橡胶的成型性能和强度。

3.预加热:将混炼好的橡胶材料预热,使其软化,并方便后续的成型。

4.填充模具:将预热的橡胶放入设计好的模具中,确保橡胶能够完全填充模具的空腔。

5.施加压力:施加一定的压力,通常使用液压或机械的力量来压实橡胶材料,使其完全填充模具并形成所需形状。

6.冷却固化:在压力作用下,橡胶会逐渐冷却固化,形成稳定的产品结构。

7.取出产品:等到橡胶完全固化后,打开模具,取出成型好的橡胶制品。

8.后处理:对成型好的产品进行修整、润滑等后处理工序,以提高产品表面光洁度和性能。

通过以上步骤,橡胶模压成型产品便得以制作完成。

这一工艺相对简单,且适用范围广泛,能够满足多种产品的制造需求。

总的来说,橡胶模压成型工艺依靠橡胶材料的特性和适当施加的压力,实现了橡胶制品的高效成型。

它在现代工业生产中扮演着重要角色,为各行业提供了高品质、高性能的橡胶制品,推动了工业的发展与进步。

橡胶包胶工艺

橡胶包胶工艺

橡胶包胶工艺橡胶包胶工艺是一种常见的橡胶制品加工技术,它广泛应用于汽车、电子、航空航天等领域。

橡胶包胶工艺通过将橡胶制品包覆在金属或塑料等材料上,提高了制品的硬度、耐磨性和耐腐蚀性。

下面将详细介绍橡胶包胶工艺的原理、应用和发展趋势。

一、橡胶包胶工艺的原理橡胶包胶工艺是利用橡胶的优良性能,将橡胶制品粘合在其他材料上的一种工艺。

其原理是将橡胶制品与被包覆材料进行结合,形成一个整体。

在橡胶包胶工艺中,首先要将橡胶制品表面进行处理,使其与被包覆材料具有良好的粘附性。

然后,通过涂覆、压制等方式将橡胶制品固定在被包覆材料上,形成一个完整的包胶产品。

橡胶包胶工艺广泛应用于各个领域。

在汽车行业,橡胶包胶工艺被用于制作车辆密封件、减震器等零部件,提高了汽车的安全性和舒适性。

在电子行业,橡胶包胶工艺被用于制作手机外壳、键盘等配件,保护了电子产品的内部结构。

在航空航天领域,橡胶包胶工艺被用于制作飞机零部件、航天器密封件等,提高了飞行器的耐用性和安全性。

三、橡胶包胶工艺的发展趋势随着科技的不断进步,橡胶包胶工艺也在不断发展。

一方面,橡胶包胶工艺的材料选择越来越多样化,可以使用的被包覆材料不仅限于金属和塑料,还包括陶瓷、纤维等。

这为橡胶包胶工艺的应用领域提供了更多可能性。

另一方面,橡胶包胶工艺的加工方法也在不断改进。

传统的涂覆、压制等方法已经可以实现高效、精准的包胶效果,同时也出现了一些新的加工方法,如激光包胶、热熔包胶等。

这些新的加工方法可以更好地满足特定领域的需求,提高了橡胶包胶工艺的适用性和灵活性。

橡胶包胶工艺是一种重要的橡胶制品加工技术,具有广泛的应用前景。

随着材料科学和加工技术的不断发展,橡胶包胶工艺将进一步提高制品的性能和质量,满足人们对于高性能、高可靠性橡胶制品的需求。

相信在未来的发展中,橡胶包胶工艺将发挥更大的作用,为各个行业的发展做出更大的贡献。

橡胶浇注工艺

橡胶浇注工艺

橡胶浇注工艺橡胶浇注工艺是一种常见的制造工艺,广泛应用于橡胶制品的生产过程中。

本文将介绍橡胶浇注工艺的原理、步骤以及应用领域。

一、橡胶浇注工艺的原理橡胶浇注工艺是利用液态橡胶在一定温度和压力下流入模具中,通过固化后形成所需形状的制品。

其原理主要包括以下几个方面:1. 橡胶的流动性:橡胶在一定温度下具有较好的流动性,可以通过模具的通道流入到模腔中。

2. 橡胶的固化性:橡胶在一定时间内可以固化成为弹性体,形成所需的制品形状。

3. 模具的设计:模具的结构和尺寸需要根据所需制品的形状进行设计,以确保橡胶能够流入模腔并固化成型。

橡胶浇注工艺一般包括以下几个步骤:1. 模具准备:根据制品的形状和尺寸,选择合适的模具,并进行清洁和涂抹模具释模剂,以便橡胶能够顺利脱模。

2. 橡胶预处理:将橡胶材料进行预处理,包括加热、搅拌、去除气泡等,以提高橡胶的流动性和固化性。

3. 橡胶浇注:将预处理后的橡胶材料倒入浇注设备中,通过控制温度和压力,使橡胶顺利流入模具中,填充模腔。

4. 橡胶固化:橡胶在模具中固化的时间一般为数分钟到数小时不等,具体时间根据橡胶的种类和厚度而定。

5. 脱模和后处理:橡胶固化后,将制品从模具中取出,进行脱模。

然后根据需要进行修整、清洁、检验等后处理工序。

三、橡胶浇注工艺的应用领域橡胶浇注工艺广泛应用于橡胶制品的生产中,主要包括以下几个领域:1. 汽车工业:橡胶浇注工艺可以用于汽车零部件的制造,如橡胶密封件、橡胶管件等。

2. 电子工业:橡胶浇注工艺可以用于电子产品的制造中,如橡胶按键、橡胶密封圈等。

3. 医疗器械:橡胶浇注工艺可以用于医疗器械的制造,如橡胶导管、橡胶垫片等。

4. 工程机械:橡胶浇注工艺可以用于工程机械的制造,如橡胶履带、橡胶振动器等。

5. 日用品:橡胶浇注工艺可以用于日用品的制造,如橡胶手柄、橡胶垫等。

橡胶浇注工艺是一种常见且重要的制造工艺,通过控制橡胶的流动性和固化性,以及合理设计模具,可以制造出各种形状的橡胶制品。

橡胶工艺原理-复习思考题-+答案

橡胶工艺原理-复习思考题-+答案

橡胶工艺原理-复习思考题-+答案(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《橡胶工艺原理》复习思考题名词解释碳链橡胶、硬质橡胶、杂链橡胶、混炼胶、硫化胶、冷冻结晶、拉伸结晶、极性橡胶杂链橡胶:碳-杂链橡胶: 主链由碳原子和其它原子组成全杂链橡胶:主链中完全排除了碳原子的存在,又称为“无机橡胶”,硅橡胶的主链由硅、氧原子交替构成。

混炼胶:所谓混炼胶是指将配合剂混合于块状、粒状和粉末状生胶中的未交联状态,且具有流动性的胶料硫化胶 : 配合胶料在一定条件下(如加硫化剂、一定温度和压力、辐射线照射等)经硫化所得网状结构橡胶谓硫化胶,硫化胶是具有弹性而不再具有可塑性的橡胶,这种橡胶具有一系列宝贵使用性能。

硬质橡胶:玻璃化温度在室温以上、简直不能拉伸的橡胶称为硬质橡胶一般来说,塑料、橡胶、纤维的分子结构各有什么特点影响橡胶材料性能的主要因素有哪些?橡胶性能主要取决于它的结构,此外还受到添加剂的种类和用量、外界条件的影响。

(1) 化学组成:单体,具有何种官能团(2) 分子量及分子量分布(3) 大分子聚集状况:空间结构和结晶(4) 添加剂的种类和用量(5) 外部条件:力学条件、温度条件、介质简述橡胶分子的组成和分子链结构对橡胶的物理机械性能和加工性能的影响。

答:各种生胶的MWD曲线的特征不同,如NR一般宽峰所对应的分子量值为30~40万,有较多的低分子部分。

低分子部分可以起内润滑的作用,提供较好的流动性、可塑性及加工性,具体表现为混炼速率快、收缩率小、挤出膨胀率小。

分子量高部分则有利于机械强度、耐磨、弹性等性能。

简述橡胶的分类方法。

答:按照来源用途分为天然胶和合成胶,合成胶又分为通用橡胶和特种橡胶;按照化学结构分为碳链橡胶、杂链橡胶和元素有机橡胶;按照交联方式分为传统热硫化橡胶和热塑性弹性体。

简述橡胶的分子量和分子量分布对其物理机械性能和加工性能的影响。

橡胶塑炼的目的原理及其影响因素

橡胶塑炼的目的原理及其影响因素

橡胶塑炼的目的原理及其影响因素橡胶塑炼是一种重要的橡胶加工工艺,通过增加橡胶的可塑性和可加工性,使其满足不同行业和产品的需求。

本文将从目的、原理以及影响因素三个方面对橡胶塑炼进行详细介绍。

一、目的:橡胶塑炼是为了改善橡胶的物理性能,提高其加工性能,以满足不同行业和产品对橡胶的需求。

具体目的如下:1.提高橡胶的可塑性:橡胶塑炼可以使橡胶分子链间的键断裂,增加链段间的自由运动性,从而提高橡胶的可塑性。

2.改善橡胶的可加工性:橡胶塑炼可以使橡胶分子链间的键重新结合,提高链段间的交联程度,从而降低橡胶的黏度,提高其可加工性。

3.提高橡胶的物理性能:橡胶塑炼可以改善橡胶的拉伸强度、硬度、变形能力等物理性能,使其满足不同行业和产品的需求。

二、原理:1.热加工:橡胶加热可以提高分子链的运动性,使链段间的键断裂,增加橡胶的可塑性,同时热加工还能提高橡胶的流动性,使其易于加工。

热加工方法主要包括压炼、炼胶机等。

2.机械加工:橡胶通过剪切、挤压等机械力的作用下,可以改变其链段间的交联程度,从而改变其硬度、强度、伸长率等物理性能。

机械加工方法主要包括混炼机、胶研机等。

3.化学加工:橡胶塑炼过程中,可以添加助塑剂、稳定剂、促进剂等化学物质来改善橡胶的塑炼效果,提高其加工性能和物理性能。

常见的化学加工方法有添加法、表面活性剂法等。

三、影响因素:1.原料的选择:不同类型的橡胶树脂、填料以及添加剂的选择,对橡胶塑炼的效果有很大的影响。

例如使用不同种类和粒度的填料可以调整橡胶的硬度、强度等物理性能。

2.加工条件的控制:包括加热温度、加热时间、剪切速度等加工条件对橡胶塑炼效果有直接影响。

较高的加热温度和长时间加热可以提高橡胶的可塑性,但过高的温度和过长时间加热会导致橡胶老化、劣化等问题。

3.添加剂的使用:添加剂的种类和用量对橡胶塑炼的效果有显著影响。

例如使用助塑剂可以改善橡胶的可塑性和加工性能,使用稳定剂可以防止橡胶老化等。

总之,橡胶塑炼通过改善橡胶的可塑性和可加工性,提高其物理性能,满足不同行业和产品对橡胶的需求。

htv高温硫化硅橡胶成型工艺

htv高温硫化硅橡胶成型工艺

htv高温硫化硅橡胶成型工艺HTV高温硫化硅橡胶成型工艺是一种常见的橡胶成型工艺,主要用于制造高温耐热、优良绝缘性能的硅橡胶制品。

本文将详细介绍HTV高温硫化硅橡胶成型工艺的原理、工艺流程和注意事项。

一、HTV高温硫化硅橡胶成型工艺的原理HTV高温硫化硅橡胶成型工艺是指将加硫剂与硅橡胶料混合后,在高温环境下进行硫化反应,使硅橡胶料变成具有特定形状和性能的硅橡胶制品。

硫化反应是指通过加热硅橡胶料,使其中的硫化剂和硫反应生成交联结构,从而提高硅橡胶的强度和耐热性能。

二、HTV高温硫化硅橡胶成型工艺的流程1. 橡胶料准备:选择合适的硅橡胶料,并添加一定比例的硫化剂、增塑剂、填料等辅助材料。

将这些原料放入橡胶料混炼机中进行混炼,使其均匀分散。

2. 橡胶料热塑化:将混炼后的硅橡胶料投入热塑机中进行热塑化处理。

热塑化是指通过加热硅橡胶料,使其变得流动性更好,更容易塑型。

3. 橡胶料注射:将热塑化后的硅橡胶料注入到预先制作好的模具中。

模具中的形状和尺寸决定了最终硅橡胶制品的形状和尺寸。

4. 硫化反应:将注射好的硅橡胶料放入硫化炉中进行硫化反应。

硫化炉中的温度和时间决定了硅橡胶的硫化程度和性能。

5. 除模处理:硅橡胶制品经过硫化反应后,需进行除模处理,即从模具中取出硅橡胶制品。

除模处理要小心谨慎,以免损坏硅橡胶制品的形状和表面质量。

三、HTV高温硫化硅橡胶成型工艺的注意事项1. 材料选择:硅橡胶料的选择直接影响到最终硅橡胶制品的性能。

要根据具体需求选择合适的硅橡胶料,比如耐热性能、耐化学品性能等。

2. 硫化剂控制:硫化剂的选择和添加量要精确控制,以保证硅橡胶的硫化反应能够正常进行,并得到所需的硫化程度。

3. 温度和时间控制:硫化反应的温度和时间是影响硅橡胶制品质量的关键因素。

温度太高或时间太长会导致硅橡胶烧结或黏度增加,从而影响硅橡胶的性能。

4. 模具设计和制造:模具的设计和制造要考虑到硅橡胶料的流动性和收缩性,以保证最终硅橡胶制品的尺寸精度和表面质量。

橡胶工艺原理技术

橡胶工艺原理技术

《橡胶工艺原理》讲稿一绪论一.橡胶材料的特点1.高弹性:弹性模量低,伸长变形大,有可恢复的变形,并能在很宽的温度(-50~150℃)范围内保持弹性。2.粘弹性:橡胶材料在产生形变和恢复形变时受温度和时间的影响,表现有明显的应力松弛和蠕变现象,在震动或交变应力作用下,产生滞后损失。3.电绝缘性:橡胶和塑料一样是电绝缘材料。4.有老化现象:如金属腐蚀、木材腐朽、岩石风化一样,橡胶也会因为环境条件的变化而产生老化现象,使性能变坏,寿命下降。5.必须进行硫化才能使用,热塑性弹性体除外。6.必须加入配合剂。其它如比重小、硬度低、柔软性好、气密性好等特点,都属于橡胶的宝贵性能。表征橡胶物理机械性能的指标:1.拉伸强度:又称扯断强度、抗张强度,指试片拉伸至断裂时单位断面上所承受的负荷,单位为兆帕(MPa),以往为公斤力/平方厘米(kgf/cm2)。2.定伸应力:旧称定伸强度,指试样被拉伸到一定长度时单位面积所承受的负荷。计量单位同拉伸强度。常用的有100%、300%和500%定伸应力。它反映的是橡胶抵抗外力变形能力的高低。3.撕裂强度:将特殊试片(带有割口或直角形)撕裂时单位厚度所承受的负荷,表示材料的抗撕裂性,单位为kN/m。4.伸长率:试片拉断时,伸长部分与原长度之比叫作伸长率;用百分比表示。5.永久变形:试样拉伸至断裂后,标距伸长变形不可恢复部分占原始长度的百分比。在解除了外力作用并放置一定时间(一般为3分钟),以%表示。6.回弹性:又称冲击弹性,指橡胶受冲击之后恢复原状的能力,以%表示。7.硬度:表示橡胶抵抗外力压入的能力,常用邵尔硬度计测定。橡胶的硬度范围一般在20~100之间,单位为邵氏A。二.关于橡胶的几个概念1.橡胶:世界上通用的橡胶的定义引自美国的国家标准ASTM-D1566(America Society of Test and Material)。定义如下:橡胶是一种材料,它在大的变形下能迅速而有力地恢复其变形,能够被改性(硫化)。改性的橡胶实质上不溶于(但能溶脹于)沸腾的苯、甲乙酮、乙醇—甲苯混合物等溶剂中。改性的橡胶室温下(18~29℃)被拉伸到原来长度的两倍并保持一分钟后除掉外力,它能在一分钟内恢复到原来长度的1.5倍以下,具有上述特征的材料称为橡胶。注:1)橡胶是一种材料,具有特定的使用性能和加工性能,属有机高分子材料。2)橡胶在室温下具有高弹性。3)橡胶能够被改性是指它能够硫化。4)改性的橡胶即硫化胶不溶解但能溶胀。2.生胶: 没有加入配合剂且尚未交联的橡胶。一般由线型大分子或带有支链的线型大分子构成,可以溶于有机溶剂。3.混炼胶:生胶与配合剂经加工混合均匀且未被交联的橡胶。常用的配合剂有硫化剂、促进剂、活性剂、补强填充剂、防老剂等。4.硫化胶:混炼胶在一定的温度、压力和时间作用下,经交联由线型大分子变成三维网状结构而得到的橡胶。一般不溶于溶剂。三.橡胶工艺原理的主要内容橡胶工艺原理是研究和探讨橡胶的性质、加工及应用的一门科学技术,是数学、物理、化学、高分子物理、高分子化学、化学工程等多学科得相互渗透及应用,是把基础理论应用到橡胶得加工及使用得桥梁。橡胶工艺原理讲述了由单纯的原材料变为具有特定的性能和形状的橡胶制品的过程。主要内容包括:1. 橡胶的配合:根据制品的性能要求,考虑加工工艺性能和成本等因素,把生胶和配合剂组合在一起的过程。一般的配合体系包括生胶、硫化体系、补强体系、防护体系、增塑体系等。有时还包括其它一些特殊的体系如阻燃、着色、发泡、抗静电、导电等体系。1) 生胶(或与其它高聚物并用):母体材料或基体材料2) 硫化体系:与橡胶大分子起化学作用,使橡胶由线型大分子变为三维网状结构,提高橡胶性能、稳定形态的体系。3) 补强填充体系:在橡胶中加入炭黑等补强剂或其它填充剂,或者提高其力学性能,改善工艺性能,或者降低制品成本。4) 防护体系:加入防老剂,延缓橡胶的老化,提高制品的使用寿命。5) 增塑体系:降低制品硬度和混炼胶的粘度,改善加工工艺性能。2. 橡胶的加工工艺过程:无论什么橡胶制品,都要经过混炼和硫化这两个过程。对许多橡胶制品,如胶管、胶带、轮胎等,还需经过压延、压出这两个过程,对门尼粘度比较高的生胶,还要塑炼。因此,橡胶加工中最基础、最重要的加工过程包括以下几个阶段:1)塑炼:降低生胶的分子量,增加塑性,提高可加工性。2)混炼:使配方中各个组分混合均匀,制成混炼胶。3)压延:混炼胶或与纺织物、钢丝等骨架材料通过压片、压型、贴合、擦胶、贴胶等操作制成一定规格的半成品的过程。4)压出:混炼胶通过口型压出各种断面的半成品的过程,如内胎、胎面、胎侧、胶管等。5)硫化:橡胶加工的最后一道工序,通过一定的温度、压力和时间后,使橡胶大分子发生化学反应产生交联的过程。四.橡胶的发展历史1.天然橡胶的发展历史考古发现,人类在11世纪就开始使用橡胶—在南美制造橡胶球、橡胶鞋及橡胶瓶。1493年~1496年哥仑布发现新美洲大陆时,发现海地岛上土人玩的球能从地上弹起来,此后,欧洲人才知道橡胶的这种性质。1735年,法国科学家Condamine参加南美洲科考,带回了最早的橡胶制品。直到1823年,英国人马辛托希创办了世界上第一个橡胶厂,生产防水布,这是橡胶工业的开始。1839年,Goodyear发明了硫化,这两项发明为橡胶工业的发展奠定了基础。1862年,Honcock发明了双辊机1876年,英国开始在东南亚殖民地国家种植橡胶树1888年,Dunlop发明了充气轮胎1904年,发现硫化活化剂ZnO,炭黑可以补强1906年,发现促进剂苯胺1921年,发现促进剂D,从此橡胶工业得到迅速发展。2.合成橡胶的发展历史(1)对天然橡胶的剖析和仿制1820年,法拉第明确了橡胶由C和H组成;1860年,威廉姆斯(Williams)发现橡胶经蒸馏可产生异戊二烯化合物,并认为它是橡胶的基本化学组成;1875年,鲍查达(Bouchardat)认为异戊二烯能合成出类似橡胶的物质,这是最早的关于人工合成橡胶的报道。(2)合成橡胶的诞生、建立与发展1881年霍夫曼用1,3-戊二烯合成橡胶;1900年,前苏联孔达科夫用2,3-二甲基-1,3-丁二烯合成出橡胶;1929年,美国齐柯尔(Thiokol)公司生产了聚硫系合成橡胶;1931年,美国Du Pont 公司生产CR;1932年前苏联工业生产了丁钠橡胶后,相继生产的合成橡胶有SBR(1935年德国Farbon公司)、NBR(1937年德国Farbon公司);50年代,Zeigler—Natta发现了定向聚合,导致了橡胶工业的新飞跃,出现了BR(1960年美国Phillips公司)、EPDM(1960年意大利Montedison公司)、IR等新胶种,1965~1973年间出现了热塑性弹性体。3.国内橡胶工业的发展概况我国从1904年开始在雷州半岛等地种植NR,50年代将橡胶树北移种植成功,并在云南、广西等地大面积种植,现在,我国NR产量占世界第四位。1915年,在广州建立第一个橡胶加工厂—广州兄弟创制树胶公司,生产鞋底1919年,在上海建立清和橡皮工厂1927年,在上海建立正泰橡胶厂,生产胶鞋1928年,建立大中华橡胶厂,生产胶鞋1937年,日本在青岛建立现在的青岛橡胶二厂我国从1958年开始合成橡胶,国产第一块合成胶是四川长寿化工厂于1958年生产的CR,1960年兰州化工厂生产SBR,1962年兰化生产NBR。目前国内几家大石化如燕山石化、兰州石化、齐鲁石化等均生产合成橡胶,通用的合成橡胶除了IIR外,其它均能生产。我国橡胶工业从50年代后开始飞速发展,逐渐形成了以上海的正泰、大中华,青岛的橡胶二厂,黑龙江的桦林橡胶厂为中心的橡胶工业格局号称橡胶界的四大家族。其中正泰、大中华生产胶鞋、胶带,胶二和桦林生产轮胎。到1990年止,全国县级以上的橡胶企业就有1000多家,产值180亿元,约占全国工业总产值的1.5%,约占化工工业总产值的25%。90年代,我国橡胶工业得到了蓬勃发展,个体、私营橡胶企业如雨后春笋般发展起来,仅山东省大小橡胶企业就有1000多家,青岛市有几百家,96年以后由于受气候等因素的影响,世界NR的产量锐减,致使NR的价格飞涨,橡胶工业的发展受到一定程度的影响,但在国内工业总产值、化工工业总产值中仍然占有相当比重。橡胶企业主要集中在北京、上海、山东、沈阳、贵阳、重庆、牡丹江等地。我院为我国橡胶工业的发展作出了突出贡献,为橡胶工业培养了近万名人才,许多毕业生已成为各个橡胶企业的负责人和骨干技术人员。五.橡胶的用途橡胶的用途非常广泛,在交通运输、建筑、电子、石油化工、农业、机械、军事、医疗等各个工业部门以及信息产业都获得了广泛的应用。橡胶的最大用途是在于作轮胎,包括各种轿车胎、载重胎、力车胎、工程胎、飞机轮胎、炮车胎等,一辆汽车约需要240Kg橡胶,一艘轮船约需要60~70吨橡胶,一架飞机需要600kg橡胶,一门高射炮约需要86Kg橡胶。橡胶的第二大用途是作胶管、胶带、胶鞋等制品,另外如密封制品、轮船护弦、拦水坝、减震制品、人造器官、粘合剂等,范围非常广泛。有些制品虽然不大,但作用却非常重要,如美国“挑战者”号航天飞机因密封圈失灵而导致航天史上的重大悲惨事件。六.橡胶工艺原理的学习方法及主要参考资料橡胶工艺原理课理论性不是很强,经验总结比较多,不需要死记硬背,它与实际的联系比较紧密,所以学习时一定要与实际相结合,有条件的话多到工厂生产第一线学习参观。重点掌握生胶的性能特点与用途,橡胶的配合,橡胶的加工,对常见的专业术语要能够理解,要学会查阅文献资料。最终目的是要运用所学的理论知识,借助已有的工具和资料,根据产品的性能要求,设计配方,加工制造出合格的产品。另一方面,能运用所学的知识,分析解决生产中遇到的实际问题。主要参考资料:1.文摘性(1)中国化工文摘(季刊);(2)化学文摘(Chemical Abstract)(CA);(3)PAPRA Abstract英国塑料橡胶协会文摘;(4)日本科技文献速报;(5)橡胶文摘;2.中文刊物(1)橡胶工业(月刊)(北京橡胶设计院);(2)合成橡胶工业(双月刊)(兰化);(3)特种橡胶制品;(4)橡胶参考资料;(5)橡胶译丛;(6)胶带工业;(7)乳胶工业;(8)炭黑工业;等3.主要外文刊物(1)Rubber Chemistry and Technology(2)ゴム协会志第一章生胶§1.1 前言一.本章内容及要求通过本章学习,要掌握各种生胶的制造、结构、性能及应用特点。重点是各种生胶的物理性能、化学性能、使用性能及加工性能,以及这些性能与结构的关系。要求:1. 掌握NR及通用合成橡胶的结构、性能;2. 掌握特种合成橡胶的结构及主要特性;3. 了解新形态橡胶的结构及特性;4. 了解再生橡胶的制造过程;5. 掌握再生橡胶的使用特点。二.橡胶的分类1.按来源和用途分:2.按主链结构及极性分类3.按形态分:固体橡胶(块状橡胶)、液体橡胶、粉末橡胶4.按交联结构分:化学交联的传统橡胶、热塑性弹性体以上各种橡胶,NR的用量最大,其次是SBR、BR、EPDM、IIR、CR、NBR,近年来,NR的用量占全部橡胶用量的30%~40%,SBR占合成橡胶的40%~50%。§1.2 天然橡胶天然橡胶是从天然植物中采集来的一种弹性材料,在自然界中含橡胶成分的植物不下两千种,如高大的乔木、灌木、草本植物和爬藤植物等,我们常见的橡胶树、橡胶草、蒲公英等都含有橡胶成分。一.天然橡胶植物与采集含天然橡胶的植物很多,但具有采集价值的不多,天然橡胶的主要来源有以下几种: 1.橡胶植物(1)巴西橡胶树(2)橡胶草(3)银色橡胶菊(4)杜仲树2.天然橡胶的采集胶乳存在于橡胶树皮的乳管中,每日清晨在离地50cm的树干上按一定的倾斜角度割破树皮断其乳管,乳白色的胶乳就会流到割口下盛胶乳的杯子中。割胶制度为当割线长为树粗的1/3~1/2时隔日割,而全周则须隔三天再割一次。总之应本着这样的原则:不致使树木受损害,又要保持高的胶乳产量。二.天然橡胶的分类与分级1.分类:2.NR的分级目前NR的分级有两种,一种是按照外观质量分级,如烟片胶、绉片胶。另一种是按照理化指标分级,如颗粒胶,后者比较科学,也是目前国际标准的橡胶分级方法。1)按外观质量分级:国产烟片胶标准:将烟片胶分为一级烟片、二级烟片、***烟片、四级烟片和五级烟片五个等级,质量依此递减。国产绉片胶标准:按GB8090—87国产绉片胶分为六个等级,它们是特一级白绉片胶、一级白绉片胶、特一级浅色绉片胶、一级浅色绉片、二级浅色绉片、***浅色绉片等。2)根据理化指标分级:这是标准胶的分级方法,是指按机械杂质、塑性保持率、塑性初值、氮含量、挥发分含量、灰分含量、颜色指数等理化性能指标进行分级的橡胶。一般用聚乙烯薄膜包装。其中:塑性保持率又称抗氧指数(PRI),是指生胶在140℃×30min加热前后,华莱氏可塑度的比值。PRI =P/P0×100%,PRI值越高,表明生胶抗热氧老化性能越好。ISO2000将标准胶分为五个等级,并有鲜明的标识:SMR5L(绿带)、SMR5(绿带)、SMR10(褐带)、SMR20(红带)、SMR50(黄带),质量依此降低。国产标准胶的规格按GB8081—87分为CSR5号、CSR10号、CSR20号、CSR50号共四个等级,分别与ISO2000中的SMR5、SMR10、SMR20、SMR50相对应。三.天然橡胶的制造工艺及特点原材料:从橡胶树上割下来的新鲜胶乳,还有杂胶,包括胶杯凝胶、自凝胶块、胶线、皮屑胶、泥、浮渣胶,此外还有烟片碎胶。1.烟片胶35%胶乳→过滤去杂质→加水稀释至15~20%→消泡澄清滤渣→加1%甲酸凝固(或乙酸)→除水→压3~3.5mm薄片→薰烟干燥(70℃,7~8天,防止霉变)→检查分级包装2.绉片胶①白色绉片35%胶乳→过滤除杂质→加水稀释至18~20%→消泡→加NaHSO3漂白防腐→加酸凝固→轧炼水洗去水溶物→压成1~2mm片→热空气干燥(35℃,10天)→检查分级包装②褐色绉片胶线、胶团、胶泥→浸泡洗涤→压绉→热空气干燥→检查分级包装3.颗粒橡胶机械法:胶乳→过滤→稀释→澄清滤渣→加酸凝固→脱水→压片→压条→机械造粒→干燥→压紧包装化学法:胶乳→加絮凝剂(Al2(SO4)3)→离心分离→干燥→压紧打包四.NR的组成及橡胶烃的结构1.天然橡胶的组成:1)NR的组成:2)非橡胶成分对橡胶性能的影响:蛋白质:NR中的含氮化合物都属于蛋白质。(a)蛋白质有防止老化作用;(b)分解放出氨基酸促进橡胶硫化;(c)使橡胶容易吸收水分,易发霉;(d)蛋白质的吸水性使制品的绝缘性降低。丙酮抽出物:指橡胶中能溶于丙酮的物质,主要是一些高级脂肪酸和固醇类物质。高级脂肪酸:软化剂、硫化活化剂(促进硫化)甾醇:防老剂磷脂:分解放出游离的胆碱,促进硫化少量的胡萝卜素:物理防老剂(紫外线屏蔽剂)灰分:是一些无机盐类物质,主要成分是Ca、Mg、K、Na、Cu、Mn等。其中K、Na、Ca 、Mg影响橡胶的电性能;Cu、Mn等变价金属含量多加速橡胶的老化(限度<3ppm)。水分:对橡胶的性能影响不大,若含量高,可能会使制品产生气泡。3)橡胶烃的结构:一次结构:结构单元: 顺式含量>97%NR顺式(1,4)结构97%以上,3,4结构约2%,100%头尾连接。杜仲胶为反式1,4结构,与NR相比,虽化学组成相同,但性能各异。二次结构:分子量:3万~3000万; 分子量分布指数:2.8 ~10;平均分子量接近30万随着分子量增大,支化程度增加,分布变宽。低分子量部分对加工有利,高分子量部分对性能有利。三次结构(结晶性):在室温下为无定形体,10℃以下开始结晶,无定形与结晶共存,—25℃结晶最快。拉伸条件下结晶、无定形与取向结构共存,属于自补强橡胶。自补强性:在不加补强剂的条件下,橡胶能结晶或在拉伸过程中取向结晶,晶粒分布于无定形的橡胶中起物理交联点的作用,使本身的强度提高的性质。如拉伸650%时,结晶度可以达到35%。五.天然橡胶的性质1.物理性质:1)物理常数密度d20℃=0.913g/cm3; 折光指数(折射率)20℃=1.522)NR的耐寒性好,耐热性不是很好:NR的Tg= -73℃,在-50℃仍具有很好的弹性。NR无一定熔点,加热后慢慢软化,生胶在130℃~140℃时开始软化,200℃开始分解(变色),270℃剧烈分解。其长期使用温度为90℃,短期最高使用温度为110℃。粘流温度Tf =130℃。3)NR有良好的弹性:NR的弹性和回弹性在通用橡胶中仅次于BR。弹性(elasticity):表示橡胶弹性变形能力的大小,受配方、硫化条件的影响,决定于交联密度。橡胶的弹性一般用回弹性(resilience)表示,指橡胶受到冲击后,能够从变形状态迅速恢复原状的能力。受橡胶内耗的影响,内耗越大,回弹越小。NR有良好回弹性的原因:①NR大分子本身有较高的柔性—σ键易旋转。②NR分子链侧基少且体积小,对σ键的影响小。③NR为非极性物质,大分子间作用力小。4)机械性能机械强度高,属于自补强橡胶:格林强度:未硫化橡胶的拉伸强度。格林强度对于橡胶的成型加工是必要的。如轮胎胎面胶在成型时要受到较大的冲击,如果强度不够,容易拉断。NR的格林强度: 1.4~2.5MPa纯胶硫化胶拉伸强度:17~28MPa 撕裂强度:98kN/m炭黑补强硫化胶拉伸出强度:25~35MPa各种橡胶的机械强度比较:NR>IR>CR>IIR>NBR>SBR>BR耐屈挠疲劳性好:一般在20万次以上。5)耐磨性好:耐磨性与橡胶的强度有关。由于橡胶的强度高,所以耐磨性好。6)绝缘性好:NR是一种绝缘性很好的材料,如电线接头外包的绝缘胶布就是纱布浸NR胶糊或压延而成的。NR体积电阻为1014~1015Ω•cm(绝缘体体积电阻1010~1020Ω•cm)7)气密性气密性中下等。8)自粘性和互粘性好。9)耐化学介质性NR具有良好的耐化学药品性及一般溶剂作用,耐稀酸酸、稀碱、不耐浓酸、油、耐水性差。NR作为非极性聚合物,溶于苯、汽油、石油系油类,不溶于极性油类。2.化学性质1)链烯烃的一般特点:NR的结构式:NR的分子链中双键旁有三个α位置a、b、c,实验证明,这三个位置上的α—H的解离能不同,活性也不同,与伯氢c相比,a、b是仲氢,脱氢容易,所以反应活性大。而a与b相比,由于脱氢后形成的大分子自由基稳定(与侧甲基的超共扼作用),所以活性更大。反应活性a>b>c。①NR中有双键,能够与自由基、氧、过氧化物、紫外光及自由基抑制剂反应。②NR中有甲基(供电基),使双键的电子云密度增加,α-H的活性大,使NR更易反应(易老化、硫化速度快)。2)化学反应性:(利用此对NR进行改性)①与硫黄反应:进行硫化交联。②与Cl2反应,制备氯化天然橡胶。③与HCl反应,产物为白色粉末,主要用作粘合剂。④NR胶乳与过氧乙酸反应,得环氧化天然橡胶。环氧化程度可达10、25、50、75%(摩尔),ENR—50的气密性接近IIR,耐油性接近中等丙烯腈含量的NBR,强度与NR相当,粘着性也较好。⑤环化:NR胶乳用硫酸环化后,可以使不饱和度下降,密度增加,软化点提高,用来制作鞋底、坚硬的模制品、机械衬里。⑥与MMA接枝:目前有MG—49和MG—30两种,接枝MMA的NR定伸应力和拉伸强度都很高,抗冲击性和耐曲挠龟裂、动态疲劳性、粘着性较好。主要用来制造要求具有良好抗冲击性能的坚硬制品、无内胎轮胎中不透气的内贴层、纤维与橡胶的强力粘合剂等。六.NR的配合与加工1.NR的配合硫化体系:NR一般用硫黄硫化体系,促进剂用噻唑类、次磺酰胺类、秋兰姆类等,活化剂有氧化锌、硬脂酸。补强填充体系:最常用的是炭黑,其次是白炭黑及非补强性填充剂碳酸钙、陶土、滑石粉。防护体系:对苯二胺类最好,如4010、4020、4010NA等。增塑体系:以松焦油、三线油最为常用。其次是松香、古马隆及石蜡。配方举例:(以胎面胶为例)NR 100 (生胶)S 2.5 (硫化剂)CZ 0.5 (促进剂)NOBS 0.5 (促进剂)ZnO 6.0 (活化剂)SA 2.5 (活化剂)HAF 20 (补强剂)ISAF 30 (补强剂)AW 0.5 (防老剂)4010NA 1.5 (防老剂)松焦油: 5.0 (增塑剂)石蜡: 1.0 (增塑剂)2.NR的加工塑炼性好:比合成橡胶易塑炼,易过炼。分子量高,1#烟片胶的威氏可塑度不到0.1,门尼粘度在95~120之间。混炼性好:比合成橡胶易混炼,易包热辊、易吃粉、易分散。压出性好:压出速度快、质量好、表面光滑。压延型好:收缩率低,热塑性大。成型性好:NR的自粘性高,格林强度高。硫化特性好:硫化速度快,但要防止过硫。最适宜的温度143℃,不能超过160℃。所以NR是综合加工性能最好的橡胶。3.NR的应用NR的应用最广:其中轮胎:68% ;工业制品:13.5%;胶鞋:5.5%;胶乳:9.5%;粘合剂:1%;其他:2.5%4.异戊橡胶又称合成天然橡胶,1954年实现工业化生产,结构单元与天然橡胶一样,适于作浅色橡胶制品,与NR有以下不同:1) 顺式含量低于NR,结晶能力比NR差,分子量分布较NR窄,不含非橡胶成分,加工和力学性能较NR差。2) 格林强度低,生胶有冷流倾向,硫化速度慢。3) IR的耐老化性能较NR差。4) 压延、压出性、粘和性能与NR相当。5.反式聚异戊二烯橡胶(TPI)天然的TPI有杜仲胶、巴拉塔胶、古塔波胶,人工合成高反式TPI也已实现。国外已经工业化生产,但是催化效率抵,价格昂贵。TPI与NR不同,为反式1,4—结构,其性能也与NR有明显的不同,表现如下:1. 60℃以下迅速结晶,具有高硬度和高拉伸强度,常温下象塑料那样硬,结晶度在25%~45%之间。随温度升高,结晶度下降,硬度和拉伸强度急剧下降。2. 温度高于60℃,TPI能软化,具有弹性,表现出橡胶的特性,可以硫化。应用此特性可以用作形状记忆材料。3. TPI无生理毒性,可作为医用夹板,可以用酒精直接消毒。4. 硫化过程表现出明显的三阶段特征:①未硫化阶段:结晶,属于典型的热塑性材料,强度、硬度高,冲击韧性极好,软化点低(60℃),可在热水中或热吹风中软化,可以直接在身体上模型固化,也可以捏塑成型,随体性好,轻便、卫生,可以重复使用,可以代替石膏作固定夹板、绷带、矫形器件、假肢等。②低中度交联阶段:交联点间链段仍能结晶,表现为结晶型网络结构高分子,可以作形状记忆功能材料(室温下具有热塑性、受热后具有热弹性)。③交联度达到临界点:表现为典型的弹性体特性,耐疲劳性能优异,滚动阻力小,生热低,是发展高速节能轮胎的一种理想材料。5. 塑炼和混炼温度不能低于60℃,半成品挺性好,易喷霜合成橡胶在8种合成橡胶中全部由我国自行研究开发的胶种有BR、SSBR、SBS和CR;全部引进国外技术的胶种是EPDM。§1.3 丁苯橡胶(SBR)SBR是产量最大的合成橡胶,占合成橡胶总量的55%,70%用于轮胎。按合成方法分为乳聚(1933年由德国的Farben公司生产)和溶聚(60年代投入工业化生产,发展较快)SBR两大类。一.合成方法聚合单体:丁二烯(占2/3以上)、苯乙烯(少于1/3)1.乳液法:高温乳液聚合:50℃低温乳液聚合:5℃2.溶液法:60年代后投入工业化生产,该胶具有滚动阻力低,抗湿滑性好、综合性能高等特点,在轮胎行业中获得广泛应用。二.分类(按制法分)三.SBR的结构乳聚SBR:顺1,4—结构含10%,反1,4—结构70%,1,2—结构20%溶聚SBR:顺1,4—结构比乳聚高,其它比乳聚低四.SBR的性能(一)性能1.物理常数密度(g/cm3)d=0.92~0.94折光指数1.532.SBR强度比NR差生胶格林强度约为0.5MPa;纯胶硫化胶的强度为1.4~3.0MPa;但炭黑补强后硫化胶的拉伸强度高达17~28MPa。撕裂强度比NR低,大约为NR的一半。3.弹性、耐寒性比NR差。4.耐热、耐老化、耐磨性比NR好(苯环弱吸电、体积大—分子内摩擦大、双键浓度低),硫化反应速度慢。5.SBR耐屈挠疲劳性比NR差,但耐初始龟裂性好,耐裂口增长性差。6.SBR粘着性比NR差。7.SBR的电性能和耐溶剂性SBR电绝缘性能良好,耐溶剂性比NR好,但仍不耐非极性油类。8.抗湿滑性优于NR、BR。(二)配合与加工配合:必要成分—硫化剂:硫黄用量比NR中少(双键量少)促进剂:促进剂用量比NR中多(硫化速度慢)活化剂补强剂:主要是炭黑(非自补强性)增粘剂:本身粘性差,用烷基酚醛树脂,古马隆树脂增粘一般成分—防老剂,软化剂加工:塑炼性—一软丁苯(门尼粘度在40~60之间)一般不需要塑炼;混炼性——SBR对炭黑湿润性差,混炼生热高,开炼机应控温在40~50℃之间且包冷辊。密炼机混炼时间不宜过长,温度不能太高,排胶温度应低于130℃。压延、压出性—压延、压出收缩率高,表面不光滑,并用部分NR可以改善。成型性——格林强度低,自粘性差,可与NR并用或采用增粘剂改善。硫化性——硫化速度慢,操作安全性好五.SBR的应用SBR是一种耗量最大的通用橡胶,应用广泛,除要求耐油、耐热、耐特种介质等特殊情况外的一般场合均可使用。主要用于轮胎工业,另外还用于运输带的覆盖胶,输水胶管,胶鞋大底,胶辊,防水橡胶制品,胶布制品、微孔海绵制品、防震制品等。。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

橡胶工艺原理
橡胶工艺原理是指将原材料经加工后制成橡胶制品的一系列工艺和技术。

橡胶制品应用广泛,可以用于汽车、航空、船舶、建筑、电器、医疗等各个领域。

然而,要制造出高质量的橡胶制品,并不是一件简单的事情,不仅需要良好的设备和材料,还需要严格的工艺控制和科学的原理理论支撑。

首先,我们先来了解一下橡胶的基本性质和成分。

橡胶是一种高分子化合物,由橡胶树采集的乳液或人工合成的橡胶聚合物制成。

它的主要成分是碳、氢、氧及少量其他元素。

橡胶的基本性能包括:高弹性,耐磨性好,高耐寒性和耐老化性,可塑性好,耐化学腐蚀,不易燃等。

橡胶制品的生产过程一般分为三步:混炼、成型和硫化。

其中,混炼是将橡胶和其他添加剂,在混合机中加热搅拌成型;成型是将混炼好的橡胶料放入模具中进行成型,形成所需的产品形状;硫化是将成型后的橡胶制品放入硫化箱中进行加热,使其在高温下发生化学反应,成为坚韧的橡胶制品。

在混炼过程中,一般会向橡胶料中加入各种添加剂,以改善橡胶的性能和质量。

这些添加剂包括增塑剂、防老剂、填充剂、助剂、颜料等。

其中,填充剂的作用非常重要,它可以提高橡胶的硬度和强度,降低成本。

一般而言,填充剂的含量会占到橡胶混炼料总量的50%-70%。

常用的填充剂有炭黑、白炭黑、滑石粉、氧化铝等。

成型过程则包括挤出、压缩成型、注塑、挤压等多种方式。

其中,挤出是指将热压橡胶料挤出成型,常用于制造板材、管材和带材等;压缩成型是将混炼好的橡胶料放到压力机模具中压缩成型,常用于制造密封件、垫片和橡胶板等;注塑是将热熔态的橡胶料注入模具中成型,常用于制造零件、机械件等;挤压是将橡胶料通过挤压机制成所需的形状,常用于制造密封圈、管子等产品。

硫化则是通过加热使橡胶聚合物中的硫和碳原子相互交联,从而增加橡胶制品的硬度和强度,提高耐磨性和耐寒性。

硫化温度和时间是影响橡胶制品性能的关键因素,硫化温度过高或时间过长会导致橡胶制品变质、失去弹性等问题。

总的来说,橡胶工艺原理的核心问题在于如何在制造过程中控制好各种参数,确保所制造的橡胶制品具有优异的性能和质量。

这需要制品生产厂家拥有优秀的生产技术和专业的技术人员,加强制品质量管控,降低产品成本和环保压力。

同时,社会也需要加强对橡胶制品行业的监管和管理,减少环境污染和安全事故的发生。

只有共同努力,才能推动橡胶工业健康、持续发展。

相关文档
最新文档