鱼雷制导的原理和应用

合集下载

水中导弹鱼雷制导技术

水中导弹鱼雷制导技术
• 在二战期间,德国、日本都先后推出了有人操纵的鱼雷。这种鱼雷通常采取 半潜式推进,鱼雷上有操作人员1名,通过操纵杆、潜望镜来判断、修正鱼雷 的航向,以确保命中目标,提高命中率。德国的人控鱼雷在发射半程后,操 作人员跳水逃生,由母舰派小艇救回;而日本的回天鱼雷则是让鱼雷上的操 作人员与鱼雷一起爆炸,进行所谓的“神风特攻”,与“樱花特攻队”如出 一辙,其残酷程度令人叹息,但实际战果并不明显。
• 采用以大规模集成电路为基础的数字 计算机来分辩真假目标。
• 原理:计算机对接收到的信号进行频 谱分析,并与计算机内存的目标信息 对照以识别目标;或者对目标进行频 率响应测量,根据它的特征值进行鉴 别。
• 随着大容量、高速度、智能化、小型 计算机的出现,鱼雷制导性能将会大 大改进。
制导技术趋向
• 利用水下污染自导
系统、导引控制系统和动力推进系统等。
制导技术的产生
• 现代鱼雷具有航行速度快、航程远、隐蔽性好、命中率高和破坏性大的特点 ,可以说是 “水中导弹”。
制导技术的发展
制导技术的历史时刻
• 1899年,奥匈帝国的海军制图员路德格·奥布里将陀螺仪安装在鱼雷上,用它 来控制鱼雷定向直航,制成世界上第一枚控制方向的鱼雷,大大提高了鱼雷 的命中精度。
谢谢
• 70年代后,鱼雷采用了微型电脑,改进了自导装置的功能,增强了抗干扰和 识别目标的能力。
• 目前世界各国都非常重视鱼雷的研究、改进和制造,目的是使鱼雷更轻便, 进一步提高命中率、爆炸力和捕捉目标的能力。
制导技术的发展
• 直航鱼雷
• 从鱼雷问世到二战前所用的鱼雷都是无制导的直航鱼雷,是一种近程快速、 威力大的反舰武器,但是由于鱼雷上没有自导装置和非触发引信,单发命中 概率很低,为了达到攻击目的必须几条鱼雷同时齐射。

尾流自导鱼雷射击方式转换及参数解算问题

尾流自导鱼雷射击方式转换及参数解算问题

尾流自导鱼雷射击方式转换及参数解算问题尾流自导鱼雷是一种先进的水下武器系统,具有很高的精确打击能力。

在实际应用中,其射击方式和参数解算是关键问题。

尾流自导鱼雷射击方式主要有主动制导和被动制导两种。

主动制导是指鱼雷在发射后主动搜索目标并进行制导;被动制导是指鱼雷通过接收目标的声纳信号进行自主制导。

在不同的环境和任务中,选择适合的制导方式可以提高鱼雷的命中率和杀伤效果。

尾流自导鱼雷的参数解算包括航向角、俯仰角、偏航角、距离和速度等多个要素。

这些参数的精确计算和测量对于正确的制导和射击非常重要。

其中,航向角是指鱼雷相对于目标的水平夹角,俯仰角是指鱼雷相对于目标的上下夹角,偏航角是指鱼雷相对于目标的左右夹角。

这些参数的计算需要借助传感器和合适的算法来实现。

除了制导方式和参数解算外,尾流自导鱼雷的设计和性能也是影响其射击效果的关键因素。

鱼雷的推进系统、引信和控制系统都需要具备可靠性和高效性,才能保证鱼雷的准确制导和打击目标的能力。

此外,鱼雷还需要具备超强的防御能力,才能在海面上独立运行。

总的来说,尾流自导鱼雷的射击方式转换和参数解算是非常重要的问题,这涉及到鱼雷的实际命中率和生命周期。

在未来,尾流自导鱼雷的射击方式和参数解算将不断被优化和改善,以适应各种复杂的战争环境和任务需求。

在尾流自导鱼雷的射击方式和参数解算中,以下是常用的相关数据:1. 航向角误差:一般要求在几度以内,以保证鱼雷能够准确朝向目标方向进行制导和攻击。

2. 俯仰角误差:一般要求在几度以内,以保证鱼雷能够准确打击目标的上下位置。

3. 偏航角误差:一般要求在几度以内,以保证鱼雷能够准确打击目标的左右位置。

4. 距离误差:一般要求在几米以内,以保证鱼雷能够准确接近目标进行攻击。

5. 速度误差:一般要求在几节以内,以保证鱼雷能够在高速运动中精确制导和打击目标。

6. 引信灵敏度:一般要求能够在不同类型目标上起到有效杀伤效果。

7. 防御能力:鱼雷的防御能力是非常重要的,需要具备足够的抗干扰能力、防护性能和灵敏度,以应对不同的海况和水下环境。

鱼雷对抗原理的应用范围

鱼雷对抗原理的应用范围

鱼雷对抗原理的应用范围1. 水面舰艇防御•鱼雷对抗原理可以应用于水面舰艇的防御系统中,提高对鱼雷袭击的反应能力和生存能力。

•鱼雷对抗原理可以帮助水面舰艇实施鱼雷拦截,破坏来袭的鱼雷,从而保护舰艇和船员的安全。

2. 潜艇反潜作战•鱼雷对抗原理的应用范围还包括潜艇反潜作战。

•潜艇可以利用鱼雷对抗原理,对敌方潜艇进行打击和破坏,提高反潜作战的效果。

3. 打击水下目标•鱼雷对抗原理的应用范围还涵盖打击水下目标的能力。

•鱼雷对抗原理可以帮助水面舰艇或潜艇对敌方舰艇、潜艇或其他水下目标进行有效打击。

4. 防御渔网•鱼雷对抗原理还可以应用于防御渔网,避免渔网对舰艇或潜艇的影响。

•鱼雷对抗原理可以通过干扰渔网的传感器,使其无法有效侦测和捕捉目标。

5. 海上矿产资源勘探•鱼雷对抗原理的应用范围还包括海上矿产资源的勘探。

•鱼雷对抗原理可以帮助勘探人员对海底地质进行探测和分析,提高勘探的效率和准确性。

6. 海底电缆维护•鱼雷对抗原理可以应用于海底电缆的维护工作中。

•鱼雷对抗原理可以帮助维护人员对海底电缆进行巡视和修复,确保电缆的正常运行和通信质量。

7. 海洋科学研究•鱼雷对抗原理的应用范围还可以包括海洋科学研究领域。

•鱼雷对抗原理可以帮助科学家对海洋中的生态、地质和气象等进行观测和研究,提高对海洋环境的认识和理解。

8. 海上救援行动•鱼雷对抗原理可以应用于海上救援行动中。

•鱼雷对抗原理可以帮助救援人员对事故船只或遇险人员进行搜索和救助,提高救援行动的效率和成功率。

9. 海上交通航行管理•鱼雷对抗原理还可以应用于海上交通航行管理系统中。

•鱼雷对抗原理可以帮助监测人员对海上交通船只进行追踪和管理,提高海上交通的安全性和流畅性。

10. 海上边境安全防御•鱼雷对抗原理可以应用于海上边境的安全防御工作中。

•鱼雷对抗原理可以帮助边防人员对海上边境进行监控和巡逻,提高边境安全的防御能力。

总结起来,鱼雷对抗原理的应用范围十分广泛,涵盖了水面舰艇防御、潜艇反潜作战、打击水下目标、防御渔网、海上矿产资源勘探、海底电缆维护、海洋科学研究、海上救援行动、海上交通航行管理和海上边境安全防御等领域。

最新2019-鱼雷全弹道设计-PPT课件

最新2019-鱼雷全弹道设计-PPT课件
说明了此种导引方法在任何初始条件r0和q0 时,鱼雷只能从目标的尾部与目标相遇。
§3-4 固定提前角导引法
所谓固定提前角导引法是指鱼雷在攻击目标
的导引过程中,鱼雷的速度矢量与视线保持一定 的角度的导引规律。其导引方程为
V 0
V =常数≠0
弹道方程
固定提前角导引时,若取基准线平行于目标的 运动轨迹,目标的速度大小和方向都不变,导引的 几何关系如图3所示。
dq dt

1 r
V
sin V
T
sin T



q V V

q T T

从方程组中可以看出,方程组包含5个未知
量——r、q、 V 、 V T
T ),而方程组只含
有4个方程,无法得到确定解。为此,尚需建立一
个方程,它就是描述导引方法的导引关系方程。
32导引弹道的相对运动方程整理课件根据图所示的鱼雷和目标之间的相对运动关系就可以直接建立相对运动方程将鱼雷速度矢和目标的速度矢量分别沿目标瞄准线的方向及法线的方向上分解可以得到描述相对距离变化率drdt和目标线方位角变化率dqdt的相对运动方程为
第三章 鱼雷弹道
鱼雷全弹道设计 导引弹道的相对运动方程 鱼雷制导的导引方法
根据图所示的鱼雷和目标之间的相对运动关
系就可以直接建立相对运动方程,将鱼雷速度矢
量 V 和目标的速度矢量 T 分别沿目标瞄准线
的方向及法线的方向上分解,可以得到描述相对 距离变化率dr/dt和目标线方位角变化率dq/dt 的相对运动方程为:
dr dt

T
cosT
V
cosV

其相对运动方程组为:
rTcosqVcosV rqT sinqV sinV 可以推导出: 1)当 (psinV)2 1时,得到固定提前角弹道公式为:

鱼雷制导技术

鱼雷制导技术

迄今为止,鱼雷制导技术有以下几种:1、声自导;2、主/被动声自导;3、线导+声自导;4、线导+主/被动声自导;5、尾流制导+声自导;6、光纤制导+声自导;7、光纤制导+主/被动声自导;8、拖曳基阵制导;9、智能数字化制导。

这些制导方式均以声场理论为基础,大多已广泛应用于鱼雷,只有几种还在研究发展之中。

重型鱼雷往往采用以上的第4种制导方式,即线导+主/被动声自导;而轻型鱼雷一般无需线导,只有主/被动声自导。

这是因为前者航程较远,所以要光用线导把鱼雷导向目标近,最后转换成主/被动声自导。

如果没有线导,鱼雷声自导不可能捕获远距离目标;而没有主/被动声自导,鱼雷的命中精度就不高。

这与反舰导弹需要中段惯性制导加末段主/被动雷达寻的的道理是一样的。

鱼雷线导控制系统由导线、放线器和信号传输设备等。

导线具有较强的拉力和抗腐蚀有力。

鱼雷发射后,射击控制系统通过导线传输指令,控制鱼雷的航向、航速、航深和姿态;鱼雷则通过导线向发射舰艇连续传回自身的工作状态、位置、运动姿态、以及目标的方位、距离、干扰情况等信息。

射击控制系统根据目标和鱼雷的运动参数,经处理后形成制导指令并向鱼雷发出,把鱼雷导向目标。

当鱼雷进入声自导作用距离时,启动自导系统,先以被动声自导进行搜索,发现目标后转入自动跟踪、识别,在一定时候转入主动声自导,对目标精确定位和攻击。

美国MK50轻型鱼雷的声纳系统能以很快的速度在很大的水域内搜索和发现目标。

其声纳基阵能以多种频段连续发射单脉冲和调频脉冲,然后通过选择发射及接收波提高数据的采集量量。

自导数据处理系统采用后检测信息处理技术,2台数字式计算机可以用来估算声纳回波,辩别真假目标。

瑞典TP43X0虽然是轻型鱼雷,却有线导部分。

它采用在一根导线上进双向分时多路传输方式,允许传输80多种不同类型的信息。

鱼雷制导技术的发展趋向主要有以下几种:应用数字计算机技术使鱼雷自导智能化:采用以大规模集成电路为基础的数字计算机可分辩真假目标。

教学制导鱼雷的工作原理

教学制导鱼雷的工作原理

教学制导鱼雷的工作原理教学制导鱼雷是一种用于海上教学训练以及实战演练的武器系统。

它能模拟真实战场下的各种复杂环境,使训练者能够接受高度逼真的实战训练。

本文将介绍教学制导鱼雷的工作原理,包括其核心组成部分、功能以及基本原理。

1. 教学制导鱼雷的组成部分教学制导鱼雷主要由以下几个核心组成部分构成:(1) 引导系统:引导系统是教学制导鱼雷的核心部件,它能够实时获取目标信息,并对其进行跟踪、定位和识别。

(2) 控制系统:控制系统是教学制导鱼雷的智能部分,它能够根据引导系统提供的目标信息,自主地进行航向调整和速度控制。

(3) 作战系统:作战系统包括弹头、引信等部分,它能够在接近目标时起爆,有效地击毁或禁止目标。

(4) 通信系统:通信系统能够实现鱼雷与外界指挥控制系统之间的信息交互,确保命令的传递和执行。

2. 教学制导鱼雷的工作原理教学制导鱼雷的工作原理主要分为搜索、追踪和攻击三个阶段:(1) 搜索阶段:教学制导鱼雷在此阶段通过自身的引导系统对海域进行搜索,获得目标的位置和运动信息。

引导系统利用声纳、激光或雷达等各种传感器技术,探测并锁定目标。

(2) 追踪阶段:在搜索到目标后,教学制导鱼雷将进入追踪阶段。

控制系统利用引导系统提供的目标信息,计算并调整鱼雷的航向和速度,以便跟随目标。

(3) 攻击阶段:一旦教学制导鱼雷靠近目标,作战系统将根据预设条件触发攻击。

弹头将被引信引爆,对目标造成破坏或禁用。

3. 教学制导鱼雷的功能应用教学制导鱼雷在军事训练和实战演练中发挥着重要作用:(1) 训练应用:教学制导鱼雷能够为水面舰艇和潜艇提供高质量的模拟实战训练,使训练者能够获得真实的战斗经验。

(2) 战术应用:教学制导鱼雷可以在实战中发挥重要的作用,对敌方舰艇和潜艇实施精确打击,破坏或禁用敌方目标。

(3) 研究应用:通过对教学制导鱼雷的研究和开发,可以不断提高其性能和精确度,推动鱼雷技术的发展。

总结:教学制导鱼雷是一种用于海上教学训练和实战演练的重要武器系统。

鱼雷对抗原理的应用举例

鱼雷对抗原理的应用举例

鱼雷对抗原理的应用举例引言鱼雷是一种具有破坏力的水下武器,被广泛用于海洋冲突中。

在现代海战中,利用鱼雷对抗原理可以有效地进行防御和进攻。

本文将介绍鱼雷对抗原理的应用举例,旨在说明其在实际战场中的重要性和作用。

1. 鱼雷对抗原理的基本原理鱼雷对抗原理是基于鱼雷工作原理和水下声学特性的。

它利用声纳、反声波以及声纳诱饵等技术手段,来干扰和打击敌方鱼雷系统。

鱼雷对抗原理可以分为以下几个方面的应用。

2. 声纳干扰技术鱼雷对抗中最常用的干扰技术之一就是声纳干扰技术。

这种技术通过发射声纳干扰器,产生噪音来干扰敌方鱼雷的探测和导航系统。

声纳干扰技术可以使敌方鱼雷误判目标位置,从而使其失去跟踪和攻击能力。

3. 反声波技术反声波技术是另一种常用的鱼雷对抗技术。

它利用声纳发射器发送与敌方鱼雷扫描频率相同但相位相反的声波,从而相互抵消或干扰鱼雷的声纳系统。

这种技术可以有效地干扰敌方鱼雷的定位和追踪能力。

4. 嗅探干扰技术除了声学干扰技术外,鱼雷对抗原理还可以应用嗅探干扰技术。

这种技术通过释放特定的化学物质或气体,干扰敌方鱼雷的热敏和气体感测系统。

嗅探干扰技术可以使敌方鱼雷误认为虚假目标而改变其导航或攻击路径。

5. 声纳诱饵技术声纳诱饵技术是在鱼雷对抗中常用的反制手段之一。

它通过发射声纳诱饵,如声纳干扰器或声纳作战部,来吸引敌方鱼雷追踪和攻击诱饵,从而保护自己的舰船或潜艇。

声纳诱饵技术可以有效地分散敌方鱼雷的攻击力量,增加生存和逃脱的机会。

6. 应用举例•在军事演习中,通过模拟敌方鱼雷攻击,使用声纳干扰和反声波技术,有效干扰和打击敌方鱼雷系统,保护己方舰船的安全。

•在实际战斗中,通过释放特定化学物质,利用嗅探干扰技术,使敌方鱼雷误判目标位置,导致攻击失效。

•在海上巡逻任务中,使用声纳诱饵技术,吸引敌方鱼雷攻击诱饵,保护己方舰船免受损失。

结论鱼雷对抗原理的应用举例充分展示了其在实际战争场景中的重要性和作用。

鱼雷对抗技术的不断发展和创新,将为海洋冲突中的战斗力量提供更强大的保障和优势。

鱼雷是怎样攻向目标的-

鱼雷是怎样攻向目标的-

鱼雷是怎样攻向目标的?如果说到“地雷”,大家一定会想起电影“地雷战”中炸得日本鬼子魂飞胆丧的“大圆球”。

如果提起“水雷”,不难想像,一定是水中的“大圆球”。

而说到“鱼雷”,自然便成了可以像鱼一样游动的“大圆球”。

从外形上看,此时的鱼雷已经不是“大圆球”了,它要像鱼一样在水中运动,就需要加上“鱼头”、“鱼尾”、“鱼鳍”等,于似乎,“大圆球”被拉长。

就更像鱼了。

翻开《辞海》,鱼雷的释义是“能自行推进、自行控制方向和深度的水中兵器,似圆椎形,头部装有引信和炸药,中部和尾部装有燃料和动力装置等。

……有的鱼雷还有能自动捕捉目标的自导装置等。

”我国军标对鱼雷的表述是:“鱼雷是一种水中自动推进、引导,用以攻击水面或水下目标的水中兵器。

”以上对鱼雷的释义概括了它的三个基本属性,即:在水中自动推进或自航性,导引性,破坏性。

鱼雷的破坏性不难讲解也不难实现,只要有引信和炸药即可解决。

如何让鱼雷动起来,而且能自动地游向目标,这才是人们最关注的,也是鱼雷技术的关键。

如何让鱼雷动起来?要让鱼雷动起来,关键就是它的动力系统,这也是决定鱼雷速度和航程的重要性能指标。

一般来讲,鱼雷的动力系统主要分为两大类:热动力和电动力。

在鱼雷航速、体积、重量一定的前提下。

航程取决于动力系统的比功率和能源的比能,而这两项指标,热动力都比电动力具有较大的优势。

热动力系统热动力系统一般包括能源(燃料)、发动机和推进器三部分。

发动机的种类繁多,有多缸往复或凸轮活塞发动机、斜盘发动机、涡轮发动机、燃气轮机及固体火箭发动机等。

它们的位置一般设在鱼雷的后段。

热动力系统采用的燃料有普通燃料(气、水、油)、单组元燃料(如奥托燃料)、多组元燃料(如奥托-Ⅱ+过氧化氢+海水三组元燃料)和固体燃料。

应用广泛的奥托-Ⅱ燃料是一种硝酸酯类燃料。

燃料在常温下一般是气态或液态的,只有固体火箭发动机用的火药是固态的。

由于鱼雷在水下航行,不可能像飞机和汽车一样从周围大气中取得氧气,因此它携带的燃料不但有燃烧剂还有氧化剂,空气、过氧化氢和纯氧就成了不可缺少的携带物。

船舶的鱼雷与反鱼雷作战技术

船舶的鱼雷与反鱼雷作战技术

船舶的鱼雷与反鱼雷作战技术1. 鱼雷的定义与分类鱼雷是一种水中兵器,它通过自身的动力装置推进,依靠声纳系统制导,用以攻击潜艇、舰船和其他水中目标。

鱼雷的分类方法有多种,按动力来源分,可分为电动鱼雷和蒸汽鱼雷;按制导方式分,可分为自导鱼雷和线导鱼雷;按作战用途分,可分为攻击型鱼雷和防御型鱼雷。

2. 鱼雷的作战原理鱼雷的作战原理主要依赖于其动力装置、制导系统和战斗部。

动力装置为鱼雷提供推进力,使其在水中高速航行;制导系统通过声纳或其他传感器探测目标,并引导鱼雷准确命中目标;战斗部则用于对目标进行破坏。

3. 反鱼雷作战技术反鱼雷作战技术是指采取一系列措施,以防止敌方鱼雷攻击成功。

主要包括以下几个方面:3.1 防御鱼雷防御鱼雷是指通过发射干扰信号、施放声纳诱饵等手段,干扰敌方鱼雷的制导系统,使其无法准确锁定目标。

此外,还可以利用声纳系统对周边水域进行监测,发现敌方鱼雷的信号,并及时采取措施进行规避。

3.2 硬防护措施硬防护措施主要包括采用消声材料降低舰船的噪声,以及安装防护装甲板,提高舰船对鱼雷攻击的生存能力。

3.3 软防护措施软防护措施主要是指利用电子战手段,对敌方鱼雷进行干扰,使其无法正常工作。

例如,通过发射强烈的电磁干扰,干扰鱼雷的导引系统;或者利用声纳系统发射干扰信号,干扰鱼雷的声纳系统。

3.4 综合防御系统综合防御系统是将多种防御手段进行整合,形成一个完整的防御体系。

例如,可以结合防御鱼雷、硬防护措施和软防护措施,以及对敌方鱼雷的预警和跟踪系统,实现对鱼雷攻击的全方位防御。

4. 发展趋势与挑战随着科技的发展,鱼雷与反鱼雷作战技术也在不断进步。

一方面,鱼雷的隐蔽性、精确性和威力不断提高,对舰船的威胁越来越大;另一方面,反鱼雷作战技术也在不断发展,力求破解敌方鱼雷的攻击。

未来的发展趋势主要包括:智能化、无人化、多功能化、网络化等。

同时,这也给反鱼雷作战技术带来了新的挑战,需要不断研究和创新,以适应新的作战环境。

鱼雷制导的原理和应用教案

鱼雷制导的原理和应用教案

鱼雷制导的原理和应用教案一、引言鱼雷制导是一种应用广泛的导弹制导技术,具有很高的精确度和毁伤力。

本教案将介绍鱼雷制导的原理和应用。

二、鱼雷制导的原理鱼雷制导主要依靠以下原理:1. 惯性导航鱼雷内置惯性测量装置,通过测量速度、加速度和方向等参数,计算出鱼雷的位置和运动轨迹。

这种方式可以提供较长时间内的高精度制导。

2. 主动制导鱼雷内置了主动制导系统,它可以通过自主感知和决策来调整鱼雷的运动轨迹。

主动制导系统通常包括传感器、处理器和执行机构等组件,用于感知目标、判断规避策略并控制鱼雷的飞行。

3. 被动制导鱼雷还可以利用声纳等被动传感器来感知目标并跟踪其位置。

被动制导系统主要用于目标定位和跟踪,以及制导鱼雷进行打击。

4. 电子对抗鱼雷制导系统还可以通过电子对抗手段来干扰敌方的防御系统,提高鱼雷的命中率。

常用的电子对抗手段包括干扰信号发射和欺骗性信息传输等。

三、鱼雷制导的应用鱼雷制导广泛应用于军事和民用领域,具有以下应用:1. 军事应用•反潜作战:鱼雷制导在海战中起到了至关重要的作用,可以迅速定位和摧毁敌方潜艇。

•海岸防御:鱼雷制导可以用于保卫海岸线,防止敌方舰艇的进攻。

•海上安全巡逻:鱼雷制导可以用于监视和巡逻海上边境,确保海上安全。

2. 民用应用•海洋勘探:鱼雷制导可以用于海洋资源的勘探和调查,如海底矿产资源的发现和勘探。

•水下搜寻救援:鱼雷制导可以用于水下救援和搜寻失踪人员的工作,提高工作效率和准确性。

•水下科考研究:鱼雷制导可以用于水下环境的科研研究,如海洋生物学、海洋地质学等领域的研究。

四、教案设计为了帮助学生更好地理解鱼雷制导原理和应用,我们设计了以下教学内容:1. 导入通过给学生展示一些与鱼雷制导相关的图片和视频,引起学生的兴趣和好奇心。

同时,提出以下问题供学生思考: - 你了解鱼雷制导吗? - 鱼雷制导有哪些应用领域?2. 理论讲解通过简洁明了的语言,向学生介绍鱼雷制导的原理和应用。

使用图表和示意图帮助学生更好地理解。

线导鱼雷的战术使用

线导鱼雷的战术使用

线导鱼雷的特点用一根细小的导线或光纤把发射平台(舰艇、飞机或岸基)与鱼雷联接起来,使发射平台的火控系统和雷上装置组成贿赂,用以对鱼雷进行遥控,引导鱼雷接近、捕获和攻击敌方舰艇,这种鱼雷就是线导鱼雷。

因此,它具有其它鱼雷比拟的优点。

捕捉目标的概率高对距离远、速度大、机动性能强的目标,在目标运动要素测定误差较大、鱼雷本身发射散布较大或自导作用距离较短时,鱼雷捕捉目标的概率将迅速降低,而线导鱼雷发射后由发射舰艇直接操纵,可一直引导鱼雷引导目标,大大提高了捕捉目标的概率。

发射迅速鱼雷发射前必须精确测定目标运动要素,然而才能像鱼雷设定射击参数,最后将鱼雷射出。

如使用线导鱼雷,则在探测设备初步判别目标方位距离的基础上即可将鱼雷射出,而后再精确测定目标运动要素,通过导线随时进行修正和导引。

这样就赢得了时间,利于先发制人。

抗干扰能力强因线导鱼雷由发射舰艇直接操纵,所有对其干扰的器材将不起作用,故大大提高鱼雷的抗干扰能力。

攻击效果好鱼雷在导引时,可不受自身噪声的干扰,有利于提高鱼雷的接敌速度,缩短从发射到命中的时间,降低目标规避机动的效果。

机动灵活线导鱼雷既可单雷射击,也可多雷齐射,由发射舰船火控系统同时分别引导,进行多目标或多雷围攻同一目标,甚至让其脱离原攻击目标,中途改变航向攻击另一目标。

如英国Mk24线导鱼雷的TIOS火控系统可以自动跟踪6个目标。

此外,线导鱼雷还可以和导弹进行合同攻击,由线导鱼雷先行发射并在接敌过程中队目标进行补充识别,尔后发射导弹,双管齐下,彻底摧毁敌目标。

不过,由于发射线导鱼雷时,发射舰艇或飞机和鱼雷上都须增加一套线导设备,且拖挂导线,在一定程度上影响了鱼雷的运动和舰艇的机动。

线导鱼雷的使用线导鱼雷可由潜艇、水面舰艇和直升机等平台发射。

潜艇在水下航行,隐蔽性好,一般都能先于水面舰艇之前发现对方,实施水下隐蔽攻击;潜对潜使用线导鱼雷攻击时,由于双方处于等环境条件下,攻击效果视双方武器装备的性能和谁先发现、先使用鱼雷攻击以及是否采取水声对抗等情况而定。

氧气鱼雷的原理

氧气鱼雷的原理

氧气鱼雷的原理
氧气鱼雷是一种采用气体爆炸推动技术的水下武器。

其原理主要是利用化学反应生成的气体膨胀产生冲击波,将氧气推出鱼雷尾部的喷嘴,从而达到推进鱼雷前进的目的。

氧气鱼雷的原理可分为起爆,反应和推力三个阶段。

首先,内部装有火药的氧气鱼雷被启动,引发了起爆装置,使火药点燃并引起化学反应。

随着化学反应的进行,氧气生成并充满鱼雷腔体,与燃料形成混合气体。

鱼雷腔体内部的温度和压力随着化学反应而上升,同时化学反应所产生的气体被推入鱼雷的推进管道之中。

接下来,气体开始推动鱼雷向前移动。

由于化学反应所形成的气体无法在短时间内完全排出,因此在鱼雷尾部会不断产生气体喷射,来维持推进力。

而喷射口的大小和喷射气体的体积也会影响推力和速度。

最后,气体在喷射过程中形成的压力波会产生冲击波,增加鱼雷的杀伤力。

整个过程需要严格的控制,以保证氧气鱼雷的稳定性和安全性。

总之,氧气鱼雷利用氧气的化学反应产生气体膨胀推进,具有高速、高效和高杀伤力的优点,但也存在着安全性等问题需要进一步研究和改进。

鱼雷的陀螺原理

鱼雷的陀螺原理

鱼雷的陀螺原理鱼雷是一种水下导弹,通常被用于海上军事作战中,其主要用途是对敌方舰船和潜艇进行攻击。

鱼雷的陀螺原理是指鱼雷利用陀螺仪保持稳定飞行的一种工作原理。

下面我将详细介绍鱼雷的陀螺原理。

陀螺原理是基于两个重要概念,即陀螺效应和角动量守恒定律。

首先,我们来讨论陀螺效应。

当陀螺体旋转时,它会产生一个与转轴垂直的力,这个力就是陀螺效应。

陀螺效应使得陀螺体能够保持稳定的旋转轴,即使外界对其施加扰动。

陀螺原理中的另一个重要概念是角动量守恒定律。

根据角动量守恒定律,一个物体在没有外力作用下,其角动量将保持不变。

换句话说,当一个陀螺体旋转时,其角动量将保持恒定,这意味着陀螺体旋转方向和速度都将保持不变,除非受到外界扰动。

鱼雷的陀螺原理利用了这两个概念。

鱼雷中内置了一个陀螺仪,陀螺仪是一种能够感知自身旋转的装置。

当鱼雷开始运动时,陀螺仪会感知到鱼雷的旋转,并且根据陀螺效应保持自身稳定的转动轴。

这样一来,鱼雷就能够在水中保持稳定的飞行方向。

具体来说,在鱼雷中,陀螺仪通常有三个轴,即横滚轴、俯仰轴和偏航轴。

横滚轴对应鱼雷的左右旋转方向,俯仰轴对应鱼雷的上下旋转方向,而偏航轴对应鱼雷的转弯方向。

陀螺仪通过感知鱼雷的旋转来保持稳定的转动轴,并根据这些轴的变化来调整鱼雷的飞行方向。

当鱼雷受到外部扰动时,例如水流或水下障碍物,陀螺仪就会感知到这些扰动,并通过调整转动轴的方向来保持鱼雷的稳定飞行。

这样一来,鱼雷就能够在水中准确地追踪目标,并具有较高的命中精度。

总结一下,鱼雷的陀螺原理是利用陀螺效应和角动量守恒定律来保持稳定飞行的。

鱼雷内置的陀螺仪能够感知自身的旋转并保持转动轴的稳定,从而调整鱼雷的飞行方向。

这使得鱼雷能够具有较高的精确度和命中率,成为一种非常有效的武器系统。

尾流自导鱼雷最小开机距离及其应用

尾流自导鱼雷最小开机距离及其应用
T o e f co s i cu e t r e o n v g t n d ph o e o n v g to c u a y n a g tp st n e r r h s a t r n l d o p d a i a i e t ,t r d a i a i n a c r c ,a d tr e o i o ro .M a h ma ia o p i te t l c
YE XH .a , n c a g ZHANG a . n , UN a . i e f n LI Be . h n , Xio f g S a Xio 1 e
( v u maie c d myOi d o2 6 4 , hn ) Na yS b r a e , n a 6 0 2C ia n A g
关键词 :尾流 自导鱼 雷;线导鱼 雷;误差 ; 自导 开机距 离 中图分类号 :T 6 0 9 02 J3 ;E 2 . 文献标识码 :A D 0 9 9 .s . 7 —8 92 1.5 0 Oh 1. 6 0i n1 33 1. 1 . 9 3 s 6 0 00
Re e r h o i i m mi gTr g r g Ditn ef r r e o W a e s ac nM n mu Ho n i e i sa c o p d k g n To Ho n v c n sAp l ai n mi gDe iea di p i t t c o
mo e fmi i m itn e i e t b ih d Si lto S c n u td u d r d fee tatc i g c n i o sa d r s l r d lo n mu d sa c S sa l e . mu ai n i o d ce n e i r n ta k n o d t n s i i n e u t a e s n lz d sait l S meu e u n l so sa r wn M n mu d sa c a i swi t r d e t a p e . lo a ay e ttsia l . o s f l o cu in ed a : i i m itn e v re t o e o d p d s e d I a s c y c r h p h n t v iswi et g t to a a t r ro n r e o n v g to ro . a i m i a c a ec lu a e r m e r a e t t a e i n p me e hh r mo r e ra d t p d a i ai n e r r M x mu d s n ec n b ac lt d fo t o t h

鱼雷的几种形式

鱼雷的几种形式

鱼雷作为海军的主战武器,在战争中具有不可替代的巨大作用。

一、鱼雷的分类1、按动力分类:电动力鱼雷、热动力鱼雷。

电动力鱼雷使用的动力通常有:硫酸电池、银锌电池、燃料电池等。

热动力鱼雷使用的动力通常有:煤油+高压空气,煤油+氧气,奥托燃料等。

2、按发射体分类:空投鱼雷、舰用鱼雷、潜用鱼雷。

3、按鱼雷自导方式分类:声自导鱼雷、尾流自导鱼雷声自导鱼雷既可攻舰,也可反潜。

尾流自导鱼雷只能攻舰。

4、按鱼雷的控制方式分类:直航式鱼雷、自导鱼雷、线导鱼雷5、按鱼雷的直径大小分类:重型鱼雷、轻型鱼雷目前国际上的鱼雷通用直径是533mm,重型鱼雷的直径多为650mm,轻型鱼雷的直径为320mm,如空投鱼雷,多为轻型。

而潜用鱼雷多为标准型或重型鱼雷。

二、鱼雷的发展鱼雷最初只能直航,即发射后走直线,因此要求鱼雷能很准确的瞄准目标。

而对直航鱼雷的规避也很简单,只需转向就可轻松规避。

同时,早期的鱼雷航程也很近,大多只有3000-4000米的距离。

随着时代的发展,鱼雷技术也大大提高。

在二战未期,德国首先研制出了自导鱼雷,但当时由于太过仓促,技术没有完全过关,自导鱼雷也没有真正派上用场,德国就战败了。

而德国的这些鱼雷专家被美国和苏联分别网罗至本国继续研究新式的鱼雷武器。

冷战时期,美苏两国继续进行军事竞争,鱼雷也是其中的一项。

但此时两国的研究方向却有不同。

美国重点在鱼雷的声自导技术,而苏联却声自导与尾流自导并举。

随着鱼雷自导技术的发展,反鱼雷技术也不断进步。

特别是对声自导鱼雷的对抗技术也越来越完善,自导鱼雷也越来越难以命中目标,为了对抗目标的机动,使鱼雷能更准确的捕获目标,发展了线导鱼雷。

即同发射载体通过线导来导引鱼雷去捕获目标,这样大大加强了鱼雷的捕获概率,也可使发射体先于目标使用武器,因为线导鱼雷可以先发射,后跟踪目标进行导引。

无论电动力鱼雷还是热动力鱼雷,其航速都不可能太高,因为海水中阻力大,比空气中的阻力大上300倍。

为了发展高速鱼雷,前苏联时期就开始研究超空泡鱼雷,即利用超空泡现象,可使鱼雷在海水中脱离与海水的接触而航行于空气中,这样鱼雷航速可达100节。

教学制导鱼雷的工作原理

教学制导鱼雷的工作原理

教学制导鱼雷的工作原理
鱼雷是一种水下航行的自导武器,主要用于水面舰艇、潜艇或者水下目标的攻击。

鱼雷的工作原理可以分为以下几个步骤:
1. 发射阶段:鱼雷通常从舰艇或潜艇的发射管中发射出去。

鱼雷在发射前需要通过电力或气压系统充电,以便以足够的速度离开发射管。

2. 航行阶段:在发射后,鱼雷进入航行阶段。

鱼雷通过推进器提供的推力进行自身的航行。

不同型号的鱼雷采用的推进方式可能有所不同,其中包括化学推进、电力推进或者混合推进等。

3. 自导阶段:鱼雷通常配备了各种传感器和自导系统,以便在航行过程中自动地寻找目标并进行跟踪。

其中最常用的自导系统是声纳导引系统,它可以接收目标发出的声波信号,确定目标的位置和运动方向。

4. 攻击阶段:当鱼雷接近目标时,它会触发引爆机制,一般是通过接触目标或者引信感应目标的磁场等方式。

当鱼雷爆炸时,释放的能量将对目标造成严重的损害,如破坏船体、引发火灾或者造成波击效应等。

需要注意的是,鱼雷还可以应用一些特殊技术,如声纳干扰或者机动操纵等,以提高其对敌方反鱼雷系统的干扰能力和生存能力。

总结来说,鱼雷通过发射、自主航行、自导和攻击等阶段,以
自身控制和引导的方式实现对目标的打击。

鱼雷的工作原理是一项复杂的技术,其中涉及了推进、导引、引爆和干扰等多个方面的技术要点。

整理

整理

第一章1 鱼雷:是一种自动推进并按预定的航向和深度航行,自动导向目标且在命中目标时能自动爆炸的水中兵器。

2 鱼雷武器的特点:鱼雷武器的进攻性强、鱼雷武器的隐蔽性好、鱼雷武器的破坏威力大、鱼雷武器战斗使用广泛3 鱼雷的种类繁多,试按照动力装置、直径、制导方式对其分类。

按动力装置分为:热动力鱼雷和电动力鱼雷按直径分为:重型鱼雷(直径为533mm或大于533mm)和轻型鱼雷(直径为324mm或小于324mm),重型鱼雷的装药量一般在200kg以上,可用于睡眠舰艇获潜艇;轻型鱼雷的装药量一般小于100kg,主要用于反潜。

按制导方式分为:直航鱼雷、自导鱼雷、线导鱼雷等按攻击对象分为:反舰鱼雷、反潜鱼雷按运载工具分为:舰用、潜用、空投、火箭助飞鱼雷4 鱼雷的基本系统包括:战斗部、动力推进系统、制导系统、总体结构等。

各部分的作用:总体结构:把各个部分进行合理布置和联接,以组成鱼雷整体,并使其具有良好的总体性能战雷段:对目标起直接破坏作用动力推进系统:决定鱼雷的航程和速度制导系统:导引和控制鱼雷能准确地命中目标,可分为三种基本类型:自控系统、自导系统、线导系统5简述鱼雷在海战中的作用1)是反潜的主要武器由于潜艇战斗性能的改进和它在海上战斗行动中作用的增大,反潜战成为各国海军非常突出的问题,将是一项极为艰巨的任务。

2)用于攻击水面战舰及反航母航母和大中型水面舰艇及编队具有较强的对空,对海防御能力,采用潜艇携带鱼雷隐蔽攻击,远距离突袭是反航母及打击大中型水面舰艇的有效方法和战术。

3)破坏海上运输航线潜艇具有较长时间的海上独立活动能力,携带鱼雷武器,能在水下隐蔽,突然准确地给予运输船只以威力巨大的打击。

航空兵也可在远距离外用鱼雷快速突击。

4)袭击水下设施鱼雷可以用来破坏敌人的港口、码头、船坞、水闸和其他水下工程,以及各种水下障碍,有使用方便、破坏效果彻底等特点。

6 鱼雷已经历经了一个多世纪的发展,请对第一枚鱼雷、第一枚热动力雷、第一枚电动力雷和第一枚声自导雷的诞生做一介绍。

鱼雷工作原理

鱼雷工作原理

鱼雷工作原理
鱼雷是一种水下武器,用于在水下攻击敌人的舰船或潜艇。

它的工作原理基于牛顿第三定律,即“作用力与反作用力相等、方向相反”。

鱼雷的发射通常是由发射管完成的。

当发射管内的鱼雷被推出时,发射管内的水会向相反方向推动,形成反作用力。

这种力量足以将舰船或潜艇推开一段距离。

鱼雷在水中飞行时,会利用推进器提供的推力进行前进。

推进器通常是电动机或涡轮引擎。

推进器推动鱼雷向前移动,同时也会向后推动一定量的水。

鱼雷的引导系统通常使用声波或电磁信号。

声波引导系统使用超声波来跟踪目标,而电磁引导系统使用磁场或雷达来跟踪目标。

一旦鱼雷跟踪到目标,它会自动调整方向,然后向目标发射。

鱼雷的攻击方式有多种。

一种是鱼雷直接撞击目标,另一种是鱼雷在靠近目标时爆炸,产生水下压力波来破坏目标。

还有一种是鱼雷在接近目标时释放内部的炸药来攻击目标。

总的来说,鱼雷的工作原理是基于牛顿第三定律和各种引导和攻击系统的组合,使其成为一种高效的水下武器。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鱼雷制导的原理和应用
1. 原理
鱼雷制导技术是指通过电子设备和导引装置对鱼雷进行精确制导,使其能够准
确命中目标。

其原理主要包括以下几个方面:
1.1 感知目标
鱼雷制导系统首先需要能够感知目标,通常采用声纳系统来探测周围环境中的
目标。

声纳系统能够利用声波在水中传播的特性,通过接收目标发出的声音波纹,确定目标的位置、速度和方向等关键信息。

1.2 数据处理
感知到目标后,鱼雷制导系统需要对接收到的数据进行处理和分析。

这包括对
目标的距离、速度、运动轨迹等信息进行计算和预测,为后续的制导控制提供依据。

1.3 制导控制
通过数据处理后,鱼雷制导系统将根据预测结果进行制导控制。

根据目标的位
置和运动状况,制导系统计算出鱼雷的航向角、俯仰角、速度等参数,通过对鱼雷的尾部进行控制,实现对鱼雷飞行路径的调整和修正,以确保鱼雷能够准确地追踪和命中目标。

2. 应用
鱼雷制导技术在海军战斗中有着广泛的应用,主要体现在以下几个方面:
2.1 水下攻击
鱼雷制导系统常常被用于水下攻击中,它能够使鱼雷在无人控制的情况下精确
命中目标。

鱼雷在水下航行过程中,通过制导系统的精确调整,可以在一定的范围内追踪目标并进行自主攻击。

这种水下攻击技术在海上作战中具有重要的战略意义。

2.2 水下探测
鱼雷制导技术还可以应用于水下探测任务中。

通过搭载不同类型的传感器,鱼
雷制导系统可以对海底地形、水下障碍物等进行探测和测绘。

这对于海洋研究、资源勘探和水下工程等领域具有重要意义。

2.3 威慑和防御
鱼雷制导技术还可以用于威慑和防御目的。

通过将鱼雷作为一种强大的武器装备,能够有效地阻止敌方舰艇或潜艇的侵略行为,提高海上防御的能力。

3. 优势和挑战
鱼雷制导技术作为一种先进的海军武器技术,具有以下优势和挑战:
3.1 优势
•高精确度:鱼雷制导技术能够实现对目标的高精确制导,大大提高了打击目标的效果。

•自主性:鱼雷制导系统能够自主追踪和攻击目标,减少了对操作人员的依赖,提高了作战灵活性。

•多功能性:鱼雷制导系统可以根据任务需求进行多种工作模式的切换,具有较强的适应性和多样化的应用场景。

3.2 挑战
•电磁兼容性:在电子战环境下,鱼雷制导系统需要具备良好的电磁兼容性,以避免被干扰和破坏。

•抗干扰能力:鱼雷制导系统需要具备较高的抗干扰能力,以应对敌方的电子干扰手段,确保制导过程的稳定性和准确性。

•系统可靠性:鱼雷制导系统对于战斗部署来说,其可靠性是一个非常关键的因素,需要经过严密的测试和验证,以确保在战斗中的可靠性和稳定性。

4. 结论
鱼雷制导技术作为现代海军作战中不可缺少的一项技术,具有重要的作用和广
泛的应用前景。

通过不断的研究和发展,鱼雷制导技术将会进一步提升制导精度和自主能力,为海军的作战能力提供更强大的支持。

相关文档
最新文档