锐角三角函数---余弦、正切

合集下载

锐角三角函数(正弦、余弦和正切)

锐角三角函数(正弦、余弦和正切)

2.同一锐角三角函数的关系:
如图, 在 Rt△ ABC中,∠ C=90°, sin A
a ,cos A
b

c
c
则 sin2 A cos2 A
2
a
c
2
b
c
a2 b2 c2
c2 c2
1,即同一锐角的
正弦、余弦的平方和等于
1,或者说若
α
为锐角, 则
sinห้องสมุดไป่ตู้
2
2
α+cos α =1.
规律 学习锐角三角函数时,应明确三角函数值的两个变化规律: 1.特殊角的三角函数值的记忆规律:
Rt△ ABC中,∠ A+∠ B=90°,由
三角函数定义得
sin A
a ,cos(90
a
b
A) cosB ,cos A
sin B sin(90
A) ,
c
c
c
所以 sin A=cos(90° - A),cos A= sin (90° - A).即任意锐角的余弦值等于它的余角的正
弦值,任意锐角的正弦值等于它的余角的余弦值.
锐角三角函数教案
概念
1.在直角三角形中,斜边大于直角边且各边均为正数,正弦、余弦都是直角边与斜边
的比值,正切是两直角边的比值,因此正弦值、余弦值都是小于
1 的正数,正切值是大于零
的数,并且都没有单位,即 0<sin A<1,0<cos A<1, tan A>0(∠ A为锐角).
2.每一个三角函数都是一个完整的符号, 如 sin A不能理解为 sin · A,sin A 中的“ A”
2.锐角三角函数值的增减性:锐角 α 的正弦 sin α 值随着∠ α 的增大而增大;锐角

初三数学锐角三角函数通用版

初三数学锐角三角函数通用版

初三数学锐角三角函数通用版【本讲主要内容】锐角三角函数包括:正弦、余弦、正切。

【知识掌握】 【知识点精析】1. 在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。

即c aA A sin ==斜边的对边∠;把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c bA A cos =∠=斜边的邻边;把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即b aA A A tan =∠∠=的邻边的对边。

2. 锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。

3. 特殊角的三角函数值:30°45°60°sin α 12 22 32 cos α 32 2212tan α331 34. 记忆方法:【解题方法指导】例1. (2000年成都市)如图,在△ABC 中,∠C =90°,∠ABC =60°,D 是AC 的中点,那么tan ∠DBC 的值是________。

锐角α三角函数分析:在Rt △ABC 中,由∠ABC =60°,可知3BCAC60tan == ,即AC =3BC ,又CD =12AC ,tan ∠DBC 可求。

解:在△ABC 中,∵∠C =90°,∠ABC =60°, ∴tan ∠ABC =tan60°=3BCAC=, ∴AC =3BC 。

又D 是AC 中点, ∴DC =12AC =32BC 。

∴23BC BC23BC DC DBC tan ===∠。

评析:在解题中紧紧扣住tan α的定义。

例2. (2001年四川)在Rt △ABC 中 ,CD 是斜边AB 上的高,已知32ACD sin =∠,那么=ABBC______。

分析:由Rt △ABC 中CD ⊥AB 于D ,可得∠ACD =∠B ,由sin ∠ACD =23,那么sinB =23,设AC =2,AB =3,则BC =32522-=,则AB BC 可求。

锐角三角函数知识点归纳总结

锐角三角函数知识点归纳总结

锐角三角函数知识点归纳总结锐角三角函数是中学数学中的一门重要概念,涵盖了三角函数的绝大部分知识点。

掌握锐角三角函数是解决三角函数问题的关键,也是解决初等三角方程的基础。

本文将就锐角三角函数的相关知识点进行归纳总结,便于读者进行系统地学习和掌握。

一、正弦函数正弦函数是最基本的三角函数之一,在锐角三角函数中有着重要的地位。

正弦函数在数学中的表达式为sinx,其定义域为实数集合R,值域为闭区间[-1,1]。

具体来说,正弦函数在锐角三角形中,它的值等于对边长度与斜边长度的比值。

正弦函数在锐角三角函数中的性质:1. 周期性:sin(x+2kπ)=sinx,其中k为任意整数。

2. 对称性:sin(-x)=-sinx。

3. 奇偶性:sin(-x)=-sinx,sin(x+π)=-sinx。

4. 增减性:在区间[0,π/2]上,sinx单调递增;在区间[π/2,π]上,sinx单调递减。

5. 值域:正弦函数在[-π/2,π/2]上单调递增,值域为[-1,1]。

在求解三角函数的数值计算时,使用正弦函数的一般方法是将角度转换为弧度,然后采用计算器进行计算。

二、余弦函数余弦函数是一种最为常见的三角函数之一,通常在三角函数的解题中被广泛应用。

余弦函数在数学中的表达式为cosx,其定义域为实数集合R,值域为闭区间[-1,1]。

具体来说,余弦函数在锐角三角形中,它的值等于邻边长度与斜边长度的比值。

余弦函数在锐角三角函数中的性质:1. 周期性:cos(x+2kπ)=cosx,其中k为任意整数。

2. 对称性:cos(-x)=cosx。

3. 奇偶性:cos(-x)=cosx,cos(x+π)=-cosx。

4. 增减性:在区间[0,π/2]上,cosx单调递减;在区间[π/2,π]上,cosx单调递增。

5. 值域:余弦函数在[0,π]上单调递减,值域为[1,-1]。

三、正切函数正切函数是三角函数中的一种,通常用于解决三角函数运算或求解空间中的几何问题。

中考复习: 锐角三角函数

中考复习: 锐角三角函数

中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。

把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。

锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。

当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。

2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。

3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。

4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。

5、正、余弦的平方关系:sin 2α+ cos 2α=1。

二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。

1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。

锐角三角函数的增减性锐角三角函数的关系式锐角三角函数特殊公式

锐角三角函数的增减性锐角三角函数的关系式锐角三角函数特殊公式

一、锐角三角函数的增减性当角度在0°~90°之间变化时:1.正弦值随着角度的增大而增大;2.余弦值随着角度的增大而减小;3.正切值随着角度的增大而增大。

4.锐角三角函数值都是正值.5.正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);6.正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大);7.正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。

8.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 1≥cosA≥0;当角度在0°<A0, cotA>0。

二、锐角三角函数:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。

所谓锐角三角函数是指:我们初中研究的都是锐角的三角函数。

初中研究的锐角的三角函数为:正弦(sin),余弦(cos),正切(tan)。

正弦:在直角三角形中,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;余弦:在直角三角形中,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;正切:在直角三角形中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即,锐角A的正弦、余弦、正切都叫做A的锐角三角函数。

三、锐角三角函数的关系式:同角三角函数基本关系式tanα·cotα=1sin2α·cos2α=1cos2α·sin2α=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα(sinα)2+(cosα)2=11+tanα=secα1+cotα=cscα诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)二倍角、三倍角的正弦、余弦和正切公式Sin(2α)=2sinαcosαCos(2α)=(cosα)2-(sinα)2=2(cosα)2-1=1-2(sinα)2Tan(2α)=2tanα/(1tanα)sin(3α)=3sinα4sin3α=4sinα·sin(60°+α)sin(60°α)cos(3α)=4cos3α3cosα=4cosα·cos(60°+α)cos(60°α)tan(3α)=(3tanαtan3α)/(13tan2α)=tanαtan(π/3+α)tan(π/3α)和差化积、积化和差公式sinα+sinβ=2sin[(α+β)/2]·cos[(αβ)/2]sinαsinβ=2cos[(α+β)/2]·sin[(αβ)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(αβ)/2] cosαcosβ=2sin[(α+β)/2]·sin[(αβ)/2] sinαcosβ=[sin(α+β)+sin(α-β)] sinαsinβ=[1][cos(α+β)cos(αβ)]/2 cosαcosβ=[cos(α+β)+cos(αβ)]/2 sinαcosβ=[sin(α+β)+sin(αβ)]/2 cosαsinβ=[sin(α+β)sin(αβ)]/2。

锐角三角函数

锐角三角函数

初中数学锐角三角函数初中知识点一、锐角三角函数的定义1.勾股定理:直角三角形两直角边a .b 的平方和等于斜边c 的平方。

222c b a =+ 在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B ):定 义表达式 取值范围 关 系正弦 斜边的对边A A ∠=sin c aA =sin1sin 0<<A(∠A 为锐角)B A cos sin = B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=coscbA =cos1cos 0<<A(∠A 为锐角)正切的邻边的对边A tan ∠∠=A Aba A =tan 0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A Atan α=sin cos αα,cot α=cos sin αα余切的对边的邻边A A A ∠∠=cotab A =cot 0cot >A(∠A 为锐角)注意:(1)正弦.余弦.正切.余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;(2)sinA 不是sin 与A 的乘积,是三角形函数记号,是一个整体。

“sinA ”表示一个比值,其他三个三角函数记号也是一样的;(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。

例题:1.在Rt △ABC 中,∠C 为直角,a =1,b =2,则cosA =________ ,tanA =_________.2. 在Rt △ABC 中,∠C 为直角,AB =5,BC =3,则sinA =________ ,tanA =_________.3.在Rt △ABC 中,∠C 为直角, ∠A =300,b =4,则a =__________,c =__________4.(2008·威海中考)在△ABC 中,∠C =90°,tanA =31,则sinB =( ) A .1010B .23 C .34D .310105.在△ABC 中,∠C =90°,a, b, c 分别为∠A ,∠B ,∠C 的对边,下列各式错误的是( )A .a =c ·sinAB .b =c ·cosBC .b =a ·tanBD .a =b ·tanA6.在△ABC 中,∠C =90°,(1)已知:c = 83,∠A =60°,求∠B .a .b . (2) 已知:a =36, ∠A =30°,求∠B .b .c .7.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan 的值是( )A .35B .43 C .34D .45练习:1.在Rt △ABC 中,∠C 为直角,若sinA =53,则cosB =_________. 2.已知cosA =23,且∠B =900-∠A ,则sinB =__________. 3.∠A 为锐角,已知sinA =135,那么cos (900-A)=___________ . 4.在Rt △ABC 中,∠C 为直角,AC =4,BC =3,则sinA =( ) A .43 B .34 C . 53 D .54 5.在Rt △ABC 中,∠C 为直角,sinA =22,则cosB 的值是( ) A .21 B .23 C .1D .22知识点二、特殊角所对的三角函数值1. 0°.30°.45°.60°.90°特殊角的三角函数值(重要)三角函数0° 30°45°60°90° αsin0 2122 231 αcos1 23 22210 αtan 0 331 3- αcot-3133注意:记忆特殊角的三角函数值,可用下述方法:0°.30°.45°.60°.90°的正弦值分别是02.12.22.32.42,而它们的余弦值分别是42.32.22.12.02;30°.45°.60°的正切值分别是13.22.31,而它们的余切值分别是31.22.13。

高数三角函数大总结

高数三角函数大总结

三角函数锐角三角函数公式正弦:sin α =∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式sin2A=2sinA?cosAcos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1 tan2A=(2tanA)/(1-tan^2A)三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin^2a)+(1-2sin^2a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos^2a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin^2a)=4sina[(√3/2)^2-sin^2a]=4sina(sin^260°-sin^2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos^2a-3/4)=4cosa[cos^2a-(√3/2)^2]=4cosa(cos^2a-cos^230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tanh(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} ? sin{ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式其它公式(1)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

锐角三角函数(余弦、正切)

锐角三角函数(余弦、正切)

振动与波动
余弦函数在振动和波动的研究中有广泛 应用。例如,简谐振动的位移、速度和 加速度都可以表示为余弦函数的形式。
03
正切函数
正切函数的定义与性质
正切函数的定义
正切函数是锐角三角函数的一种,定义为直角三角形中锐角的对边与邻边的比 值,记作tan(α),其中α为锐角。
正切函数的性质
正切函数具有连续性、周期性、奇偶性等性质。在区间(0,π/2)和(π/2,π)内,正 切函数是单调递增的,而在区间(-π/2,0)和(π/2,3π/2)内,正切函数是单调递减 的。
01
余弦函数和正切函数的定义
余弦函数和正切函数是锐角三角函数的重要组成部分,它们分别描述了
直角三角形中锐角对应的邻边和斜边的比值,以及锐角对应的对边和邻
边的比值。
02
基本性质和应用
余弦函数和正切函数具有周期性、奇偶性等基本性质,这些性质在解决
几何、物理和工程问题中有着广泛的应用。例如,在计算角度、长度、
工程学中的应用
结构设计
在建筑和机械工程中,锐 角三角函数用于设计各种 结构,如桥梁、建筑和机 器部件。
控制系统
在控制工程中,锐角三角 函数用于设计和分析控制 系统,以确保系统的稳定 性和性能。
信号处理
在电子和通信工程中,锐 角三角函数用于信号处理, 如滤波、调制和解调等。
06
总结与展望
锐角三角函数的总结
正切函数的图像与周期性
正切函数的图像
正切函数的图像是一条周期函数,其周期为π,且在每一个周期 内,图像呈现出先增后减的趋势。
正切函数的周期性
由于正切函数的周期为π,因此对于任意整数k,tan(x+kπ) = tan(x),即正切函数在每个周期内具有相同的形状,但位置会随 着k的变化而变化。

锐角三角函数公式和面积公式

锐角三角函数公式和面积公式

锐角三角函数公式正弦:sin α=∠α的对边/∠α的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边面积公式长方形,正方形以及圆的面积公式面积公式包括扇形面积共式,圆形面积公式,弓形面积公式,菱形面积公式,三角形面积公式,梯形面积公式等多种图形的面积公式。

扇形面积公式在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积:S=nπR^2÷360比如:半径为1cm的圆,那么所对圆心角为135°的扇形的周长:C=2R+nπR÷180=2×1+135×3.14×1÷180=2+2.355=4.355(cm)=43.55(mm)扇形的面积:S=nπR^2÷360=135×3.14×1×1÷360=1.1775(cm^2)=117.75(mm^2)扇形还有另一个面积公式S=1/2lR其中l为弧长,R为半径三角形面积公式任意三角形的面积公式(海伦公式):S=√p(p-a)(p-b)(p-c), p=(a+b+c)/2,a.b.c,为三角形三边。

证明:证一勾股定理分析:先从三角形最基本的计算公式S△ABC = aha入手,运用勾股定理推导出海伦公式。

证明:如图ha⊥BC,根据勾股定理,得: x = y = ha = = = ∴S△ABC = aha= a× = 此时S△ABC为变形④,故得证。

证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha。

斯氏定理:△ABC边BC上任取一点D,若BD=u,DC=v,AD=t.则t 2 = 证明:由证一可知,u = v = ∴ha 2 = t 2 = -∴S△ABC = aha = a × = 此时为S△ABC的变形⑤,故得证。

锐角三角函数的定义和基本关系

锐角三角函数的定义和基本关系
锐角三角函数的 定义和基本关系
汇报人:xxx
01
锐角三角函数的定义
02
锐角三角函数的基本关系
03
锐角三角函数的性质
目录 CONTENTS
PART 01
锐角三角函数的定义
正弦函数的定义
定义
正弦函数是锐角三角函数的一种,定义为直 角三角形中锐角的对边与斜边的比值。
单位圆定义
正弦函数也可以通过单位圆上的点来定义, 即单位圆上一点到原点的连线与x轴正方向 的夹角为锐角时,该点的纵坐标即为正弦函 数的值。
周期性在锐角三角函数的应用中非常重要。例如,在信号处理、振动分析、波动传播等领域中, 周期性都是一个关键概念。
周期性与三角函数的基本关系
锐角三角函数的周期性与三角函数的基本关系密切相关。例如,正弦函数和余弦函数的基本关 系可以通过周期性来解释和推导。
奇偶性
定义
锐角三角函数的奇偶性是 指函数值随着角度的变化 而呈现的奇数或偶数特性。
定义域 02
锐角三角函数的定义域为所有锐角,即角 度在0°到90°之间的角。
谢谢
汇报人:xxx
02 角度和为90度
互余角的角度和为90度,这是锐角三 角函数的基本性质,也是计算其他角 度的基础。
PART 03
锐角三角函数的性质
周期性
锐角三角函数的周期性
锐角三角函数的周期性是指三角函数值在锐角范围内的重复出现。例如,正弦函数和余弦函数 的值在每个周期内都会重复,周期长度为360度。
周期性与三角函数的应用
余弦函数的定义
余弦函数的定义
在直角三角形中,余弦函数定义为邻边长度除以斜边长度。
正切函数的定义
正切函数的定义
正切函数是锐角三角函数的一种,定义为直角三角形中锐角的对边与邻边的比值。

锐角三角函数及特殊角的三角函数值

锐角三角函数及特殊角的三角函数值

锐角三角函数及特殊角的三角函数值【教学建议】本节内容较简单,把定义讲透,加强对复杂图形中的三角函数问题的解题示范。

1.正切、正弦、余弦:如下图所示,在Rt △ABC 中,∠C =90°,①正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA=A ac ∠的对边斜边.②余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=A bc ∠的邻边斜边.③正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA =A aA b∠的对边∠的邻边.2.坡度:如图:AB 表示水平面,BC 表示坡面,我们把水平面AB 与坡面BC 所形成的ABC 称为坡角.教学过程一、导入 二、知识讲解知识点1 正切、正弦、余弦一般地,线段BE 的长度称为斜坡BC 的水平宽度,线段CE 的长度称为斜坡BC 的铅垂高度。

如图;坡面的铅垂高度h 和水平宽度l 的比叫做坡面的坡度(或坡比),用ι表示,记作=ιh:l,坡度通常写成1:m 的形式(m 可为小数)。

坡面与水平面的夹角叫做坡角,记作α。

于是tan hi lα==,显然,坡度越大,α越大,坡面就越陡.三角函数︒30 ︒452.运算的顺序:先乘方,再乘除,后加减;同级运算从左到右依次进行.3.强调:(sin 60°)2用sin 260°表示,即为(sin 60°)·(sin 60°).【题干】若△ABC 在正方形网格纸中的位置如图所示,则tan α的值是( )知识点2 30°、45°、60°角的三角函数值及其运算 三、例题精析例题1A .2B .12CD .1【答案】D【解析】根据图形可知∠α的对边及邻边的值,再根据锐角三角函数的定义求解即可. 解:根据图形可知:△ABC 是直角三角形,且AC =3,BC =3. 根据勾股定理得到AB , 则tan α=ACBC=1. 故选D .【题干】如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC =5,则tan ∠AFE 的值为( )A .43B .35C .34D .45【答案】C【解析】由四边形ABCD 是矩形,可得:∠A =∠B =∠D =90°,CD =AB =4,AD =BC =5,由折叠的性质可得:∠EFC =∠B =90°,CF =BC =5,由同角的余角相等,即可得∠DCF =∠AFE ,然后在Rt △DCF 中,即可求得答案.解:∵四边形ABCD 是矩形,∴∠A =∠B =∠D =90°,CD =AB =4,AD =BC =5, 由题意得:∠EFC =∠B =90°,CF =BC =5, ∴∠AFE +∠DFC =90°,∠DFC +∠FCD =90°,例题2∴∠DCF =∠AFE ,∵在Rt △DCF 中,CF =5,CD =4, ∴DF =3,∴tan ∠AFE =tan ∠DCF =DF DC =34. 故选C .【题干】如图,菱形ABCD 的对角线AC =6,BD =8,∠ABD =α,则下列结论正确的是( )A .sin α=45B .cos α=35C .tan α=43D .tan α=34【答案】D【解析】根据菱形的性质及勾股定理可求得AB 的长,从而可表示出不同的三角函数从而验证得到正确的那个选项.解:菱形ABCD 的对角线AC =6,BD =8, 则AC ⊥BD ,且OA =3,OB =4.在直角△ABO 中,根据勾股定理得到:AB =5, 则sin α=35,cos α=45,tan α=34, 故选D .【题干】如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )A .5mB .6mC .7mD .8m例题3例题4【答案】A【解析】解:由题知:tan A =0.75,此时坡上株距是4m ,设相邻两树间的坡面距离为xm 所以满足sin A =0.8=4x解得x =5 故选A .【题干】如图,修建抽水站时,沿着坡度为i =1A 处铅垂高度为6m ,则所铺设水管AC 的长度为( )A .8mB .10mC .12mD .18m 【答案】C【解析】∵该斜坡的坡度为i =1 ∴AB :BC =1 ∵AB =6m , ∴BC m , 则AC 12==(m ). 故选C .【题干】1.下列各式正确的是( ) A . cos 600<sin 450<tan 45B . sin 450<cos 600<tan 450C . cos 600<tan 450<sin 450D . tan 450<cos 600<sin 450【答案】A【解析】根据特殊角的锐角三角函数值依次分析各选项即可作出判断.例题5例题6∵2160cos =︒,2245sin =︒,145tan =︒∴<︒60cos <︒45sin ︒45tan 故选A .【题干】2.已知α为锐角,sin (α﹣20°),则α=( ) A .20°B .40°C .60°D .80°【答案】D【解析】∵α为锐角,sin (α﹣20°)=2, ∴α﹣20°=60°, ∴α=80°, 故选D .【题干】3.计算5sin 30°+2cos 245°-tan 260°的值是( ) AB .12C .-12D .1 【答案】B【解析】根据特殊角的锐角三角函数值计算即可得到结果. 5sin 30°+2cos 245°-tan 260°21321225)3()22(221522=−⨯+=−⨯+⨯= 故选B .【题干】4.在△ABC中,若1|sin ||cos |022A B −+−=,则C ∠=_______. 【答案】120°【解析】因为||0a ≥,且1|sin ||cos |022A B −+−=,所以11sin 0sin 22cos 0cos 22A AB B ⎧⎧−==⎪⎪⎪⎪∴⎨⎪−==⎪⎪⎩⎩,又因为13sin 30,cos303012022A B C ==∴∠=∠=∴∠=。

三角函数

三角函数

三角函数求助编辑百科名片角θ的所有三角函数三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。

它们的本质是任意角的集合与一个比值的集合的变量之间的映射。

通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。

另一种定义是在直角三角形中,但并不完全。

现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。

由于三角函数的周期性,它并不具有单值函数意义上的反函数。

三角函数在复数中有较为重要的应用。

在物理学中,三角函数也是常用的工具。

目录定义锐角三角函数定义罕见三角函数任意角三角函数定义单位圆定义级数定义三角函数线起源三角学问题的提出独立三角学的产生现代三角学的确认正弦,余弦余弦“正弦”的由来“弦表”问世60进制特殊角的三角函数同角三角函数关系式诱导公式对称轴与对称中心两角和与差的三角函数和差化积公式积化和差公式倍角公式三倍角公式n倍角公式半角公式辅助角公式万能公式降幂公式三角和的三角函数特殊角的三角函数值幂级数泰勒展开式傅立叶级数三角函数的数值符号相关概念三角形与三角函数定义域和值域三角函数的画法初等三角函数导数倍半角规律反三角函数高等应用总体情况复数域内性质性质定理正弦定理余弦定理正切定理应用:一元三次方程复数三角函数三角函数常见考法定义锐角三角函数定义罕见三角函数任意角三角函数定义单位圆定义级数定义三角函数线起源三角学问题的提出独立三角学的产生现代三角学的确认正弦,余弦余弦“正弦”的由来“弦表”问世60进制特殊角的三角函数同角三角函数关系式诱导公式对称轴与对称中心两角和与差的三角函数和差化积公式积化和差公式倍角公式三倍角公式n倍角公式半角公式辅助角公式万能公式降幂公式三角和的三角函数特殊角的三角函数值幂级数泰勒展开式傅立叶级数三角函数的数值符号相关概念三角形与三角函数定义域和值域三角函数的画法初等三角函数导数倍半角规律反三角函数高等应用总体情况复数域内性质性质定理正弦定理余弦定理正切定理应用:一元三次方程复数三角函数三角函数常见考法展开编辑本段定义锐角三角函数定义如右图,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。

锐角三角函数锐角三角函数

锐角三角函数锐角三角函数

03
证明方法
利用正弦定理和余弦定理,将边的关 系转化为角的关系,再利用三角函数 的性质推导得出。
05
锐角三角函数的作图及演 示
利用计算器或计算机软件绘制锐角三角函数图像
总结词
通过使用计算器或计算机软件,我们可以 轻松地绘制出锐角三角函数的图像。
详细描述
首先,我们需要输入锐角的角度值,然后 在计算器或计算机软件中选择对应的三角 函数(正弦、余弦或正切)。这样,我们 就可以得到一个关于角度的函数值。将这 些值在坐标系中表示,就可以形成锐角三 角函数的图像。
证明方法
通过正弦定理将角的关系转化为 边的关系,再利用勾股定理推导 得出。
正切定理的公式及证明
01
02
总结词
详细描述
正切定理是指在一个三角形中,任意 两边长度的比值等于这两边所夹角的 正切值与第三边所对应角的正切值的 比值。
正切定理的公式为 tan(A)/tan(B) = c/b。其中,A、B、C 分别代表与三 边相对应的角度,a、b、c 分别代表 三角形的三边长。
求边长
已知直角三角形的一个锐角和对应的边长,可以应用锐角三 角函数来求解另一条边长。例如,在直角三角形ABC中,已 知角A为30度,对应边a为10单位长度,那么对应边b的长度 可以通过应用三角函数求解。
在实际问题中求解角度或边长
地球定位
在地球上定位一个点,需要知道该点与北极的夹角和该点到北极的距离。这些信息可以通过应用锐角 三角函数来求解。
余弦定理
对于任意三角形ABC,有cosA = (b² + c² - a²) / (2bc),其中a、b、c分别是三角形的三边长度。这表明一个 角的余弦值等于由该角两边长度和它们夹角所确定的三角形的另一边的平方与两邻边平方和的差与两邻边的积 之比。

《锐角三角函数》(解析版)

《锐角三角函数》(解析版)

《锐角三角函数》(解析版)锐角三角函数一、定义三角函数是数学中一类重要的函数,它们与三角关系密切相关。

而锐角三角函数是指在直角三角形中,角度小于90°的三角函数。

1. 正弦函数(sin)正弦函数是指在锐角三角形中,对应的直角边比斜边的比值。

可以用以下公式表示:sinθ = 对边 / 斜边2. 余弦函数(cos)余弦函数是指在锐角三角形中,对应的直角边比斜边的比值。

可以用以下公式表示:cosθ = 邻边 / 斜边3. 正切函数(tan)正切函数是指在锐角三角形中,对边比邻边的比值。

可以用以下公式表示:tanθ = 对边 / 邻边二、性质1. 值域和定义域正弦函数和余弦函数的值域都在[-1, 1]之间,定义域为锐角三角形中的角度范围。

2. 周期性正弦函数和余弦函数在每个周期内都有相同的波形形状,它们的周期都为360°或2π弧度。

3. 正交性正弦函数和余弦函数之间具有正交性,即它们的乘积积分为0。

4. 切线斜率正切函数的斜率可以表示为tanθ的导数,即:f'(θ) = sec^2(θ)5. 三角恒等式锐角三角函数之间满足一系列的三角恒等式,如:sin^2(θ) + cos^2(θ) = 1三、图像与应用1. 图像正弦函数和余弦函数的图像为周期性的正弦波和余弦波,可以通过函数图像进行可视化。

2. 应用锐角三角函数广泛应用于物理学、工程学和计算机图形学等领域。

例如在电路分析中,可以通过正弦函数来表示交流电压的变化;在计算机图形学中,可以通过正弦函数和余弦函数来生成动画效果。

四、常见问题1. 如何计算锐角三角函数的值?通过查阅三角函数表或使用计算器等数学工具,可以准确地计算出锐角三角函数的值。

2. 如何利用锐角三角函数解决实际问题?在实际问题中,可以通过建立三角函数模型并利用已知条件来解决问题。

例如在测量中,可以利用正弦函数或余弦函数计算出某个角度的值。

3. 锐角三角函数与钝角三角函数有什么区别?锐角三角函数与钝角三角函数在定义上有所不同,钝角三角函数可定义为任意角度,而锐角三角函数仅限于小于90°的角度范围。

《锐角三角函数》知识点

《锐角三角函数》知识点

《锐角三角函数》知识点一、锐角三角函数在Rt△ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦(sinc ),记作sin A ,即sin A aA c∠==的对边斜边。

把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即bcos cA A ∠==的邻边斜边;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即atan bA A A ∠=∠的对边=的邻边。

锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。

二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形 在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。

(1)边角之间的关系:sinA =cosB =a c, cosA =sinB =b c ,tanA =cotB =a b ,cotA =tanB =ba。

(2)两锐角之间的关系: A +B =90°。

(3)三条边之间的关系:。

三角函数 0° 30° 45° 60° 90° αsin0 21 2223 1 αcos 123 2221 0αtan33 1 3-αcot-3 133对边邻边斜边 ACBba c。

余弦、正切

余弦、正切

28.1 锐角三角函数
观察含30°角和45°角的三角形的邻边与斜边、对 边与邻边的比值,看看你有什么发现?
结论:在 Rt△ABC 中,当锐角 A 的度数为30°和 45°时,无论这个直角三角形大小如何,∠A 的 邻边与斜边的比、对边与邻边的比都是一个固定 值.
人民教育出版社
九年级 数学 下册
推理证明 引出概念
九年级 数学 下册
合作探究 运用新知
28.1 锐角三角函数
例1 如图,在Rt△ABC中,∠C=90°,BC=2,AB=3,求∠A,
B
∠B的正弦、余弦、正切值.
3
2
解:在RtABC中, AB 3, BC 2根据勾股定理得:
AC AB2 BC2 32 22 5,
A
C
sin A BC 2 ,cos A AC 5 ,tan A BC 2 2 5 .
人民教育出版社
九年级 数学 下册
28.1 锐角三角函数
28.1 锐角三角函数(第2课时)
—— 余弦 正切
襄城县斌年级 数学 下册
复习回顾 引入新课
28.1 锐角三角函数
请同学们回顾一下,什么叫正弦?我们是怎么探究出 正弦的概念的?
在 Rt△ABC 中,∠C=90°,当∠A 确定时,∠A 的对 边与斜边比随之确定.除了对边与斜边的比,三角形中还 存在有其他边之间的比吗?此时,其他边之间的比值是否 也随之确定呢?
28.1 锐角三角函数
如图:在△ABC 和△DEF 中,∠A=∠D,∠C=∠F
=90°,
AC AB
与 DF
DE
相等吗? BC 与 EF
AC DF
呢?
解:
AC AB

初中数学 锐角三角函数有哪些主要函数

初中数学 锐角三角函数有哪些主要函数

初中数学锐角三角函数有哪些主要函数在初中数学中,主要的锐角三角函数有正弦函数(sin)、余弦函数(cos)、正切函数(tan)和它们的倒数函数,即余割函数(csc)、正割函数(sec)和余切函数(cot)。

下面我将详细介绍这些函数及其性质。

1. 正弦函数(sin):正弦函数是指锐角三角形中某一角的对边与斜边的比值。

在一个锐角三角形中,如果角A的对边为a,斜边为c,则正弦函数可以表示为sin(A) = a/c。

正弦函数的定义域是锐角,即0°到90°之间。

2. 余弦函数(cos):余弦函数是指锐角三角形中某一角的邻边与斜边的比值。

在一个锐角三角形中,如果角A的邻边为b,斜边为c,则余弦函数可以表示为cos(A) = b/c。

余弦函数的定义域也是锐角,即0°到90°之间。

3. 正切函数(tan):正切函数是指锐角三角形中某一角的对边与邻边的比值。

在一个锐角三角形中,如果角A的对边为a,邻边为b,则正切函数可以表示为tan(A) = a/b。

正切函数的定义域是所有不等于90°的角。

4. 余割函数(csc):余割函数是正弦函数的倒数,即csc(A) = 1/sin(A)。

它表示锐角三角形中某一角的斜边与对边的比值的倒数。

5. 正割函数(sec):正割函数是余弦函数的倒数,即sec(A) = 1/cos(A)。

它表示锐角三角形中某一角的斜边与邻边的比值的倒数。

6. 余切函数(cot):余切函数是正切函数的倒数,即cot(A) = 1/tan(A)。

它表示锐角三角形中某一角的邻边与对边的比值的倒数。

这些锐角三角函数在数学中有广泛的应用。

通过它们,我们可以计算锐角三角形中的各个边长和角度,解决与三角形相关的问题。

此外,这些函数具有一些重要的性质,例如:-正弦函数和余弦函数的值都在-1到1的范围内。

-正切函数的值可以是任何实数,除了90°的整数倍角。

-正弦函数和余弦函数是周期函数,周期为360°或2π弧度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B A
3
D
6
C
A
7. 在Rt△ABC中,∠C=Rt∠, BC:AC=1:2,则sinA= 5 。
8.如图, 在Rt△ABC中,∠B=Rt∠,b=
c= 3 ,则sin(90°-A)=
C a B
3 5
5
B
C
5
A

15 5

b
c A
B
C
9. 在Rt△ABC中,∠C=Rt∠,若sinA= 2 ∠A= 45°. ∠B= 45° .
补充练习
1、在等腰△ABC中,AB=AC=5,BC=6, 求sinB,cosB,tanB.
A
B
D
C
补充练习
A
2、如图所示,在△ABC中,∠ACB =90°,AC=12,AB=13, ∠BCM=∠BAC,求sin∠BAC和 点B到直线MC的距离.
B
M
C
3、如图所示,CD是Rt△ABC的斜边AB上的高, 2 求证:
sin A
A 的对边 斜边 A 的邻边 斜边 A 的对边 A 的邻边

a c
cos A

b c
对于锐角A的每一 个确定的值,sinA有 唯一确定的值与它对 应,所以sinA是A的函 数。
同样地, cosA, tanA也是A的函数。
tan A

a b
锐角A的正弦、余弦、 正切都叫做∠A的锐角三 角函数.
6
2
8, 4 3 .
, B tan
AC BC

例2 如图,在Rt△ABC中,∠C=90°,BC=2, AB=3,求∠A,∠B的正弦、余弦、正切值.
解:在 Rt ABC 中, AC AB
2
B 2
C
3
BC 2 3 5 3
2

3 2
2
2
2 3
5, 5 3 , A tan
(AC )
AB
= CD ( BC ) = BD ( CD)
(BC )
AB
1.分别求出下列直角三角形中两个锐角的 正弦值、余弦值和正切值.
2.在Rt△ABC中,如果各边长都扩大2倍, 那么锐角的正弦值、余弦值和正切值有什么变 化?
3.如图,在Rt△ABC中,∠C=900, AC=8,tanA=
3 4
BC
AB BD .
C
A D B
rldmm8989889
试一试:
下图中∠ACB=90°,CD⊥AB,垂足为D. 指出∠A和∠B的对边、邻边. (CD ) (1) sinA = = BC B (AB ) AC D (AD) (2) cosA = = AC (AB ) AC A C (3) sinB= (4) cosB=
例1 如图,在Rt△ABC中,∠C=90°, BC=6, A 3 ,求cosA和tanB的值. sin
5
解: sin A AB 又 AC cos A BC sin A AB AC AB
2
B
6
BC AB
, 5 3 10 .
2
A
C
6
BC 4 5

10
2
余弦(cosine),记作cosA, 即
cos A A 的邻边 斜边 b c
A B 斜边c 对边a C
邻边b
★我们把锐角A的对边与邻边的比叫做∠A的 正切(tangent),记作tanA, 即
tan A A 的对边 A 的邻边 a b
注意
• cosA,tanA是一个完整的符号,它表示 ∠A的余弦、正切,记号里习惯省去角的 符号“∠”; • cosA,tanA没有单位,它表示一个比值, 即直角三角形中∠A的邻边与斜边的比、 对边与邻边的比; • cosA不表示“cos”乘以“A”, tanA不表 示“tan”乘以“A”
新知探索: 1、你能将“其他边之比”用比例的 式子表示出来吗?这样的比有多少? B
c a
b c
a b
A
b
C
2、当锐角A确定时,∠A的邻边与斜边的比, ∠A 的对边与邻边的比也随之确定吗?为什么?交流并 说出理由。
方法一:从特殊到一般,仿照正弦的研究过程;
方法二:根据相似三角形的性质来说明。
如图,在Rt△ABC中,∠C=90°, ★我们把锐角A的邻边与斜边的比叫做∠A的
求sinA、cosB的值.
4 .如图,Rt△ABC中,∠C=90度,CD⊥AB,图 中tanB可由 哪两条线段比求得。
C
A
D
B
5、在Rt△ABC中,∠C=90°,BC=8, sinA=4/5, 求cosA、tanA的值。
B A
C
6、如图,在Rt△ABC中,∠C=90°, CD⊥AB于D。求出∠BCD的三个锐角三角 函数值。
2
,则

sin A= cos A=

A 的对边 斜边
在Rt△ABC中,∠C=Rt∠,我们把:
分别叫做锐角 ∠A的正弦、余 弦、正切、, 统称为锐角∠A 的三角函数.
A 的邻边 斜边
A 的对边 A 的邻边
tan A=
0<sin A<1,0<cos A<1
A
sin A
BC AB
, cos A
AC AB
BC AC
5 n B
AC AB

, B cos
BC AB

, B tan
AC BC

延伸:由上面的计算,你能猜想∠A,∠B的正弦、余弦值 有什么规律吗? 结论:一个锐角的正弦等于它余角的余弦,或一个锐角的 余弦等于它余角的正弦。
新人教版九年级数学(下册)第二十八章
§28.1 锐角三角函数(2)
——余弦、正切
复习与探究:
B c

Rt ABC中, C 90
1.锐角正弦的定义
a
∠A的正弦: si n A
A的 对 边 斜边

BC AB

a c
A
b
C
2、当锐角A确定时,∠A的对边与斜边的比就随之 确定。此时,其他边之间的比是否也随之确定?为 什么?
相关文档
最新文档