11锐角三角函数正切 ppt课件

合集下载

初中数学沪科版九年级上册《锐角三角函数(正切)》优质课公开课课件省级比赛获奖课件

初中数学沪科版九年级上册《锐角三角函数(正切)》优质课公开课课件省级比赛获奖课件
置呢?由此你能得出什么结论?
A
C2
C1
想一想
B2
B1
(1)直角三角形AB1C1和直角三 角 形AB2C2有什么关系?
(2) B1C1 和 B2C2 有什么关系?
AC1 AC2
(3)如果改变B2在梯子上的位
置呢?由此你能得出什么结论?
A
C2 C1
想一想
B2
B1
(1)直角三角形AB1C1和直角三 角 形AB2C2有什么关系?
3) tanA不表示“tan”乘以“A ”
4)初中阶段,我们只学习直角三角形中锐角 的正切。
B
练一练: 1)在Rt△ABC中∠C=90°AC=5,
12 BC=12,tanA=( 12 )
5
A
5
C
B
练一练: 2)在Rt△ABC中∠C=90°AC=5,
13 12 AB=13,tanA=( 12 )
5
D
比眼力 比速度: 哪个梯子更陡?
A E
4m
3m
B
1.5m
F
1.3m
倾斜角越大——梯子陡
铅直高度与 水平宽度的比越大——梯子陡
想一想
B1
B2
A
C2
C1
想一想
B1
(1)直角三角形AB1C1和直角三 角 形AB2C2有什么关系?
B2
A
C2
(2) B1C1 和 B2C2 有什么关系?
AC1 AC2
(3)如果改变B2在梯子上的位
置呢?由此你能得出什么结论?
C1
想一想
B1
(1)直角三角形AB1C1和直角三 角 形AB2C2有什么关系?
B2
A
C2

《锐角三角函数》PPT教学课件(第1课时)

《锐角三角函数》PPT教学课件(第1课时)

BC AC
= 12 =
AC
34,所以AC=9.故填9.
随堂训练
AB 6.如图,在Rt△ABC中,∠C=90°,BC
17 15
,则tan
15 A=_8__.
由正切定义可知tan A=BACC , 因为 AB 17 , 可设BC=15a,AB=17a,从而可
BC 15
用勾股定理表示出第三边AC=8a,再用正切的定义求解得 tan A= BC 15 .
由勾股定理可得 AB= BC2 AC2 122 162 =20.
∴AB的长为20.
课堂小结
1.正切的定义: 如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻
边的比便随之确定,这个比叫做 ∠A的正切,记作tan A, 即tan A= A的对边
A的邻边
2.tanA的值越大,梯子(坡)越陡
图①
图②
新课导入
问题引入
如图所示,轮船在A处时,灯塔B位于它 的北偏东35°的方向上.轮船向东航行5 km 到达C处时,轮船位于灯塔的正南方,此时轮 船距灯塔多少千米?(结果保留两位小数)
该实际问题中的已知和所求为图中的哪些角和线段?
(事实上,求轮船距灯塔的距离,就是在Rt△ABC中,已知 ∠C=90°,∠BAC=55°,AC=5 km,求BC长度的问题)
C,C'.
BC AC
与BACC
具有怎样的关系?
在两个直角三角形中,当一对锐角相等
时,这两个直角三角形相似,从而两条对应直
角边的比相等,即当∠A(小于90°)确定时,以 ∠A为锐角的Rt△ABC的两条直角边的比 BC
AC
是确定的.
知识讲解
1.正切的定义
如图所示,在Rt△ABC中,∠C=90°,我们把∠A的对边与邻边的比叫

【锐角的三角函数——正切】PPT课件

【锐角的三角函数——正切】PPT课件

8.如图,铁路路基横断面为一个四边形,其中 AD∥BC.若两斜坡的坡度均为i=2∶3,上底宽 是3 m,路基高是4 m,则路基的下底宽是( D ) A.7 m B.9 m C.12 m D.15 m
9.在等腰三角形ABC中,AB=AC=10, 4
BC=12,则tan B=__3______.
【点拨】本题易忽略求正切值的前提是应将 ∠B放在一个直角三角形中.
温馨提示: 此PPT
可修改编辑
( 5)2=10,AC2=( 10)2=10,∴AB2+BC2=AC2.
由勾股定理的逆定理可得△ ABC 为直角三角形,且 ∠ABC=90°. ∴在 Rt△ ABC 中,tan∠BAC=ABBC=1. 【答案】B
5.【2019·广州】如图,有一斜坡 AB,坡顶 B 离地面 的高度 BC 为 30 m,斜坡的倾斜角是∠BAC,若 tan ∠BAC=25,则此斜坡的水平距离 AC 为( A ) A.75 m B.50 m C.30 m D.12 m
【∴答ta案n∠】EADC=DEFF=3x+x 32x=29.
7.如图,梯子(长度不变)跟地面所成的锐角为∠A. 关于∠A的正切值与梯子的倾斜程度的关系,下 列叙述正确的是( B ) A.tan A的值越大,梯子越缓 B.tan A的值越大,梯子越陡 C.随着tan A的值的增大,梯子先变缓后变陡 D.梯子的陡缓程度与∠A的正切值无关
10.已知a,b,c是△ABC的三边长,a,b,c满足 (2b)2=4(c-a)(c+a),且5a-3c=0,求tan A+ tan B的值. 解:∵(2b)2=4(c-a)(c+a),∴a2+b2=c2. ∴△ABC是直角三角形,且∠C=90°. ∵5a-3c=0,∴5a=3c. 设 a=3k(k≠0),则 c=5k.∴b=4k. ∴tan A+tan B=34+43=2152.

《锐角三角函数》课件

《锐角三角函数》课件
锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02

锐角三角函数复习课课件

锐角三角函数复习课课件

90度角
总结词
正弦值和余弦值不存在,正切值为无穷大
详细描述
在90度角时,正弦函数值和余弦函数值都不存在,因为无法定义与x轴的角度;正切函数值为无穷大 ,因为在直角三角形中,对边长度可以无限小而保持与斜边的比值不变。
03
锐角三角函数的图像与性质
正弦函数图像
总结词
正弦函数图像是一个周期函数,其图像在直角坐标系中呈波 浪形。
用三角函数来处理角度和旋转。
05
常见题型解析与解题技巧
选择题
• 题型特点:选择题通常考察学生对锐角三角函数基础知识的理 解和应用,题目会给出一些具体的数值或图形,要求选择正确 的答案。
选择题
排除法
根据题目给出的选项,逐一排除明显 错误的答案,缩小选择范围。
代入法
对于涉及数值计算的题目,可以将选 项中的数值代入题目中,通过计算验 证答案的正确性。
在研究磁场和电场时,我们经常需要使用锐 角三角函数来描述场的方向和强度。
日常生活中的问题
建筑和设计
在建筑设计、工程规划和土木工程中,锐角 三角函数用于计算角度、高度和距离等参数 ,以确保结构的稳定性和安全性。
游戏和娱乐
在许多游戏和娱乐活动中,锐角三角函数也 起着重要作用。例如,在制作动画、设计游 戏关卡或创建虚拟现实环境时,我们需要使
总结词
正弦值为0,余弦值和正切值不存在
详细描述
在0度角时,正弦函数值为0,表示射线与x轴重合;余弦函数值不存在,因为无 法定义与x轴的角度;正切函数值也不存在,因为没有对边形成直角三角形。
30度角
总结词
正弦值为0.5,余弦值为0.866,正切值为1/3
详细描述
在30度角时,正弦函数值为0.5,表示对边长度为斜边长度的一半;余弦函数值 为0.866,表示邻边长度为斜边长度的一半的平方根;正切函数值为1/3,表示对 边长度与邻边长度的比值。

锐角的三角函数PPT

锐角的三角函数PPT

余弦函数的符号为cos,表示为cos(θ), 其中θ为锐角。
02
余弦函数的图像是一条周期为2π的余弦 曲线,表示在直角三角形中,邻边的长 度与斜边的长度的比值在[-1,1]之间周 期性变化。
04
正切函数的定义
01
正切函数:tan(θ) = sin(θ) / cos(θ)
02
正切函数的定义域:(0, π/2)
余弦函数的值域:[-1, 1]
余弦函数的图像:一个周期为2π的周 期函数,图像关于y轴对称
余弦函数的奇偶性:偶函数,f(x) = f(-x)
余弦函数的单调性:在[0, π/2]上是 增函数,在[π/2, π]上是减函数
余弦函数的导数:f'(x) = -sin(x)
正切函数的性质
01
02
03
04
05
值域:正弦函数的值域是[-1, 1]
奇偶性:正弦函数是奇函数, 即f(x) = -f(-x)
周期性:正弦函数的周期是 2π,即f(x + 2π) = f(x)
最值:正弦函数的最大值是1, 最小值是-1
图像:正弦函数的图像是一 条正弦曲线,关于原点对称
余弦函数的性质
定义:余弦函数是直角三角形中的一 个角与对边和斜边的比值
03
正切函数的值域:(0, ∞)
04
正切函数的图像:在平 面直角坐标系中,正切 函数的图像是一条以原 点为中心的对称曲线, 在y轴右侧的部分为单调 递增,在y轴左侧的部分 为单调递减。
Part Two
锐角三角函数的性 质
正弦函数的性质
定义:正弦函数是直角三角 形中的一个角(锐角)的正 弦值与对边长度的比值
06
正切函数是锐 角三角函数中 的一种,表示 在一个直角三 角形中,对边 (opposite) 的长度与邻边 (adjacent) 的长度之比。

锐角三角函数(余弦、正切)

锐角三角函数(余弦、正切)

振动与波动
余弦函数在振动和波动的研究中有广泛 应用。例如,简谐振动的位移、速度和 加速度都可以表示为余弦函数的形式。
03
正切函数
正切函数的定义与性质
正切函数的定义
正切函数是锐角三角函数的一种,定义为直角三角形中锐角的对边与邻边的比 值,记作tan(α),其中α为锐角。
正切函数的性质
正切函数具有连续性、周期性、奇偶性等性质。在区间(0,π/2)和(π/2,π)内,正 切函数是单调递增的,而在区间(-π/2,0)和(π/2,3π/2)内,正切函数是单调递减 的。
01
余弦函数和正切函数的定义
余弦函数和正切函数是锐角三角函数的重要组成部分,它们分别描述了
直角三角形中锐角对应的邻边和斜边的比值,以及锐角对应的对边和邻
边的比值。
02
基本性质和应用
余弦函数和正切函数具有周期性、奇偶性等基本性质,这些性质在解决
几何、物理和工程问题中有着广泛的应用。例如,在计算角度、长度、
工程学中的应用
结构设计
在建筑和机械工程中,锐 角三角函数用于设计各种 结构,如桥梁、建筑和机 器部件。
控制系统
在控制工程中,锐角三角 函数用于设计和分析控制 系统,以确保系统的稳定 性和性能。
信号处理
在电子和通信工程中,锐 角三角函数用于信号处理, 如滤波、调制和解调等。
06
总结与展望
锐角三角函数的总结
正切函数的图像与周期性
正切函数的图像
正切函数的图像是一条周期函数,其周期为π,且在每一个周期 内,图像呈现出先增后减的趋势。
正切函数的周期性
由于正切函数的周期为π,因此对于任意整数k,tan(x+kπ) = tan(x),即正切函数在每个周期内具有相同的形状,但位置会随 着k的变化而变化。

锐角的三角函数-正切.ppt

锐角的三角函数-正切.ppt

tanA= ∠A的对边 BC a
∠A的邻边 AC b
说明:
1. tanA是一个完整的符 号,不表示tan乘以∠A。
∠B的正切 怎么表示?
2.它表示∠A的正切,记 号里习惯省去角的符号 ∠A的对边a ∠。
∠A的邻边b
3. tanA没有单位,它表 示一个比值。
4.初中阶段仅研究直角 三角形中锐角的正切。
来自身边的数学
怎样描述山坡陡的程度呢?
看一看 说一说
有两个直角三角形,直角边AC与DF表示水平长度, BC与EF表示铅直高度,AB与DE表示两个不同的坡面, 坡面AB与DE哪个更陡?你是怎么判断的?
20 100
30 (1)
100
30 80
30 (2)
100
30 80
40 (3) 100
感性到理性
3. 如图,在Rt∆ABC中,∠C=90°,CD 为斜边上的个高,
BC=3,AC=4, ∠BCD= ,则tan
的值是( A )
A. 3 B. 4 C. 3 D. 4
4
3
5
5
4.在Rt∆ABC中,∠C=90°,AB=15,tan A 3 , 4
求BC的长。
5. 如图,某一大坝的横截面是四边形ABCD,其 中,AB//CD,坝顶宽CD=3m,坝高6m,迎水坡BC 的坡度i1=1:2, 背水坡AD的坡度i2=1:1,求斜坡 AD 的坡角和坝底宽AB.
DC
A
B
谈谈你的收获
谢 谢 !
132 52 12
乙梯中,tan 6 3 .
84
∵tanβ>tanα,∴乙梯更陡.
试试身手
1、如图,在Rt∆ABC中,∠C=90°, AC=4,BC=3,求tanA和tanB.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

闯关题:第三级
如图所示,Rt△ABC是一防洪堤背水坡的横截面图, 高度AC的长为12 m,它的坡角为45°,为了提高该堤的防 洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD,
求增加的宽度BD的长?
驶向胜利 的彼岸
12 m
Hale Waihona Puke 三角函数的由来∠A的对边
a
tanA=
=
∠A的邻边
b
c
a
b
16世纪,德国数学家雷提库斯把锐角三角函 数定义为直角三角形的边长之比,并采用了六个 函数(正切、正弦、余弦、余切、正割、余割)。 三角函数在建筑,航海及天文等方面测量、计算 中有着重要的作用.
山顶到达的高度h为600米,则该山坡的坡度是
B
B
A
┌ C
C
A
2、(湖州中考)河堤横断面如上图所示,堤高BC=5
米,迎水坡AB的坡度是 1: 3 ,则AC 的长是( )
A.5 3 米
B.10米
C.15米 D.10 3 米
闯关题:第一级
(2010·晋江中考)如图,BAC 位于6×6的方格纸中,
则 tanBAC= 3 .
7
A
4.如图 (2)tanA BC ( 对 ). AC
7m ┍ 10m C (2)
跟踪评价一
二、根据下列图中所给条件分别求出下列图中∠A、∠B的正 切值。
B
C
(1)在Rt△ABC中
1
2
3
tanA= 2
tanB= 2
A4
C
B
5
A (2)在Rt△ABC中
4
tanA= 3
通过上述计算,你有什么发现?
tanB= 3
3) tanA﹥0 且没有单位,它表示一个比值,即直角三 角形中锐角∠A的对边与邻边的比(注意顺序: ).
8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,
则tan∠CBE的值是多少?
C
C
6
8
6
E8
B
AB
D
A
定义的几点说明:
1)初中阶段,正切是在直角三角形中定义的, ∠A是一 个锐角.
2) tanA是一个完整的符号,它表示∠A的正切,记号 里习惯省去角的符号“∠”。但∠BAC的正切表示 为:tan∠BAC,∠1的正切表示为:tan∠1.
∠A 的 对 边
A ∠A的邻边
C
∠A的对边
BC
tanA=
=
∠A的邻边
AC
tanA的值越大,梯子越陡。
跟踪评价一 B 一. 判断真假:
1. 如图 (1) tanA BC( 错 ). AB
A (1)
C
2.如图 (2) tanA BC ( 错 ).
AB
B
3.如图 (2) tan B 10 ( 对 ).
2
B
D
A
E C.
【解析】在方格题中,要注意格点的运用。
闯关题:第二级
某一建筑物的楼顶是“人”字型,并铺上红瓦装 饰。现知道楼顶的坡度超过0.5时,瓦片会滑落下来.
请你根据图中数据说明这一楼顶铺设的瓦片是否会滑落
下来? 13m
A 13

24m
B
24 D
C
温馨提示: 求锐角三角函数时,构造直角三
角形是很重要的.
第一章 解直角三角形
锐角三角函数
B
A
C
复习回顾
勾股定理
直 角 三 角 形
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
课堂检测
1、在Rt△ABC中,∠C=90º,AC=3,AB=5,则 tanB=(
)
A. 4
B. 3
C. 4
D. 3
5
5
3
4
2、一拦水的坡度为 3 ,若坝高BC=15 米,求坝面 AB的长
4
B
15
C
A
课后作业: 必做: 课本习题1、1
挑战自己:(选做题)
(2008·泰安)直角三角形纸片的两直角边长分别为6,
AC AC1 AC2
证明:∵∠A=∠A ∠ACB = ∠AC1B1=∠AC2B2 ∴ Rt△ACB ∽ Rt△AC1B1∽Rt△AC2B2
BCB1C1B2C2 AC AC1 AC2
活动二结论:
在Rt△ABC中,如果锐角A确定,那么∠A
的对边与邻边的比随之确定,这个比叫做 B ∠A的正切(tangent).记作:tanA
倾斜角
实践出真知
请思考: 梯子在上升变“陡” 的过程中,哪些量发生了变化?
实践出真知
请思考: 梯子在上升变“陡” 的过程中,哪些量发生了变化?
实践出真知
请思考: 梯子在上升变“陡” 的过程中,哪些量发生了变化?
实践出真知
B
请思考: 梯子在上升变“陡” 的过程中,哪些量发生了变化?
A
C
实验结论应用
• “太阳当空照,花儿对我笑,小鸟说早早早……”
第一章 解直角三角形
锐角三角函数
第1课时 B
A
C
1.通过生活中梯子倾斜的引例,经历探索直角三 角形中边角关系的过程.理解正切的意义,并会用正 切值来判断梯子或斜坡的陡与缓.
2.会用正切表示直角三角形中两直角边的比,并 能进行简单的计算.
B
A
C
数学实验室
如图,比较梯子AB和EF哪个更陡?
3m 2m
探究活动二:帮帮小明
若小明不能顺利测量梯子顶端到墙脚BC的高度 ,进 而无法刻画梯子的倾斜程度,他该怎么办?
B
B1
B2
A
C CC
B1 B2
A C2 C1
探究活动二
B
(1)Rt△ABC ,Rt△AB1C1 和 Rt△AC2B2 有什么关系?
C
(1)(2B)C, B1C1和B2C2 有什么关 ? 系
13252 12
∵ tanα> tanβ, ∴甲梯更陡.
5m ┌
正切也常用来描述山坡的坡度.
正切通常也用来描述山坡的坡度.
坡面与水平面夹角称为坡角。
B B
60米
A
100米
C
i=tan A=10600 = 0.6
A
C
D
即坡度等于坡角的正切
坡度越大,坡面越陡。
跟踪评价二
1、如下图,某人从山脚A处走了1000米爬到了山顶B处,该
4
互余两角的正切值互为倒数
跟踪评价一
三、如图,在Rt△ABC中,∠C=90°,AC=12, tanA=2,求BC的值。
A
B
C
驶向胜利
的彼岸
跟踪评价一
四、下图表示两个自动扶梯,哪一个自动扶梯比较陡?
甲 6m ┐ 8m α
13m 乙β
【解析】:甲梯中, tan 6 3.
84
乙梯中, tan 5 5.
实验工具:课本、两把直尺(一长一短)
实验过程:用课本做墙壁,尺子当梯子,进
行模拟探究. 模拟梯子由“缓”变“陡”的过程。
B
实验思考:1、梯子在上升变“陡”的
过程中,直角三角形中哪些量发生了变化?
2、什么量决定梯子的倾斜程度?
梯子与地面的夹 角(倾斜角)
A
C
实践出真知
请思考: 梯子在上升变“陡” 的过程中,哪些量发生了变化?
相关文档
最新文档