11锐角三角函数1
§1.1 锐角三角函数(1)
§1.1 锐角三角函数(1)【教学目标】1.探索直角三角形中锐角三角函数值与三边之间的关系。
2.掌握三角函数定义式:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,【重点难点】重点:三角函数定义的理解。
难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。
【教学过程】 一、情境导入1、∠A=30°,则ABBC= ,这个比值和B 点的位置有关系吗?2、在∠A 的一边上任取两点B 与B 1,分别作BC ⊥AC 于点C ,B 1C 1⊥AC 1于点C 1.比值AB BC 与1111B A C B 有什么关系?3、比较1和2中的两个比值是否相等?如果∠A =50°时,这个比值和40°时有变化吗? 二、新课教学 1、结论:当锐角α确定时,比值AB BC 是一个唯一确定的值;当锐角α变化时,比值ABBC也随之变化.简单地说:角度不变,比值不变,角度改变,比值改变边与2、2、三角函数的定义在Rt △ABC 中,如果锐角A 确定,那么∠A 的对斜边的比、邻边与斜边的比也随之确定.∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即sinA=ABBC =斜边的对边A ∠∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即cosA=ABAC =斜边的邻边A ∠∠A 的对边与∠A 的邻边的比叫做∠A 的正切(tang e nt ),记作tan A , 即的斜边的对边A tan ∠∠==A AC BC A 锐角A 的正弦、余弦和正切统称∠A 的三角函数. 三、课堂练习: 1. 根据图形填空:sin A = ; cos A = ; tan A =tanA=∠A的对边∠A的邻边 A 30° BCAB 1 BC CC 140°AαBCC4532. 如图,在Rt △ABC 中,∠C = Rt ∠ ,AC =2, AB=13 . 求 : (1) sin A 、 cos A 、tan A 的值 (2) sin B 、 cos B 、tan B 的值;3、在Rt △ABC 中, ∠C =Rt ∠,AC ︰BC =1︰2. 求tan B 、sin B 、 cos B 的值.4、在Rt △ABC 中, ∠C =Rt ∠,sin A = ,则sin B 的值为( )(A) (B) (C) (D)5、 在Rt ⊿ABC 中,∠C=Rt ∠, CD ⊥AB ,求锐角∠DCB 的余弦四、回顾总结:1. 一个概念:锐角三角函数2. 一个关系:直角三角形中边角关系3、对任意锐角 ,下列结论成立吗?请说明理由. ① 0<sin <1, ② 0<cos <1, ③sin +cos >1 , ④tan >0感谢您的阅读,祝您生活愉快。
锐角三角函数(1)
锐角三角函数一:【知识梳理】1.直角三角形的边角关系(如图)(1)边的关系(勾股定理):AC 2+BC 2=AB 2;(2)角的关系:∠A+∠B=∠C=900; (3)边角关系:①:00901230C BC AB A ⎫∠=⎪⇒=⎬∠=⎪⎭②:锐角三角函数:∠A 的正弦=A a sin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注:三角函数值是一个比值.2.特殊角的三角函数值.3.三角函数的关系(1) 互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin Atan (90○-A )= cotA cot (90○-A )=tanA (2) 同角的三角函数关系.①平方关系:sin 2 A+cos 2A=l ②倒数关系:tanA ·cotA=1③商数关系:sin cos tan ,cot cos sin A AA A A A==4.三角函数的大小比较(1) 同名三角函数的大小比较①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小. ②余弦、余切是减函数.三角函数值随角的增大而减小,随角的减小而增大。
(2) 异名三角函数的大小比较①tanA >SinA ,由定义,知tanA=a b ,sinA=a c ;因为b <c ,所以tanA >sinA②cotA >cosA .由定义,知cosA=b c,cotA=b a;因为 a <c ,所以cotA >cosA .③若0○<A <45○,则cosA >sinA ,cotA >tanA ;若45○<A <90○,则cosA <sinA ,cotA <tanA5.解直角三角形分类:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形. 6.在实际问题中常用的几种角 ①俯角和仰角在测量时,视线与水平线所成的角中,视线在水平线上方的角叫做仰角;视线在水平线下方的角叫做俯角.②坡度与坡角hα通常坡面的竖直高度h 和水平宽度l 的比叫做坡度,用字母i 表示,即lhi ==αtan ,其中α是坡面与水平面的夹角即坡角。
《锐角三角函数》PPT教学课件(第1课时)
BC AC
= 12 =
AC
34,所以AC=9.故填9.
随堂训练
AB 6.如图,在Rt△ABC中,∠C=90°,BC
17 15
,则tan
15 A=_8__.
由正切定义可知tan A=BACC , 因为 AB 17 , 可设BC=15a,AB=17a,从而可
BC 15
用勾股定理表示出第三边AC=8a,再用正切的定义求解得 tan A= BC 15 .
由勾股定理可得 AB= BC2 AC2 122 162 =20.
∴AB的长为20.
课堂小结
1.正切的定义: 如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻
边的比便随之确定,这个比叫做 ∠A的正切,记作tan A, 即tan A= A的对边
A的邻边
2.tanA的值越大,梯子(坡)越陡
图①
图②
新课导入
问题引入
如图所示,轮船在A处时,灯塔B位于它 的北偏东35°的方向上.轮船向东航行5 km 到达C处时,轮船位于灯塔的正南方,此时轮 船距灯塔多少千米?(结果保留两位小数)
该实际问题中的已知和所求为图中的哪些角和线段?
(事实上,求轮船距灯塔的距离,就是在Rt△ABC中,已知 ∠C=90°,∠BAC=55°,AC=5 km,求BC长度的问题)
C,C'.
BC AC
与BACC
具有怎样的关系?
在两个直角三角形中,当一对锐角相等
时,这两个直角三角形相似,从而两条对应直
角边的比相等,即当∠A(小于90°)确定时,以 ∠A为锐角的Rt△ABC的两条直角边的比 BC
AC
是确定的.
知识讲解
1.正切的定义
如图所示,在Rt△ABC中,∠C=90°,我们把∠A的对边与邻边的比叫
锐角三角函数(含习题及答案)
锐角三角函数——正弦一、教学目标1.通过探究使学生知道当直角三角形的锐角固定时,它的对边与用计算器求锐角三角函数值和根据三角函数值求锐角斜边的比值都固定(即正弦值不变)这一事实.2.能根据正弦概念正确进行计算3.经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、教学重点、难点重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.三、教学过程(一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度.(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34º,并已知目高为1米.然后他很快就算出旗杆的高度了.你想知道小明怎样算出的吗?师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度.这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法.下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦(二)实践探索为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉.现测得斜坡与水平面所成角的度数是30º,为使出水口的高度为35m,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC中,∠C=90º,∠A=30º,BC=35m,求AB根据“再直角三角形中,30o角所对的边等于斜边的一半”,即==可得AB=2BC=70m,即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于如图,任意画一个Rt△ABC,使∠C=90º,∠A=45º,计算∠A的对边与斜边的比,能得到什么结论?分析:在Rt△ABC 中,∠C=90º,由于∠A=45º,所以Rt△ABC是等腰直角三角形,由勾股定理得AB2 = AC2+BC2 = 2BC2,AB =BC故===结论:在一个直角三角形中,如果一个锐角等于45º,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A’B’C’,∠C=∠C’=90º,∠A=∠A’=α,那么与有什么关系?分析:由于∠C=∠C’=90º,∠A=∠A’=α,所以Rt△ABC与Rt△A’B’C’相似,=,即=结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.认识正弦如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c.师:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦.记作sinA.板书:sinA== (举例说明:若a = 1,c = 3,则sinA=)注意:1、sinA不是 sin与A的乘积,而是一个整体;2、正弦的三种表示方式:sinA、sin56º、sin∠DEF;3、sinA 是线段之间的一个比值;sinA 没有单位.提问:∠B的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?(三)教学互动例、如图,在RtΔABC中,∠C = 90º,求sinA和sinB的值.分析:可利用勾股定理分别求出两个三角形中未知的那一边长,再根据正弦的定义求解.解答按课本.锐角三角函数——余弦和正切一、教学目标1.使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.2.逐步培养学生观察、比较、分析、概括的思维能力.二、教学重点、难点重点:理解余弦、正切的概念难点:熟练运用锐角三角函数的概念进行有关计算三、教学过程(一)复习引入1.口述正弦的定义2.如图,在Rt△ABC中,∠ACB=90º,CD⊥AB于点D.已知AC=,BC=2,那么sin∠ACD=()A. B. C.D.(二)实践探索一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A’B’C’,∠C=∠C’=90o,∠A=∠A’=α,那么与有什么关系?分析:由于∠C=∠C’=90o,∠B=∠B’=α,所以Rt△ABC与Rt△A’B’C’相似,=,即=结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的邻边与斜边的比也是一个固定值.如图,在Rt△ABC中,∠C=90o,把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA;即cosA ==类似地,把∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA =锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(三)教学互动例、如图,在RtΔABC中,∠C = 90º,BC=6,sinA =,求cosA和tanB的值.解:∵sinA =,∴AB == 6×= 10又AC === 8∴cosA ==,tanB ==30°、45°、60°角的三角函数值一、教学目标1.能推导并熟记30º、45º、60º角的三角函数值,并能根据这些值说出对应的锐角度数.2.能熟练计算含有30º、45º、60º角的三角函数的运算式二、教学重点、难点重点:熟记30º、45º、60º角的三角函数值,能熟练计算含有30º、45º、60º角的三角函数的运算式难点:30º、45º、60º角的三角函数值的推导过程三、教学过程(一)复习引入还记得我们推导正弦关系的时候所到结论吗?即sin30º =,sin45º=你还能推导出sin60º的值及30º、45º、60º角的其它三角函数值吗?(二)实践探索让学生画30º、45º、60º的直角三角形,分别求sin30º、cos45º、tan60°归纳结果(三)教学互动例1、求下列各式的值:(1) cos260º+cos245º+sin30ºsin45º(2)+解:(1)原式 = ()2+()2+××=++= 1(2)原式 =+=+= −(1+)2−(1−)2=−3−2−3+2= −6说明:本题主要考查特殊角的正弦余弦值,解题关键是熟悉并牢记特殊角的正弦余弦值.易错点因没有记准特殊角的正弦余弦值,造成计算错例2、(1)如图(1), 在RtΔABC中,∠C = 90º,AB =,BC =,求∠A的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求α.解:(1)在图(1)中,∵sinA ===,∴∠A = −45º,(2)在图(2)中,∵tanα ===,∴α = 60º用计算器求锐角三角函数值和根据三角函数值求锐角一、教学目标1.让学生熟识计算器一些功能键的使用2.会熟练运用计算器求锐角的三角函数值和由三角函数值来求角二、教学重点、难点重点:运用计算器处理三角函数中的值或角的问题难点:知道值求角的处理三、教学过程(一)复习引入通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?我们可以用计算器来求锐角的三角函数值.(二)实践探索1.用计算器求锐角的正弦、余弦、正切值利用求下列三角函数值(这个教师可完全放手学生去完成,教师只需巡回指导)sin37º24′sin37°23′cos21º28′ cos38°12′tan52°tan36°20′ tan75°17′2.熟练掌握用科学计算器由已知三角函数值求出相应的锐角.例如:sinA=0.9816.∠A=;cosA=0.8607,∠A=;tanA=0.1890,∠A=;tanA=56.78,∠A=.典型例题1.若把ΔABC中锐角A的两边AB、AC分别缩小为原来的,已知其中∠C = 90º,则锐角A的正弦,则sinA的变化情况为( )A.nsinA B.sinA C. D.保持原值不变答案:D说明:因为当一个锐角大小不变时,其正弦值是固定的,与∠A的两边大小无关,所以正确答案为D.2.已知ΔABC中,∠C = 90º,∠A、∠B、∠C所对的边分别是a、b、c、且c = 3b,则cosA = ( )A. B. C.D.答案:C说明:因为cosA =,而c = 3b,所以cosA =,答案为C.3.a、b、c是ΔABC的三边,a、b、c满足等式(2b)2= 4(c+a)(c−a),且有5a−3c = 0,求sinA+sinB的值.分析:用正弦的定义把正弦换为边的比,再由所给的边与边的关系即可求值.解:由(2b)2 = 4(c+a)(c−a)得b2 = c2−a2,∴c2 = a2+b2,∴ΔABC是直角三角形,且∠C = 90º;由5a−3c = 0,得=,即sinA =设a = 3k,则c = 5k,∴b == 4k,∴sinB ===∴sinA+sinB =+=.4.如图,∠POQ = 90º,边长为2 cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC = 30º;分别求点A、D到OP的距离.分析:由正方形的性质可证ΔABE≌ΔBCO≌ΔCDG,再由∠OBC = 30º,即可求出OC、CG、AE的长.解:过点A、D分别作AE⊥OP、DF⊥OP,DG⊥OG,垂足分别为E、F、G.在正方形ABCD中,∠ABC =∠BCD = 90º∵∠OBC = 30º,∴∠ABE =∠BCO = 60º同理可求∠CDG = 60º,又AB = BC = CD = 2 cm,∴RtΔABE≌RtΔBCO≌RtΔCDG∴CG = AE = AB•sin∠ABE = 2•=(cm)OC = BC•sin∠OBC = 2•= 1(cm)∴DF = OG = GC+OC = (+1)(cm)即点A到OP的距离为cm,点D到OP的距离为(+1)cm.习题精选选择题:1.如图,CD是RtΔABC斜边上的高,AC = 4,BC = 3,则cos∠BCD的值是( )A.B.C. D.答案:D说明:因为CD⊥AB,所以∠BCD+∠B = 90º;又∠A+∠B = 90º,所以∠BCD =∠A;由BC = 3,AC = 4,得AB === 5,∴cos ∠BCD = cosA ==,所以答案为D.2.如图,以平面直角坐标系的原点为圆心,以1为半径作圆,若点P是该圆在第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标是( )A.(cosα,1)B.(1,sinα)C.(sinα,cosα)D.(cosα,sinα)答案:D说明:如图,作PA⊥x轴于点A;由锐角三角函数定义知,cosα =,sinα =,所以OA = OPcosα = cosα,PA = OPsinα,所以点P的坐标为(cosα,sinα),所以答案为D.3.如图,将矩形ABCD沿着对角线BD折叠,使点C落在C’处,BC’交AD于E,下列结论不一定成立的是( )A.AD = BC’B.∠EBD =∠EDBC.ΔABE与ΔBCD相似D.sin∠ABE =答案:C说明:因为ΔBC’D≌ΔBCD,所以BC’ = BC;又BC = AD,所以AD = BC’;因为AD//BC,所以∠EDB =∠CBD,而∠CBD =∠EBD,所以∠EDB =∠EBD,所以EB = ED;而sin∠ABE ==,所以A、B、D都是成立的,答案为C.4.如图,RtΔABC中,∠C = 90º,D为BC上一点,∠DAC = 30º,BD = 2,AB = 2,则AC的长是( )A. B.2 C.3D.答案:A说明:在RtΔACD中,因为∠CAD = 30º,设CD = x,因为tan∠DAC =,则AC =x,在RtΔABC中,由勾股定理得AB2= AC2+BC2= AC2+(CD+DB)2,即(2)2= (x)2+(x+2)2,∴x2+x−2 = 0,解得x1 = 1或x2 = −2(舍去),即DC = 1,AC =,答案为A.5.在RtΔABC中,∠C = 90º,如果∠A = 30º,那么sinA+cosB的值等于( )A.1 B. C.D.答案:A说明:因为在RtΔABC中,∠C = 90º,∠A = 30º,所以∠B = 60º,所以sinA = sin30º =,cosB = cos60º =,故sinA+cosB =+= 1,所以答案为A.6.在矩形ABCD中,BC = 2,AE⊥BD于E,∠BAE = 30º,那么ΔECD的面积是( )A.2 B. C.D.答案:C说明:如图,由题意得,ΔABE与ΔBDC相似,∴∠CBD =∠BAE = 30º,∴CD = BC•tan∠CBD = 2•=,AB = CD =,BE = AB•sin30º =×=,EF = BE•sin30º =×=,∴SΔECD = SΔBCD−SΔEBC =BC•CD−BC•EF =×2×−×2×=,答案为C.7.如图,两条宽度都是1的纸条,交叉重叠放在一起,且它们的夹角为α,则它们重叠部分(图中黄色部分)的面积为( )A. B.sinα C. D.cosα答案:C说明:如图,过点A作AN⊥CD于N,过点D作DM⊥BC于M,则AN = DM = 1,∠DCM =α,在RtΔDCM中,CD == ,所以S平行四边形ABCD = CD•AN =,答案为C.解答题:1.如果α是锐角,且cosα =,求sinα及tanα的值.分析:事实上,因为α为锐角,所以可构造一个RtΔABC,使∠C = 90º,∠A = α,则有AC = 4k,AB = 5k,由勾股定理得BC == 3k,从而可求sinα;还可直接用公式sinA =求解.解:构造RtΔABC,使∠A = α,∠C = 90º,如图,∵cosα = cosA =,∴可令AC = 4k,AB = 5k,∴BC == 3k,∴sinA ===,tanA ===,即sinα =,tanα =.2.若tan2x−(+1)tanx+= 0,求锐角x.分析:这是以tanx为未知数的一元二次方程,可先求出tanx,再求x.解:tan2x−(+1)tanx+= 0,(tanx−1)(tanx−) = 0,得tanx = 1或tanx =;当tanx = 1时,x = 45º;当tanx =时,x = 60º;∴x1 = 45º,x2 = 60º.。
锐角三角函数(1)ppt
注意: 注意:
BC tanα 即tanα= AC
1、在三角函数的表示中,用希腊字母或单独一个大写 在三角函数的表示中, 英文字母表示的角前面的“ 一般省略不写. 英文字母表示的角前面的“∠”一般省略不写. sinα cosα tanα是一个完整的符号, 2、sinα、 cosα、 tanα是一个完整的符号,单 独的“sin”没有意义 没有意义. 独的“sin 没有意义.
H
D
动手实验
已知一个50 ∠MAN,在边AM上任意取一点 在边AM 取一点B 已知一个50 的∠MAN,在边AM上任意取一点B,作 BC⊥AN于点C.用刻度尺先量出BC,AB的长度(精确到1 BC⊥AN于点C.用刻度尺先量出BC,AB的长度(精确到1毫 C.用刻度尺先量出BC 的长度 的值(结果保留2个有效数字), ),并将所得 米),再计算 BC 的值(结果保留2个有效数字),并将所得 ),再计算 的结果与你同伴所得的结果作比较.你发现了什么? 的结果与你同伴所得的结果作比较.你发现了什么? M
三角函数的由来
“三角学”一词,是由希腊文三角形与测量二字构成的, 三角学”一词,是由希腊文三角形 测量二字构成的 三角形与 二字构成的, 三角学 原意是三角形的测量 也就是解三角形. 三角形的测量, 原意是三角形的测量,也就是解三角形.后来范围逐渐 扩大,成为研究三角函数及其应用的一个数学分支. 扩大,成为研究三角函数及其应用的一个数学分支. 三角测量在我国出现的很早.据记载, 三角测量在我国出现的很早.据记载,早在公元前两 千年,大禹就利用三角形的边角关系, 千年,大禹就利用三角形的边角关系,来进行对山川地 α 势的测量. 势的测量. A C
1 2 sinA=______
.
练一练
用锐角三角函数概念解题的常见方法(含答案)
用锐角三角函数概念解题的常见方法1.锐角三角函数(1)锐角三角函数的定义我们规定:sinA=ac,cosA=bc,tanA=ab,cotA=ba.锐角的正弦、余弦、正切、余切统称为锐角的三角函数.(2)用计算器由已知角求三角函数值或由已知三角函数值求角度对于特殊角的三角函数值我们很容易计算,甚至可以背诵下来,但是对于一般的锐角又怎样求它的三角函数值呢?用计算器可以帮我们解决大问题.①已知角求三角函数值;②已知三角函数值求锐角.2直角三角形中,30°的锐角所对的直角边等于斜边的一半.3.锐角三角函数的性质(1)0<sinα<1,o<cosα<1(0°<α<90°)(2)tan α·cot α=1或tan α=1cot α; (3)tan α=sin cos αα,cot α=cos sin αα. (4)sin α=cos (90°-α),tan α=cot (90°-α).有关锐角三角函数的问题,常用下面几种方法: 一、设参数例1. 在ABC ∆中,︒=∠90C ,如果125tan =A ,那么sinB 的值等于( ) 512.125.1312.135.D C B A 解析:如图1,要求sinB 的值,就是求AB AC 的值,而已知的125tan =A ,也就是125=AC BC 可设k AC k BC 125==, 则k k k AB 13)12()5(22=+=13121312sin ==∴k k B ,选B 二、巧代换例2. 已知3tan =α,求ααααcos sin 5cos 2sin +-的值。
解析:已知是正切值,而所求的是有关正弦、余弦的值,我们可以利用关系式3cos sin tan ==ααα,作代换ααcos 3sin =,代入即可达到约分的目的,也可以把所求的分式的分子、分母都除以αcos 。
11锐角三角函数1
B2 B3
如果改变B2在梯子上的位置 (如B3C3 )呢?
A
C3 C2
C1
由此你得出什么结论?
合作探究,生成概念
在直角三角形中,若一个锐角的对边与邻边的比 值是一个定值,那么这个角的值也随之确定.
在Rt△ABC中,锐角A的对边与邻边 的比叫做∠A的正切,记作tanA,即
B
tanA= A的对边
A的邻边
判断的?
3. 如图所示:
E A
4m
6m
B 2m C F 3m D
自主探究,合作交流
在实践中探索
4. 如图所示:
梯子AB和EF哪个 更陡?你是怎样
判断的?
E A
?
5m
6m
B 2m C F 2m D
自主探究,合作交流
小明和小亮这样想,如图:
如图,小明想通过测量B1C1及AC1, 算出它们的比,来说明梯子AB1的 倾斜程度;
梯子AB和EF哪个更 陡?你是怎样判断
的?
1. 如图所示:
A
E
5
5
m
m
B 2.5 C F 2 D
m
m
自主探究,合作交流
有比较才有鉴别
梯子AB和EF哪个更 陡?你是怎样判断
的?
2. 如图所示:
A
E
?
4
3.5
m
m
B 1.5 C F 1.3 D
m
m
自主探究,合作交流
永恒的真理 变
梯子AB和EF哪个 更陡?你是怎样
5.角相等,则正切值相等;两锐角的正切值相等, 则这两个锐角相等.
交流小结,收获感悟
1. 对自己说,你有什么收获? 2. 对同学说,你有什么温馨提示? 3. 对老师说,你还有什么困惑?
锐角三角函数公式大全
锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosa sin3a=3sina-4sin³a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos³a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(√3/2)²] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差 sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 诱导公式 sin(-α) = -sinα cos(-α) = cosα tan (—a)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限 万能公式 sinα=2tan(α/2)/[1+tan^(α/2)] cosα=[1-tan^(α/2)]/1+tan^(α/2)] tanα=2tan(α/2)/[1-tan^(α/2)]。
人教版九年级下册数学教学课件锐角三角函数第一课时
导入新课
意大利比萨斜塔1350年落成时就已倾斜,其塔顶 中心点偏离垂直中心点2.1 m.1972年比萨地区发生 地震,这座高54.5 m的斜塔在大幅度摇摆后仍魏然屹 立,但塔顶中心点偏离垂直中心线5.2 m,而且还在 继续倾斜,有倒塌的危险.当地从1990年对斜塔进行 维修纠偏,2001年竣工,此时塔顶中心点偏离垂直中 心的距离减少了43.8 cm.
28.1 锐角三角函数(1) ∠A的正弦、余弦、正切都是∠A的锐角三角函数(trigonometric function of acute angle).
答:我们前面研究了直角三角形中角与角之间的关系(两锐角互余)、三边之间的关系(勾股定理),还可以研究边与角之间的关系 . 2.锐角三角函数的定义 2.在Rt△ABC中,∠C=90°,a=3,c=5,求sin A和tan A的值. 1 锐角三角函数(1)
13
巩固练习
2.在Rt△ABC中,∠C=90°,a=3,c=5,求sin A和
tan A的值.
解:在Rt△ABC中,∵a=3,c=5,
∴ b c2 a2 52 32 4 .
∴sin A= a 3 ,tan A= a 3 .
c5
b4
课堂小结
1.正弦、余弦、正切的定义
如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C 当∠A=45°时,∠A的对边与斜边的比都等于 ,它也是一个固定值.由此你能猜想出什么一般的结论呢?
1.在△ABC中,若三边BC、CA、AB满足BC︰CA︰AB=5︰12︰13,则cos B=( ).
解:在理Rt△)ABC,中,∵还a=3,可c=5以, 研究边与角之间的关系.
导入新课
从实际需要看,要描述比萨斜塔的倾斜程度,我 们需要研究直角三角形中边与角之间的关系:从数学 内部看,我们已经研究了直角三角形的边与边的关 系、角与角的关系,边与角之间有什么关系呢?本节 课我们一起来学习“锐角三角函数”——锐角的正弦、 余弦、正切.
【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题
c ,则有: s in A = a = cos B , cos A = = sin B , tan A = ,这就是锐角三角函数所以 cos B = sin(90 - B) = sin A = .在 Rt△BCD 中, cos B = ,所以 = ., cos A = , =(sin 2A 、cos 2A 分别表示 sin A 、cos A 2 2锐角三角函数我们知道,在 Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为 a 、b 、b ac c b的定义.根据锐角三角函数的定义,再结合直角三角形的性质,我们可以探索出锐角三角函数之间的三个特殊关系.一、余角关系由上面的定义我们已得到 sin A =cos B ,cos A =sin B ,而在直角三角形中,∠A+∠B =90°,即∠B =90°-∠A .因此有:sin A =cos (90°-A ),cos A =sin (90°-A ).应用这些关系式,可以很轻松地进行三角函数之间的转换.例1 如图,在 Rt△ABC 中,∠C =90°,CD ⊥AB 于 D ,已知 sin A ==2,求 BC 的长.解:由于∠A +∠B =90°,12BD 2 1BC BC 2所以 BC =4.二、平方关系a b 由定义知 sin A = c c1 2 ,BD所以 sin 2 A + cos 2 A = a 2 b 2 a 2 + b 2+ c c c 2的平方).又由勾股定理,知 a 2+b 2=c 2,所以 sin 2A +cos 2A = c 2 c 2=1.应用此关系式我们可以进行有关锐角三角函数平方的计算.例 2 计算:sin256°+sin245°+sin234°.=⎪⎪ + 1 = 由定义中 sin A = a, cos A = ,得 = c = ⨯ = = tan A .所以原式 = = =- .5 12 5 12所以 sin B = = .应选(B).5解:由余角关系知 sin56°=cos(90°-56°)=cos34°.所以原式=sin245°+(sin234°+cos234°)⎛ 2 ⎫2 ⎝ 2 ⎭3 2 .三、相除关系b c casin A a c a cos A b c b bc利用这个关系式可以使一些化简求值运算过程变得简单.例 3 已知 α 为锐角,tan α =2,求 3sin α + cos α 4cos α - 5sin α的值.解:因为 tan α = sin α cos α= 2 ,所以 sin α =2cos α ,6cos α + cos α 6 + 1 74cos α - 10cos α 4 - 10 6求三角函数值的方法较多,且方法灵活.是中考中常见的题型.我们可以根据已知条件结合图形选用灵活的求解方法.四、设参数法例 4 如图 △1,在 ABC 中,∠C =90°,如果 t a n A =(A)(B) (C) (D)13 13 12 55 12 ,那么 sin B 等于( )分析:本题主要考查锐角三角函数的定义及直角三角形的有关性质.因为 tan A = a 5 =b 12,所以可设 a =5k ,b =12k (k >0),根据勾股定理得 c =13k ,图 1b 12c 13五、等线段代换法例 5如图 2,小明将一张矩形的纸片 ABC D 沿 C E 折叠,B 点恰好落在 A D 边上,设此点为 F ,若 BA :BC =4:,则 c os∠DCF 的值是______.分析:根据折叠的性质可知 E △B C ≌ EF C ,所以 C F=CB ,又 C D=AB ,AB :BC =4:5, 所以 C D :C F=4:5,图 2=.113911,即=,所以C E=,在Rt△A E C中,tan∠CA E==3=.所以tanα=.C3445所以DB==,所以tanα=,选(A).在Rt D△C F中,c os∠D C F=DC4 CF5六、等角代换法例6如图3,C D是平面镜,光线从A点出发经C D上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥C D,B D⊥C D,垂足分别为C、D,且AC=3,B D=6,C D=11,则tanα的值为()B(A)(B)(C)(D)311119A分析:根据已知条件可得∠α=∠CA E,所以只需求出tan∠CA E.α根据条件可知△A C E∽B DE,所以AC CE3CE=BD ED611-CEC E图3D11311CE11AC39119七、等比代换法例7如图4,在Rt△ABC中,ACB=90,D⊥AB于点D,BC=3,AC=4,设BC D=α,tanα的值为()(A)(B)(C)(D)435分析:由三角形函数的定义知tanα=DB DC,由Rt△C D△B∽Rt ACB,BC33DC AC44图4( :锐角三角函数测试1.比较大小:sin41°________sin42°. 2.比较大小:cot30°_________cot22°. 3.比较大小:sin25°___________cos25°. 4.比较大小:tan52°___________cot52°. 5.比较大小:tan48°____________cot41°. 6.比较大小:sin36°____________cos55°.7、下列命题①sin α 表示角α 与符号 sin 的乘积;② 在△ABC 中,若∠C=90°,则 c=α sinA 成立;③任何锐角的正弦和余弦值都是介于 0 和 1 之间实数.其正确的为()A 、②③B.①②③C.②D. ③8、若 △R t ABC 的各边都扩大 4 倍得到 △R t A ′B ′C ′,那么锐角 A 和锐角 A ′正切值的关系为()A.tanA ′=4tanA B.4tanA ′=tanAC.tanA ′=tanAD.不确定.9(新疆中考题) 1)如图(1)、 2),锐角的正弦值和余弦值都随着锐角的确定而确定, 变化而变化.试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律,试比较 18°,34°,50°,62°,88°,这些锐角的正弦值的 大小和余弦值的大小。
2020-2021学年最新鲁教版五四制九年级数学上册《锐角三角函数》1教学设计-评奖教案
28.1 锐角三角函数内容简介本节先研究正弦函数,在此基础上给出余弦函数和正切函数的概念.通过两个特殊的直角三角形,让学生感受到不管直角三角形大小,只要角度不变,那么它们所对的边与斜边的比分别都是常数,这为引出正弦函数的概念作好铺垫.这样引出正弦函数的概念,能够使学生充分感受到函数的思想,由于教科书比较详细地讨论了正弦函数的概念,因此对余弦函数和正切函数概念的讨论采用了直接给出的方式,具体的讨论由学生类比着正弦函数自己完成.教科书将求特殊角的三角函数值和已知特殊角的三角函数值求角这两个相反方向的问题安排在一起,目的是体现锐角三角函数中角与函数值之间的对应关系.本节最后介绍了如何使用计算器求非特殊角的三角函数值以及如何根据三角函数值求对应的角等内容.由于不同的计算器操作步骤有所不同,教科书只就常见的情况进行介绍.教学目标1.知识与技能(1)了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA•表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角;(2)能够正确地使用计算器,由已知锐角求出它的三角函数值,•由已知三角函数值求出相应的锐角.2.过程与方法通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.3.情感、态度与价值观引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重点与难点1.重点:正弦、余弦;正切三个三角函数概念及其应用.2.难点:使学生知道当锐角固定时,它的对边、•邻边与斜边的比值也是固定的这一事实.用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.教学方法学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,教学中应十分重视.同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,在教学中应作为难点处理.第1课时正弦函数复习引入教师讲解:杂志上有过这样的一篇报道:始建于1350年的意大利比萨斜塔落成时就已经倾斜.1972年比萨发生地震,这座高54.5m的斜塔大幅度摇摆22分之分,仍巍然屹立.可是,塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,•而且还以每年倾斜1cm•的速度继续增加,•随时都有倒塌的危险.•为此,•意大利当局从1990年起对斜塔进行维修纠偏,2001年竣工,使顶中心点偏离垂直中心线的距离比纠偏前减少了43.8cm.根据上面的这段报道中,•“塔顶中心点偏离垂直中心线的距离已由落成时的2.1m增加至5.2m,”这句话你是怎样理解的,它能用来描述比萨斜塔的倾斜程度吗?这个问题涉及到锐角三角函数的知识.学过本章之后,你就可以轻松地解答这个问题了!探究新知(1)问题的引入教师讲解:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?教师提出问题:怎样将上述实际问题用数学语言表达,要求学生写在纸上,•互相讨论,看谁写得最合理,然后由教师总结.教师总结:这个问题可以归纳为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,•求AB(课本图28.1-1).BC根据“在直角三角形中,30°角所对的边等于斜边的一半”,即A BC AB ∠=的对边斜边=12可得AB=2BC=70m ,也就是说,需要准备70m 长的水管.教师更换问题的条件后提出新问题:•在上面的问题中,•如果使出水口的高度为50m ,那么需要准备多长的水管?•要求学生在解决新问题时寻找解决这两个问题的共同点. 教师引导学生得出这样的结论:在上面求AB (所需水管的长度)的过程中,虽然问题条件改变了,但我们所用的定理是一样的:在一个直角三角形中,•如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于12.也是说,只要山坡的坡度是30°这个条件不变,那么斜边与对边的比值不变.教师提出第2个问题:既然直角三角形中,30°角的斜边与对边的比值不变,那么其他角度的对边与斜边的比值是否也不会变呢?•我们再换一个解试一试.•如课本图28.1-2,在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?•如果是,是多少?C B A教师要求学生自己计算,得出结论,然后再由教师总结:在Rt △ABC 中,∠C=90°由于∠A=45°,所以Rt △ABC 是等腰直角三角形,由勾股定理得AB 2=AC 2+BC 2=2BC 2,BC . 因此BC AB ===2, 即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,•这个角的对边与斜边的比都等于2. 教师再将问题提升到更高一个层次:从上面这两个问题的结论中可知,•在一个Rt △ABC 中,∠C=90°,当∠A=30°时,∠A 的对边与斜边的比都等于12,是一个固定值;•当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值?教师直接告诉学生,这个问题的回答是肯定的,并边板书,•边与学生共同探究证明方法.这为问题可以转化为以下数学语言:任意画Rt △ABC 和Rt △A ′B ′C ′(课本图28.1-3),使得∠C=∠C ′=90°,∠A=∠A ′=a ,那么''''BC B C AB A B 与有什么关系. B 'A 'C ' CB在课本图28.1-3中,由于∠C=∠C ′=90°,∠A=∠A ′=a ,所以Rt △ABC ∽Rt △A ′B ′C ′,''''BC AB B C A B =,即''''BC B C AB A B =. 这就是说,在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比都是一个固定值.(二)正弦函数概念的提出教师讲解:在日常生活中和数学活动中上面所得出的结论是非常有用的.为了引用这个结论时叙述方便,数学家作出了如下规定:如课本图28.1-4,在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA= =a c. 斜边c对边a b C B在课本图28.1-4中,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c . 例如,当∠A=30°时,我们有sinA=sin30°=12; 当∠A=45°时,我们有sinA=sin45°. (三)正弦函数的简单应用教师讲解课本第79页例题1.例1 如课本图28.1-5,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.(1)34C BA (2)1353CB A教师对题目进行分析:求sinA 就是要确定∠A 的对边与斜边的比;求sinB•就是要确定∠B 的对边与斜边的比.我们已经知道了∠A 对边的值,所以解题时应先求斜边的高. 解:如课本图28.5-1(1),在Rt △ABC 中,.因此 sinA=BC AB =35,sinB=AC AB =45. 如课本图28.5-1(2),在Rt △ABC 中,sinA=BC AB =513,. 因此,sinB=AC AB =1213. 随堂练习 做课本第77页练习.课时总结在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比都是一个固定值.在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 教后反思_______________________________________________________________________ ___________________________________________________________________________ 第1课时作业设计课本练习做课本第82页习题28.1复习巩固第1题、第2题.(只做与正弦函数有关的部分) 双基与中考1.如图1,已知点P 的坐标是(a ,b ),则sin α等于( )A.abB.baCDP(a,b)αyxOCBACBA (1)(2)(3)2.(2005,南京)如图2,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A.34B.43C.35D.453.在Rt△ABC中,∠C=90°,sinA=513,则sinB等于()A.1213B.1312C.512D.5134.(2004.辽宁大连)在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的值是().A11..43B C D5.如图3,在Rt△ABC中,∠C=90°,AB=10,sinB=25,BC的长是().A..450 B C D第1课时作业设计(答案)1.D 2.A 3.A 4.B 5.B28.1.2 余弦、正切函数(第2课时)复习引入教师提问:我们是怎样定义直角三角形中一个锐角的正弦的?为什么可以这样定义它.学生回答后教师提出新问题:在上一节课中我们知道,如课本图28.1-6所示,在Rt △ABC中,∠C=90°,当锐角A确定时,∠A的对边与斜边的比就随之确定了.现在我们要问:其他边之间的比是否也确定了呢?为什么?∠A的邻边b ∠A的对边a 斜边cCBA探究新知(一)余弦、正切概念的引入教师引导学生自己作出结论,•其证明方法与上一节课证明对边比斜边为定值的方法相同,都是通过两个三角形相似来证明.学生证明过后教师进行总结:类似于正弦的情况,在课本图28.1-6中,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻边的比也分别是确定的.我们把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=A ∠的邻边斜边=cb ; 把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA=A A ∠∠的对边的邻边=a b . 教师讲解并板书:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是A 的函数.同样地,cosA ,tanA 也是A 的函数.(二)余弦正切概念的应用教师解释课本第78页例2题意:如课本图28.1-7,在Rt △ABC 中,∠C=90°,BC=6,sinA=35,求cosA 、tanB 的值. 6C BA教师对解题方法进行分析:我们已经知道了直角三角形中一条边的值,要求余弦,正切值,就要求斜边与另一个直角边的值.我们可以通过已知角的正弦值与对边值及勾股定理来求.教师分析完后要求学生自己解题.学生解后教师总结并板书.解:sinA=BC AB,∴AB=sin BC A =6×53=10,又∵, ∴cosA=AC AB =45,tanB=AC BC =43. 随堂练习学生做课本第78页练习1、2、3题.课时总结在直角三角形中,当锐角A 的大小确定时,∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,把∠A 的对边与斜边的比叫做∠A 的正切,记作tanA .教后反思____________________________________________________________________ __________________________________________________________________________第2课时作业设计课本练习做课本第82页习题28.1复习巩固第1题、第2题.(只做与余弦、正切函数有关的部分)。
2022九年级数学上册第二章直角三角形的边角关系1锐角三角函数1正切课件鲁教版五四制16
A.都没有变化
B.都扩大为原来的2倍
C.都缩小为原来的一半 D.不能确定是否发生变化
4.等腰三角形的底边长为 10 cm,周长为 36 cm,则底角的正切 值为( C )
【点A.1拨53】由B.周1123长为C.13526 cmD,.15底2 边长为 10 cm,可得其腰长为 13 cm. 画出草图,如图所示,AC=BC=13 cm,AB=10 cm. 过 C 作 CD⊥AB 于点 D,由等腰三角形“三线合一”可得 AD=12AB
解:解方程 5x2+2x-3=0,得 x1=35,x2=-1. ∵三角形的各边长都是正数,∴tan A=35. 又∵tan A=BACC,∴AC=taBnCA=6×53=10. 根据勾股定理,得 AB= AC2+BC2= 102+62=2 34.
12.如图,CD是一个平面镜,光线从点A射入经CD 上的点E反射后照射到点B.设入射角为∠α(反射角 等于入射角),AC⊥CD,BD⊥CD,垂足分别为C, D.若AC=3,BD=6,CD=12,求tan α的值.
10.如图,在 Rt△ABC 中,CD 为斜边上的高,下列不是 tan A 的值的是( ) A.BACC B.CADD C.BCDD D.BACB
【点拨】∠A 同时在 Rt△ADC 和 Rt△ABC 中,因此 tan A=CADD= BACC.另外,∠A 还和∠DCB 相等,所以 tan A=tan ∠DCB=BCDD. 本题易忽略∠A=∠DCB 而致错.
【点拨】利用等角代换法将 ∠α用∠A代替,求出∠A的 正切值即可.
解:∵AC⊥CD,BD⊥CD,∴∠ACE=∠BDE=90°. 又∵反射角等于入射角,∴∠A=∠B=∠α. ∴△ACE∽△BDE.∴ACCE=BEDD. 又∵AC=3,BD=6,CD=12, ∴C3E=12-6 CE,∴CE=4.
1.1锐角三角函数第1课时正切(教案)
其次,在新课讲授环节,我发现学生在理解正切函数定义和计算公式时,还存在一定的困难。这说明对于基础概念和公式的讲解,还需要更加细致和生动。在今后的教学中,我可以尝试使用更多的教具和实物,帮助学生形象地理解正切函数的定义和计算方法。
3.重点难点解析:在讲授过程中,我会特别强调正切函数的定义和计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,例如,通过不同角度的正切值计算,让学生看到正切值随角度变化的规律。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正切函数相关的实际问题,如测量树的高度或建筑物的高度。
突破方法:总结记忆技巧,如“正切等于对边除邻边”,并通过大量练习巩固记忆。
(3)实际问题的解决:学生面对实际问题,不知如何运用正切函数建立数学模型。
突破方法:提供丰富的实际问题案例,引导学生学会分析问题、建立数学模型,并逐步解决问题。
(4)正切函数的性质:学生对正切函数随角度变化的规律理解不深,难以把握其性质。
1.1锐角三角函数第1课时正切(教案)
一、教学内容
本节课选自《数学》八年级上册第十一章“锐角三角函数”的第一课时,主要内容为正切函数的定义及应用。具体内容包括:
1.理解正切函数的概念:通过观察直角三角形的对边与邻边的比值,引出正切函数的定义。
2.掌握正切函数的表示方法:利用直角三角形的边长关系,推导出正切函数的计算公式,即tanα =对边/邻边。
锐角三角函数1
AC 12 ∴ sin B = = . AB 13
想一想
如图, 如图 ∠C=90°CD⊥AB. ° ⊥ sinB可以由哪两条线段之比 可以由哪两条线段之比? 可以由哪两条线段之比
A
C
的值. 若AC=5,CD=3,求sinB、cosB的值 求 、 的值 ∵∠B=∠ 解: ∵∠ ∠ACD ∴sinB=sin∠ACD ∠ 在Rt△ACD中,AD= AC 2-CD 2 = 52-32 =4 △ 中 AD 4 sin ∠ACD= AC = 5 4 ∴sinB= 5
3
用一用
要想使人安全地攀上斜靠 在墙面上的梯子的顶端,梯子 在墙面上的梯子的顶端 梯子 与地面所成的角α一般要满足 与地面所成的角 一般要满足 0.77≤ sinα ≤0.97.现有一个长 现有一个长 6m的梯子 问使用这个梯子能 的梯子,问使用这个梯子能 的梯子 安全攀上一个5m 高的平房吗 高的平房吗? 安全攀上一个
a = c
对边
b
A 邻边
┌ C
注意:
1、sinA 不是一个角 、 2、sinA不是 sin与A的乘积 2、sinA不是 sin与A的乘积 3、sinA 是一个比值 、 4、sinA 没有单位 、
余弦
在Rt△ABC中,锐角A的邻边与斜边的比叫 做∠A的余弦,记作cosA,即
∠A的邻边 b cos A = = 斜边 c
4、sin2A+cos2A=1
?
34°
1米 米 10米 米
我们已经知道,直角三角形 我们已经知道,直角三角形ABC可以简 可以简 记为Rt△ 所对的边AB称 记为 △ABC,直角∠C所对的边 称 ,直角∠ 所对的边 为斜边, 表示, 为斜边,用c表示,另两条直角边分别叫 表示 的对边与邻边, 表示. ∠A的对边与邻边,用a、b表示 的对边与邻边 、 表示
1.1锐角三角函数(教案)
4.情感与态度:激发学生对数学学科的兴趣,增强学生对数学源于生活、服务生活的认识,培养学生积极的学习态度和价值观。
三、教学难点与重点
1.教学重点
-锐角三角函数的定义:正弦函数(sin)、余弦函数(cos)和正切函数(tan)的定义是本节课的核心内容。教师需明确这三个函数的定义,并通过具体实例进行解释,使学生理解函数的本质。
1.1锐角三角函数(教案)
一、教学内容
本节课选自《数学》八年级下册第十一章“锐角三角函数”的1.1节。教学内容主要包括以下方面:
1.锐角三角函数的定义:正弦函数(sin)、余弦函数(cos)和正切函数(tan);
2.锐角三角函数的图像与性质:通过图像了解正弦、余弦、正切函数随角度变化的规律;
3.锐角三角函数的值:运用计算器计算特殊角度的正弦、余弦和正切值;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是指在直角三角形中,锐角与三条边的比值关系。这些函数包括正弦(sin)、余弦(cos)和正切(tan)。它们在解决实际问题,如测量、建筑等领域具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过测量树的高度,展示如何运用正切函数来求解实际问题。
4.锐角三角函数的应用:解决实际问题,如测量物体的高度等。
二、核心素养目标
1.理解与运用:使学生掌握锐角三角函数的定义、图像与性质,能运用计算器计算特殊角度的正弦、余弦和正切值,并能运用这些知识解决实际问题,提高学生的数学应用能力。
2.思维与分析:培养学生通过图像观察、分析锐角三角函数变化规律的逻辑思维能力,发展学生的数学直观想象和数学抽象素养。
1.1《锐角三角函数(1)》参考教案
《锐角三角函数(1)》参考教案【教学目标】知识与技能目标:通过实例,了解三角函数的概念,掌握正弦、余弦和正切的符号,会用符号表示一个锐角的三角函数。
掌握在直角三角形中锐角三角函数与边之比的关系,了解锐角的三角函数值都是正实数,会根据锐角三角函数的定义求锐角三角函数值;过程与方法目标:经历锐角的正弦、余弦和正切的探索过程,体验数学问题的分析与解决;情感、态度与价值观目标:培养多思考的学习习惯;学会用数学的眼光看世界,用数学来分析和解决生活中的问题。
【重点难点】教学重点:锐角的正弦、余弦、正切和锐角三角函数的概念;教学难点:锐角三角函数的定义,正弦、余弦和正切三类函数的意义、符号、以及函数中以角为自变量是教学中的难点。
【教学过程】一、创设情境引入主题利用几何画板演示一垂直于地面的旗杆在一天阳光的照射下,影长发生了变化这一情境。
(设计意图:通过学生观察生活中实物影长变化这一自然现象,结合多媒体展示旗杆影长变化过程,可提高学生的兴奋点,激发学习兴趣和欲望,有利于引导学生进行数学思考。
导入主题:直角三角形中,边角之间的关系。
)二、师生互动探求新知1.从一个含30度角的直角三角形为例,通过回忆直角三角形中,30度角所对的直角边是斜边的一半,得到30度的对边与斜边比值固定,不随点的变化而变化;2.再从含45度角的直角三角形讨论45度的对边与斜边比值固定,不随点的位置而变化;3.任意角∠α是否同样存在对边与斜边比值固定这一结论?通过猜测、验证、归纳的手段来分析和解决数学问题。
4.通过以上探索,边角之间的关系是什么?5.学习锐角三角函数的概念,表示方法及自变量取值范围和函数值取值范围。
(设计意图:建立在学生原有认知的基础上,发现问题,从而寻求方法解决问题。
通过回忆熟悉的定理,让学生明白直角三角形中锐角与边比值存在关系,并大胆猜测直角三角形中任意角∠α的对边与斜边比值是否固定?通过叠放含有∠α的直角三角形,从而作出图形,易让学生用所学过的相似三角形的知识来解决问题,得到比值固定。
中考数学专题训练第11讲勾股定理与锐角三角函数1(解析版)
勾股定理与锐角三角函数(压轴题组)1.(2021·广东佛山·九年级期中)如图1.有一张矩形纸条ABCD .边AB 、BC 的长分别是方程27100x x -+=的两个根()AB BC >.E 为CD 上一点.1CE =. (1)连接AE .BE .试说明90AEB =︒∠.(2)如图2.M 为边AB 上一个动点.将四边形BCEM 沿ME 折叠.使点B .C 分别落在点B ′.C '上.边MB '与边CD 交于点N .①如图3.当点M 与点A 重合时.求N 到ME 的距离.②在点M 从点A 运动到点B 的过程中.求点N 相应运动的路径长(路程).【答案】(1)见解析.(2)①52.②352-【详解】解:(1)证明:如图1.解方程27100x x -+=得5x =或2x =.5AB ∴=.2BC =.四边形ABCD 是矩形.90C D ∴∠=∠=︒.2AD BC ==.5CD AB ==.514DE CD CE ∴=-=-=.222222420AE AD DE ∴=+=+=.22222215BE BC CE =+=+=.222AE BE AB ∴+=.ABE ∴∆是直角三角形.90AEB =︒∠.(2)解:①四边形ABCD 是矩形.//AB CD ∴.NEM BAE ∴∠=∠.由折叠的性质得:BAE B AE '∠=∠.NEA B AE '∴∠=∠.AN EN ∴=.设AN EN x ==.则4DN DE EN x =-=-.在Rt ADN ∆中.由勾股定理得:222AD DN AN +=. 即2222(4)x x +-=. 解得:52x =. 52EN ∴=. 在Rt ADE ∆中.由勾股定理得:22222425AE AD DE =+=+=. 设N 到ME 的距离为h . 则1122ANE S AE h EN AD ∆=⋅=⨯.5252225EN AD h AE ⨯⨯∴===. 即N 到ME 的距离为52.②当M 与点A 重合时.如图3所示:此时52EN =. 当MB AB '⊥时.如图4所示.此时2EN AD ==.当B '在CD 上.N 与B '重合.如图5所示:此时2222125EN C E B C ''=+=+=.∴点N 相应运动的路径长为:53(1)(52)522-+-=-.2.(2021·上海市奉贤区育秀实验学校九年级期中)如图.在Rt △ABC 中.∠BAC =90°.AB =3.AC =4.AD 是BC 边上的高.点E 、F 分别是AB 边和AC 边上的动点.且∠EDF =90°. (1)(图1)求DE :DF 的值.(2)(图2)连结EF .射线DF 与射线BA 相交于点G .当△EFG 是等腰三角形时.求CF 的长度.(3)(图3)连结EF .设点B 与点E 间的距离为x .△DEF 的面积为y .求y 关于x 的函数解析式.并写出x 的取值范围.【答案】(1)34.(2)165.(3)()2236540332525y x x x =-+≤≤【详解】解:(1)∵在Rt △ABC 中.∠BAC =90°.AB =3.AC =4. ∴225BC AB AC =+=. ∵AD 是BC 边上的高.∴11=22ABC S AB AC AD BC ⋅=⋅△.∠ADC =∠ADB =90°.∴125AB AC AD BC ⋅==. ∴22165CD AC AD =-. ∵∠EDF =∠ADC =90°.∴∠EDF -∠ADF =∠ADC -∠ADF 即∠ADE =∠CDF . ∵∠B +∠C =180°-∠BAC =90°.∠B +∠EAD =180°-∠ADB =90°.∴∠EAD =∠C . ∴△EAD ∽△FCD .∴12351645DE AD DF CD ===. (2)如图所示.∵∠EFG =∠FDE +∠FED >90°. ∴当△EFG 是等腰三角形的时候.只存在EF =GF 这种情况. ∵EF =GF .F A ⊥EG . ∴A 为EG 的中点.∵在直角三角形EDG 中.A 为EG 的中点.∴11225AE AD AG EG ====.∵△AED ∽△CFD . ∴34AE AD CF CD ==. ∴41635CF AE ==.(3)∵BE x =.AB =3. ∴3AE AB BE x =-=-. ∵△AED ∽△CFD . ∴34AE AD DE CF CD DF ===. ∴()44333CF AE x ==-.34DE DF =. ∴()444333AF AC CF x x =-=--=.在直角三角形AEF 中.222EF AE AF =+.∴()222242536939EF x x x x ⎛⎫=-+=-+ ⎪⎝⎭在直角三角形DEF 中.222EF DE DF =+.∴22234EF DF DF ⎛⎫=+ ⎪⎝⎭.∴45DF EF =. ∴35DE EF =.∴()2216236540322532525DEF S DE DF EF x x x =⋅==-+≤≤△.∴()2236540332525y x x x =-+≤≤3.(2021·北京师范大学实验华夏女子中学九年级期中)在平面直角坐标系xoy 中.⊙O 的半径为1.给出如下定义:记线段AB 的中点为M .当点M 不在⊙O 上时.平移线段AB .使点M 落在⊙O 上.得到线段''A B (''A B 分别为点,A B 的对应点).线段'A A 长度的最小值称为线段AB 到O 的“平移距离”.(1)已知点A 的坐标为(-1.0).点B 在x 轴上.①若点B 与原点O 重合.则线段AB 到⊙O 的“平移距离”为________. ②若线段AB 到⊙O 的“平移距离”为2.则点B 的坐标为________.(2)若点,A B 都在直线334y x =-+上.AB =2.记线段AB 到⊙O 的“平移距离”为1d .求1d 的最小值.(3)若点A 的坐标为(-4.-2).AB =2.记线段AB 到⊙O 的“平移距离”为2d .直接写出2d 的取值范围.【答案】(1)①12.②(-5.0)或(7.0).(2)75.(3)225225d -≤≤ 【详解】(1)①当B 与原点O 重合时.AB 中点为1(,0)2-.移动最小距离为向左平移12到⊙O 上.故答案为:12.②当“平移距离”为2时.如图:有12,M M 两种情况:①当1M 为3,0时.12AM =.AB =4.B ∴ 为()5,0-.②当2M 为3,0时.24AM =.AB =8.B 为()7,0. 故答案为:()5,0- 或()7,0. (2)如图:直线334y x =-+如图l .当l 平移到m 位置时.1d 最小.即平移到直线m 与⊙O 相切时.1d 最小. 过点O 作OE l ⊥于E . 则1d OE R =-, 设直线OE 为y =kx.OE l ⊥.∴413k ⨯=-.即43k =. ∴43y x =. 联立方程组33434y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩. 解得:3648,2525x y ==. ∴E 为3648(,)2525. ∴125OE =. ∴1127155d =-=. (3)∵2AB =. ∴AM =1.即M 点在以A 为圆心.半径为1的圆上.如图所示:连接OA 交⊙A 于E 、F .可知:当M 在点F 时.2d 最小.在点E 时.2d 最大. 当M 在F 时.222(4)(2)11252d OA AF R =--=-+---=-.当M 在E 时.222(4)(2)11251125d OE R OA AE R =-=+-=-+-+-=+-=. ∴225225d -≤≤.4.(2021·吉林·长春市净月实验中学九年级期中)在△ABC 中.AB =BC =5.AD ⊥BC 于D .AD =4.动点P 从点B 出发.沿折线BA →AC 运动(点P 不与B 、C 重合).点P 在边BA 上运动的速度为2.5个单位长度.在边AC 上的运动速度为52个单位长度.过P 作PQ ⊥BC 于点Q .以PQ 为边向右作矩形PQFE .使PQ =2PE .点F 在线段BC 上.设点P 运动的时间为t .(1)点P 在BA 上时.则PQ = .(用含t 代数式表示) (2)点P 在AC 上时.则PQ = .(用含t 代数式表示) (3)连结DE .当△DEF 与△ADC 相似时.求t 的值.(4)设矩形PQFE 的对角线相交于点O .当点O 在△ACD 边上时.直接写出t 的取值范围.【答案】(1)2t .(2)6﹣t .(3)67或613或2或5.(4)t =32或2≤t <6 【详解】解:(1)点P 在BA 上时.点P 在边BA 上运动的速度为2.5个单位长度.BP =2.5t , ∵四边形PQFE 是矩形. ∴PQ ⊥QF .∵点F 在线段BC 上. ∴PQ ⊥BC . ∵AD ⊥BC . ∴PQ ∥AD . ∴∠BPQ =∠BAD . ∵∠B =∠B . ∴△BPQ ∽△BAD . ∴BP PQAB AD=. ∵BP =2.5t .AB =5.AD =4. ∴2.554t PQ=. ∴PQ =2t . 故答案为:2t .(2)如图2.点P 在AC 5个单位长度.由题意得:AP 5(t ﹣2).∵AD ⊥BC .AB =5.AD =4. ∴BD 2222543AB AD -=-. ∴CD =BC ﹣BD =5﹣3=2.∴AC 22224225AD CD +=+∴CP =AC ﹣AP =)555235t -=. ∵PQ ∥AD .∴∠QPC =∠DAC .∠PQC =∠ADC .∴△CPQ∽△CAD.∴PQ CPAD AC=.即5352425tPQ-=.∴PQ=6﹣t.故答案为:6﹣t.(3)分两种情况:①如图3.当点P在边BA上运动时.∵四边形PQFE是矩形.∴QF=PE=t.EF=PQ=2t.在Rt△BPQ中.BQ=BP•cos∠B=BP×32.5 1.55BDt t AB=⨯=.∴DF=3﹣2.5t.当△EFD∽△ADC时.DF CD EF DA=∴3 2.52 24tt-=.∴t=6 7 .经检验符合题意.当△DFE∽△ADC时. DF AD EF CD=.∴3 2.54 22tt-=.∴t=6 13.经检验符合题意.②如图4.当点P在边AC上运动时.∵四边形PQFE是矩形.∴QF=PE=t.EF=PQ=6﹣t.∴DF=DC=2.当△EFD∽△ADC时.则DF DC EF AD=.即22 64t=-.∴t=2.经检验符合题意.当△DFE∽△ADC时.DF AD EF CD=.∴24 62t=-.∴t=5.经检验符合题意.综上所述.t的值为67或613或2或5.(4)分三种情况讨论:①当矩形PQFE的对角线交点O在AD上时.如图5.∴QD=12QF=0.5t.∵BQ=1.5t.BQ+QD=BD=3. ∴1.5t+0.5t=3.∴t=3 2 .②当矩形PQFE的对角线交点O在AC上时.∵点F始终与点C重合.点P从点A运动到点C.55254AC==∴点P在AC上运动时间为2≤t<6.∴当2≤t<6时.矩形PQFE的对角线交点O在AC上.③由题意知.矩形PQFE的对角线交点O不可能在CD上.综上所述.t的取值范围t=32或2≤t<6.5.(2021·黑龙江龙沙·九年级期中)综合与实践动手操作:某数学课外活动小组利用图形的旋转探究图形变换中蕴含的数学奥秘.如图1.△ACB是等腰直角三角形.AC=BC=4.∠ACB=90°.将边AB绕点B顺时针旋转90°得到线段A′B.连接A′C.过点A′作A′D⊥CB交CB延长线于点D.思考探索:(1)在图1中:①CD=.②△A′BC的面积为.拓展延伸:(2)如图2.若△ACB为任意直角三角形.∠ACB=90°.将边AB绕点B顺时针旋转90°得到线段A′B.连接A′C.过点A′作A′D⊥CB交CB延长线于点D.猜想三条线段AC、CD、A′D的数量关系.并证明.(3)如图3.在△ACB中.AB=AC=5.BC=6.将边AB绕点B顺时针旋转90°得到线段A′B.连接A′C.①△A′BC的面积为.②若点D是△ACB的边BC的高线上的一动点.连接A′D、DB.则A′D+DB的最小值是.【答案】(1)①8.②8.(2)CD AC A D '=+.证明见解析.(3)①9.109【详解】解:(1)①∵边AB 绕点B 顺时针旋转90︒得到线段A B '.∴BA AB '=.90ABA '∠=︒.∵AC =BC =4.90ACB ∠=︒.∴45CAB CBA ∠=∠=︒.∴18045DBA CBA ABA ''∠=︒-∠-∠=︒.∴DBA CAB '∠=∠.∵A D CB '⊥.∴90BDA '∠=︒.∴90BDA ACB '∠=∠=︒.∴()BDA ACB AAS '△≌△.∴BD =AC =4.∴CD =BC +BD =8.故答案为:8.②∵BDA ACB '△≌△.∴4A D BC '==. ∴182A BC S BC A D ''=⋅=△.故答案为:8.(2)CD AC A D '=+.证明如下:∵边AB 绕点B 顺时针旋转90︒得到线段A B '.∴BA AB '=.90ABA '∠=︒.∴90CBA DBA '∠+∠=︒.∵90ACB ∠=︒.∴90CAB CBA ∠+∠=︒.∴DBA CAB '∠=∠.∵A D CB '⊥.∴90BDA ACB '∠=∠=︒.∴()BDA ACB AAS '△≌△.∴A D BC '=.BD =AC .∴CD BD BC AC A D '=+=+.(3)如下图所示.过点A '作A F CB '⊥交CB 延长线于点F .过点A 作AE CB ⊥交CB 于点E .交线段A C '于点M .再连接DC .①∵AB =AC =5.BC =6.且AE CB ⊥. ∴132BE CE BC ===.90AEB =︒∠.∴90EAB EBA ∠+∠=︒.∵边AB 绕点B 顺时针旋转90︒得到线段A B '.∴5BA AB '==.90ABA '∠=︒.∴90EBA FBA '∠+∠=︒.∴FBA EAB '∠=∠.∵A F CB '⊥.∴90BFA '∠=︒.∴90BFA AEB '∠=∠=︒.∴()BFA AEB AAS '△≌△.∴3A F BE '==. ∴192A BC S BC A F ''=⋅=△. 故答案为:9.②∵AE CB ⊥.且BE =CE .∴AE 垂直平分CB .∴DC =DB .∴A D DB A D DC ''+=+.∵点D 在AE 上.∴当点D 与点M 重合时.A D DB '+有最小值.此时最小值为A C '.∵5BA '=.3A F '=. ∴224BF BA A F ''=-=.∵BC =6.∴CF =BC +BF =10. ∴22109A C CF A F ''=+=.∴A D DB '+的最小值为109.故答案为:109.6.如图.在平面直角坐标系xOy 中.点A 与点B 的坐标分别是(1.0).(7.0).(1)对于坐标平面内的一点P .给出如下定义:如果∠APB =45°.则称点P 为线段AB 的“等角点”.显然.线段AB 的“等角点”有无数个.且A 、B 、P 三点共圆.①设A 、B 、P 三点所在圆的圆心为C .直接写出点C 的坐标和⊙C 的半径.②y 轴正半轴上是否有线段AB 的“等角点”?如果有.求出“等角点”的坐标.如果没有.请说明理由.(2)当点P 在y 轴正半轴上运动时.∠APB 是否有最大值?如果有.说明此时∠APB 最大的理由.并求出点P 的坐标.如果没有请说明理由.【答案】(1)①(4.3)或(4,−3).半径为2.②存在2或(0.2).见解析.(2)有.见解析7【详解】(1)①如图1中.在x 轴的上方.作以AB 为斜边的等腰直角三角形△ACB .易知A .B .P 三点在⊙C 上. 圆心C 的坐标为(4,3).半径为32.根据对称性可知点C (4,−3)也满足条件.②y 轴的正半轴上存在线段AB 的“等角点“。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB AC
B
AB AC
A A
C A'
∴△ABC∽ △A\B\C\ B'
C'
(2)相似三角形对应边成比例,
对应角相等.
A
∵△ABC∽ △A\B\C\
A A B B B
C
C C
A'
AB AC BC
AB AC BC B'
C'
经常会听人们说“陡”这个字,比如这里摆 放的两个梯子,你能辨别出那一个比较陡吗?
坡度越大,坡面越陡。
B B
60米
A
100米
C
A
C
D
tan A=
= 60
100
0.6
坡面与水平面夹角称为坡角。
坡面的铅直高度与水平宽度的比称为坡度i(坡比).
即坡度等于坡角的正切.
巩固练习:
1.如图,小明从黄山百步云梯脚下的点A约走了1000m后 ,到达山顶的点B.已知山顶B到山脚下的垂直距离约是 600m,求山坡的坡度.
自学指导:看课本第2页“想一想”,思考课本 上的三个问题,说明理由,总结你发现的结论。
(1).Rt△AB1C1和Rt△AB2C2有什么关系?
B1
(2). B1C1 和 B2C2 有什么关系 ?
AC1 AC2
(3)如果改变B2在梯子上的 位置(如B3C3 )呢?
由此你得出什么结论?
B2
B3
A
C3 C2
C1
当倾斜角确定时,其对边与邻边之比随之确定,
这个比只与倾斜角有关,与直角三角形的大小无关。
正切的定义:
在Rt△ABC中,锐角A的对边与邻边之比 叫做∠A的正切(tangent),记作tanA.
tanA=A的对边 A的邻边
1、tanA中常省去角的符号“∠”。 2、 tanA没有单位,它表示一个比值。 3、 tanA是一个完整的符号,不表示“tan”乘以“A”。 4、在初中阶段,tanA中,∠A是一个锐角。
(3)直角三角形斜边上的中线等
于斜边的一半。 A D
在Rt△ABC中
∵AD是斜边AB上 的中线.
C
∟
B
CD AD BD 1 AB 2
(4)在直角三角形中,30°角所对 的直角边等于斜边的一半。
A
在Rt△ABC中
∵∠B=30° C
AC 1 AB 2
B
30o
(4)在直角三角形中,如果一条直
角边等于斜边的一半。 那么这条直
角所对的角是30°. A
在Rt△ABC中
AC 1 AB
C
B
2
∴∠B=30°
(1)一个三角形两个角之和等于
90°,那么这个三角形是直角三
角形
△ABC中
A
∵∠A+∠B=90°
∴ △ABC是Rt △
C
B
(2)勾股定理的逆A 定理:
a2 b2 c2 C
B
ABC是Rt
B
600m
A
C
黄山 百步云梯
tan A=
= 600
800
0.75
2、某一建筑物的楼顶是“人”字型,并铺上红瓦装饰。 现知道楼顶的坡度超过0.5时,瓦片会滑落下来。请你 根据图中数据说明这一楼顶铺设的瓦片是否会滑落下来?
A
13m
B
H
24m
C
13m
24m
7、 如图,Rt△ABC是一防洪堤坝迎水坡的横截面图, 斜坡AB的长为12 m,它的坡角为45°,为了提高该堤 坝的防洪能力,现将背水坡改造成坡度为1:1.5的斜 坡AD,求DB的长.(结果保留根号)
梯子越陡,倾斜角的对边与邻 边的比值越大。
tanA的值越大,梯子AB越陡.
梯子AB越陡,tanA的值越大。
在生活中,常用一个锐角的正切
表示梯子、电梯的倾斜程度.
A
B B1
C1
C
例1、图中表示甲、乙两个手扶电梯,哪个手 扶电梯比较陡?
B
D
13m 5m
甲梯
6m
乙梯
A
C
F 8m E
解:甲梯中, tanA
于90°
A
C
B
ABC是Rt A B 90
(2)勾股定理: A
C
B
ABC是Rt
a2 b2 c2
(3)直角三角形斜边上的中线等
于斜边的一半。 A D
在Rt△ABC中
∵AD是斜边AB上 的中线.
C
∟
B
CD AD BD 1 AB 2
(2)勾股定理: A
C
B
ABC是Rt
a2 b2 c2
黄山 百步云梯
黄山 百步云梯
初三数学备课组
能力发展目标:
1.通过阅读课本,交流、讨论经历探索直
角三角形中边角关系的过程,理解锐角三角 函数正切的含义;
2.通过解决标杆题、解决实际问题能根据直角三 角形中的边角关系,进行简单的计算.
直角三角形各边的名称:
A
b 直角边
C 斜边
∟
C
a
B
直角边
(1)直角三角形两锐角之和等
5 5. 132 - 52 12
乙梯中, tan E 6 3 .
84
∵tanE>tanA,∴乙梯更陡.
巩固练习:
1、在右图中: 求tanA的值
(1)tanA=3 4
(2)tanA=4
3
2、判断对错:
如图1:(1) tanA=( BC) 错
AC
图1
如图2,(2) tanA= (0.7m) 错
(3) tanB= ( 10) 对
7
图2
3、如图,在Rt△ABC中,锐角A的对边和邻边同时
扩大100倍,tanA的值( C )
A.扩大100倍 B.缩小100倍
B
C.不变 D.不能确定
┌
4、已知∠A,∠B为锐角
A
C
(1)若∠A=∠B,则tanA =tanB; (2)若tanA﹥tanB,则∠A﹥∠B.
正切通常也用来描述山坡的坡度.看课本第5页 最后一段内容,弄清坡度(或坡比)的概念及求法。
A
C
BD
课堂小结:
• 这节课,你学会了什么?
1、正切的定义:
在Rt△ABC中,锐角A的对边与邻边的比 叫做∠A的正切,记作tanA,即
B 斜边
∠A的对边 ┌ A ∠A的邻边 C
课堂小结:
1.tanA是在直角三角形中定义的,∠A是一个锐 角(注意数形结合,构造直角三角形). 2.tanA是一个完整的符号,表示∠A的正切,习惯 省去“∠”号(注意tanA不表示tan乘以A). 3.tanA是一个比值(直角边之比,注意比的顺序, 且tanA﹥0,无单位). 4.tanA的大小只与∠A的大小有关,而与直角三角 形的边长无关. 5.角相等,则正切值相等;两锐角的正切值相等, 则这两个锐角相等.
(3)一个三角形一边上的中线等于 这边的一半,那么这个三角形是直 角三角形.
在△ABC中
A
CD AD BD 1 AB
2
∴ △ABC是Rt △ C
D B
(1)有两个角对应相等的两个三
角形相似
在ABC和ABC中
AA A B B BC源自∴△ABC∽ △A\B\C\
A'
B'
C'
(2)有两边对应成比例,这两