周期信号的频谱

合集下载

周期信号及其频谱

周期信号及其频谱

50
2A
2 2A 2A
T O T2 2
2
2
30 0周O 期0三角3波0 50
2A t 2 70
(a)
(b)
2
a0 T
T 2 0
A
2A T
t
dt
A 2
4
an T
T 2 0
A
2A T
tcosn0tFra bibliotekt4A
n2
2
0
其幅频谱(单边谱)如图(a)所示。
n 1,3,5, n 2,4,6,
aanAn
(傅a) 里叶级数
可x知(tA) ,a0=0,an=0,Abnn=
2A n
1
cos
n
T
T
2
2
O
t
A
O 0 30 50 70 90
30 50 70 9 (b)
x(t)
4A
sin 0t
1 3
sin
30t(a)
1 5
sin
50t
1 7
sin
70t
(幅b)频谱
1.4 复数形式的傅里叶级数
傅里叶级数也可以表示成复指数形式的展开式。根据欧拉公式
若用复数形式表示,则根据
Cn
Cn
1 2
an
C0 a0
可求得如图(b)所示的幅频谱(双边谱)。
通过以上例题可以看出,周期信号有以下几个特点: (1)周期信号的频谱是由无限多条离散谱线组成的,每一条谱线 (单边谱)代表一个谐波分量。 (2)各次谐波的频率只能是基波频率的整数倍。 (3)谱线的高度表示了相应谐波分量的幅值大小。对于工程中常见 的周期信号,其谐波幅值的总趋势是随着谐波次数的增高而减小。当谐 波次数无限增高时,其幅值就趋于零。

周期信号的频谱

周期信号的频谱
X

1.三角形式的谱系数
f (t ) E
9 页
T1

f t 是个偶函数
bn 0, 只有a0 , an
O 2 2
T1
t
X

2.指数形式的谱系数
1 Fn T1
10 页

1 = T1
T1 2 T 1 2
f ( t )e jn1t d t

2
E 1 jn 1 t 2 Ee dt e jn1t 2 T1 jn 1
P5 n F 0 F 1 F 2 1 F 3 1 F 4 1
2 2 2 2
2
F 1 F 2 1 F 3 1 F 4 1
2 2 2
2
0.181E 2 1 T1 2 f ( t )dt 0.2 E 2 而总功率 T1 0 P5 n 二者比值 90.5% P
jn 1 jn1 2 e e 2

2
E jn 1T1


2E sin n 1 n 1T1 2 sin n 1 E 2 E Sa n 1 T1 T1 2 n 1
X
3.频谱及其特点

n)
E

f (t )
E 2E 1 f (t ) [sin(1 t ) sin(31 t ) 2 3 1 1 sin(51 t ) sin(n1 t ) ] 5 n

T1

T1 2
0
T1 2
T1
t
n 1,3,5,
E 2E 2E f (t ) cos(1 t ) cos(31 t ) 2 2 3 2 2E 2E cos(51 t ) cos(71 t ) 5 2 7 2

4.2周期信号的频谱

4.2周期信号的频谱

2A ( n 1, 3, 5,) n 90o ( n 1,3,5,) n o ( n 1, 3, 5,) 90 Fn
信号与系统

周期矩形脉冲信号的频谱
对于周期矩形脉冲,在一个周期内为
A t t

4.2-5

f (t )
0

2 2
4A (n 1,3,5,...) nπ
矩形波:
图1
n 90o (n 1,3,5,...)
谱 线
相位值 振幅 图2 角频率
信号与系统
4.2

周期信号的频谱
4.2-3
4.2.1 周期信号频谱的特点
频谱特点:

离散性:每根谱线代表一个谐波分量, 称为离散谱线。 谐波性:基波1的整数倍频率 收敛性:高次谐波幅度渐小,当谐波次 数无限增多时,谐波分量的振幅趋于无 穷小。
4.2 周期信号的频谱

信号与系统
4.2-1
4.2.1 周期信号频谱的特点
将周期信号分解为傅里叶级数(简称傅氏级数),为在频域 中认识信号特征提供了重要的手段。由于在时域内给出的 不同信号,不易简明地比较它们各自的特征,而当周期信 号分解为傅氏级数后,得到的是直流分量和无穷多正弦分 量的和,从而可在频域内方便地予以比较。为了直观地反 映周期信号中各频率分量的分布情形,可将其各频率分量 的振幅和相位随频率变化的关系用图形表示出来,这就是 信号的“频谱图”。频谱图包括振幅频谱和相位频谱。前 者表示谐波分量的振幅An随频率变化的关系;后者表示谐 波分量的相位φn 随频率变化的关系。习惯上常将振幅频谱 简称为频谱。
奇谐函数
偶谐函数
注:指交流分量
信号与系统

周期信号频谱的特点

周期信号频谱的特点

周期信号频谱的特点
1、周期信号频谱的特点
(1)周期信号频谱是指周期信号的函数X(t)的傅里叶变换结果。

它由若干不同的频率的正弦波组成,这些正弦波的频率正是信号的基本频率。

正弦波的幅值与其相应的频率乘积成正比,而每种频度的信号都有一个相应的幅值谱和一个同频率相等的相位谱。

(2)对小波周期信号出现的情况而言,它的频谱具有带状分布特点。

假设一个小波信号X(t)的基本频率为F0,它的频谱X(f)的分布范围接近[F0, 2F0]之间,其中最大的幅值在F0处,幅值谱有一个主峰,而且相位谱空间分布也同样有一个主峰。

(3)小波周期信号具有连续宏观理论谱线的特点,实际谱线与理论谱线相比会有一个谷底,其图形模型会形成一回带状,理论上谷底深度接近0.
(4)周期信号频谱中有定向性,主要表现在除脉冲信号以外的其他周期信号中。

针对某一个方向发射信号,其谱仍然会有以频率以F0作为中心呈现梯度变化和微小平移的特点。

如果从不同方向发射信号,最终得到的谱会有一定的差异,但其趋势仍然相同。

2、周期信号频谱的作用
(1)周期信号频谱是信号分析的基础,它包括了信号的基本指标,包括信号的频率、幅值谱和相位谱,可用于分析信号的特性和特征。

(2)有了周期信号频谱,可以更准确地测量一个周期信号的实际频率,利用其中的相位谱可以判断信号之间是否存在某些相关性。

(3)频谱可以用于检测信号中的杂波,如果周期信号频谱发现不属于原有频率的有害信号,则说明信号中出现了一些杂波,可以使用滤波等方法对这部分信号进行处理,从而提高信号的有效性。

(4)同时,周期信号频谱也可以用来研究信号强度分布情况,可以查看赋予信号的频率和相位,从而进行有效的信号处理。

周期信号的离散频谱

周期信号的离散频谱
周期信号的离散频谱

CONTENCT

• 引言 • 周期信号的离散频谱特性 • 离散频谱的生成方法 • 离散频谱的应用 • 离散频谱与连续频谱的比较 • 总结与展望
01
引言
背景介绍
周期信号在现实世界中广泛存在,如交流电、机械振动等。为了 更好地理解和分析这些信号,需要研究其离散频谱。
离散频谱是周期信号的频率成分的集合,表示信号在不同频率上 的分布情况。
计算过程
傅立叶变换法需要将时间域信 号进行无穷积分,计算过程较 为复杂,需要较高的数学水平 。
应用范围
适用于周期信号和非周期信号 ,是信号处理领域中非常重要 的工具之一。
离散时间傅立叶变换法
定义ቤተ መጻሕፍቲ ባይዱ
离散时间傅立叶变换法是一种将离散时间序列转换为频域 信号的方法,通过将离散时间序列进行傅立叶变换,得到 离散频谱。
干扰抑制
在复杂电磁环境下,雷达系统可能受到各种干扰的影响,离散频谱分 析有助于识别和抑制这些干扰,提高雷达的抗干扰能力。
在图像处理中的应用
01
频域滤波
图像处理中,离散频谱分析用于频域滤波,通过改变图像信号在不同频
率段的权重实现图像的模糊、锐化、边缘检测等效果。
02
去噪与增强
离散频谱分析在图像去噪与增强方面具有广泛应用,通过滤除噪声成分
离散频谱的定义
01
离散频谱是指周期信号的频率成 分以离散的形式分布在频率轴上 。
02
与连续频谱相比,离散频谱的频 率分量是分离的,而不是连续分 布的。
02
周期信号的离散频谱特性
离散频谱的形状
正弦波形状
对于正弦波形状的离散频谱,其峰值出现在中心频 率处,随着频率的增加或减少,幅度逐渐减小。

第四章(2)周期信号的频谱

第四章(2)周期信号的频谱

周期性矩形脉冲信号的频谱还有自己的特点 周期性矩形脉冲信号的频谱还有自己的特点 : 1、各谱线的幅度按包络线 T 、
ωτ
= m π ( m = ±1, ± 2,...)
τ
Sa (
ωτ
2
) 的规律变化。 的规律变化。
各处, 的各处, 在 2 各处,即 的各处, τ 包络为零,其相应的谱线, 包络为零,其相应的谱线,亦即相应的频谱分量也等 于零。 于零。 2、周期矩形脉冲信号包含无限多条谱线,也就是说, 、周期矩形脉冲信号包含无限多条谱线,也就是说, 它可分解为无限多个频率分量。 它可分解为无限多个频率分量。 通常把频率范围 0 ≤ f ≤ τ (0 ≤ ω ≤ τ ) 称为周期矩形脉冲 带宽, 表示, 信号的带宽 信号的带宽,用符号 ∆F 表示,即周期矩形脉冲信 1 号的频带宽度为 ∆F = 。 τ
Fn F ( jω ) = lim = lim FnT T →∞ 1 / T T →∞
为频谱密度函数。 称 F ( jω )为频谱密度函数。
Fn lim = lim FnT 如何求频谱密度函数? 如何求频谱密度函数? F ( jω ) = T →∞ 1 / T T →∞
由式 f ( t ) =
n = −∞
T 2T f (t) T=8τ
0
3T
4T t
0 1/ 8
T f (t) T=16τ
0
2T
t
0 1/16
0
T
t
0
f (t) T→∞ τ/T
0 t 0
图4.3-5 周期与频谱的关系
思考: 思考:
1 1 1 f (t ) = [sin(Ωt ) + sin(3Ωt ) + sin(5Ωt ) + .... + sin(nΩt ) + ...] 3 5 n π 4

典型周期信号的频谱

典型周期信号的频谱
f (t) f (t)(全波对称) f (t) f (t T() 半波对称)
2
T
证:an
T
8 T
4 0
f
(t) cosntdt
22
20
f (t) f (t) f (t) f (t T )
2
an T T f (t) cosntdt T T f (t) cosntdt
2
2
T
由复振幅cn 的表达式可知,频谱谱线顶点的联线所
sin x
构成的包络是 x 的形式----称为抽样函数。
1. 找出谐波次数为零的点(即包络与横轴的交点)
包络线方程为
cn
2E
T
sin 2
2
与横轴的交点由下式决定:
sin
2
0
即: ,2 ,3
2
2
0
2
4
6
2m
2f
f
f0
1, 2, 3
T
2 T
2
f (t)e jn1t dt
b.这样定义能确切的反映信号的频谱分布特性。 各个频率分量振幅之间的相对比例关系是固定不 变的。
2.几点说明
a.F ( j) 代表了信号中各频率分量振幅的相对
大小。
|
b.各频率分量的实际振幅为
F ( )
|
d
是无穷
小量。
C. F ( j )具有单位角频率振幅的量纲。
| f (t) | dt 存在。
六.周期和非周期矩形脉冲信号频谱的对比
1.它们都具有抽样函数 sin x 的形式。
2.
Cn
2E
T1
sin n1
2
n1
x

周期信号频谱的特点

周期信号频谱的特点

周期信号频谱的特点
1.频谱中存在基波和谐波:周期信号的频谱中不仅包含了基波分量,还包括了各个谐波分量。

基波分量对应信号的基本周期,而谐波分量则是基波频率的整数倍。

基波和谐波分量在周期信号频谱中呈现出一定的规律性,即谐波分量的幅值逐渐减小,但频率却逐渐增大。

2.频谱具有离散特性:周期信号频谱中的频率值是离散的,即频谱中只有一系列离散的频率分量。

这是因为周期信号具有固定的周期,其频谱中的各个频率值与基波频率和谐波频率有关。

3.频谱对称性:周期信号频谱在频率轴上具有对称性。

具体而言,当周期信号是实值信号时,其频谱是共轭对称的,即频谱图中的正频率部分与负频率部分关于频率轴对称。

当周期信号是复值信号时,其频谱是共轭对称的,即频谱图中的正频率部分与负频率部分关于频率轴对称。

4.频谱幅度递减:周期信号频谱中各个频率分量的幅度递减性质。

基波分量的幅度最大,而谐波分量的幅度逐渐减小。

如果周期信号中存在无穷多个谐波分量且每个谐波分量的幅度适当,则可以近似地表示任意的周期信号。

5.频谱包含整个频率范围:周期信号频谱中包含了整个频率范围,即从直流成分到无限大频率。

直流成分对应于基波分量,而高频成分对应于谐波分量。

因此,周期信号的频谱图是一个连续的、无缺口的频率分布。

总之,周期信号频谱的特点可以概括为:包含基波和谐波分量,具有离散特性,具有对称性,谐波分量幅度递减,频率范围包含整个频域。

通过对周期信号频谱的分析,可以了解信号的频率分布情况,从而更好地理解和处理周期信号。

§4.3 周期信号的频谱

§4.3  周期信号的频谱

n
Fn
2

2
P5n
F02
F1 F2 F3 F4 F1 F2 F3 F4
1 P T
T
2
2222来自 0.181而总功率 二者比值
0
f 2 (t )dt 0.2
P5 n 90.5% P
▲ ■ 第 13 页
2.频带宽度
在满足一定失真条件下,信号可以用某段频率范围 的信号来表示,此频率范围称为频带宽度。 一般把第一个零点作为信号的频带宽度。记为: 2π 1 B 或B f ,带宽与脉宽成反比。 对于一般周期信号,将幅度下降为0.1|Fn|max 的频率 区间定义为频带宽度。


2

2
T
t
1 Fn T
T 2 T 2
f (t ) e

2
jnt
1 e jnt T jn

2
n n sin( ) sin 2 2 2 T n T n
2
1 2 jnt dt e dt T 2

令Sa(x)=sin(x)/x (取样函数)
第 10 页

周期信号频谱的特点
(1)周期信号的频谱具有谐波(离散)性。谱线位置是基频 Ω的整数倍;(2)一般具有收敛性。总趋势减小。
谱线的结构与波形参数的关系 T一定,变小,此时(谱线间隔)不变。两零点之 间的谱线数目:1/=(2/)/(2/T)=T/ 增多。
一定,T增大,间隔减小,频谱变密。幅度减小。 如果周期T无限增长(这时就成为非周期信号), 那么,谱线间隔将趋近于零,周期信号的离散频谱就过 渡到非周期信号的连续频谱。各频率分量的幅度也趋近 于无穷小。

3.2周期信号的频谱

3.2周期信号的频谱
周期信号趋于非周期信号。
3.2.2 双边频谱与信号的带宽
• 周期矩形脉冲信号含有无穷多条谱线, 即:周期矩形脉冲信号可表示为无穷多个正弦分量之和。
实际工作中,要求传输系统将信号中的主要频率分量传输过去
周期矩形脉冲信号的主要能量集中在第一个零点之内,
因而,常常将 0 ~
的频带宽度。记为 或
2
3.2.2 双边频谱与信号的带宽
• 画周期矩形脉冲的频谱
1. 找出谐波次数为零的点(即包络与横轴的交点) 包络线方程为
A n1 Fn Sa T 2
与横轴的交点由下式决定:
n1
离散自变量
n1 k 2
k (1,2,3)
n1
2k


2

,
4

,
6


3.2.2 双边频谱与信号的带宽
2.确定各谐波分量的幅度
A n1 Fn Sa T 2 A Fn 为最大值 : T
二次谐波分量的幅度:
n1 当 0 2
基波分量的幅度:

n1 0
A 1 Sa T 2
A 21 Sa T 2
可知,其基波频率
4A A3 , 3 - 2 3

2

其余
An 0
3.2.1 周期信号频谱的特点
• 振幅频谱
n

0
2
1
31 51 71
• 相位频谱
n 0
3.2.1 周期信号频谱的特点
P98例
f (t ) 1 3 cos(t 10) 2 cos(2t 20) 0.4 cos(3t 45) 0.8 cos(6t 30),

周期信号的频谱分析

周期信号的频谱分析

周期信号的频谱分析周期信号是指在一定时间内重复出现的信号,其频谱分析是对周期信号在频域上的描述和分析。

频谱分析是信号处理领域中的重要内容,它能够揭示周期信号的频率成分以及它们在信号中的相对强度。

周期信号可以用正弦函数来表示,即一个频率为f的正弦波。

频谱分析的目的就是要确定这个周期信号中包含的各个频率成分。

为了进行频谱分析,我们通常使用傅里叶变换。

傅里叶变换可以将一个周期信号转换为一系列频率成分的复数表示。

傅里叶变换将一个周期信号分解成一系列复振幅和相位分量。

复振幅表示了信号中每个频率分量的强度,而相位则表示了每个频率分量的相对位置。

通过傅里叶变换,我们可以得到一个频谱图,它显示了信号中各个频率成分的幅度和相位信息。

在频谱图中,横轴表示频率,纵轴表示振幅。

每个频率成分对应的幅度可以通过幅度谱来表示,而相位信息则可以通过相位谱来表示。

通过分析频谱图,我们可以得到周期信号中的主要频率成分、频率分量的强度以及它们在信号中的相对位置。

频谱分析在信号处理领域中有着广泛的应用。

例如,它可以用于音频信号的处理与分析。

在音频信号中,不同的频率成分对应着不同的音调和音色。

通过频谱分析,我们可以识别音频信号中的主要频率分量,从而实现对音频信号的合成、去噪等处理操作。

另外,频谱分析也可以用于振动信号和通信信号的分析。

在振动信号分析中,频谱分析可以帮助我们了解结构的固有频率以及存在的振动模态。

而在通信信号分析中,频谱分析可以帮助我们了解信号的带宽和调制方式,从而实现信号的解调和解码。

总之,周期信号的频谱分析是对周期信号在频域上的描述和分析。

通过傅里叶变换,我们可以将周期信号分解成一系列频率成分,并通过频谱图来展示这些成分的幅度和相位信息。

频谱分析在信号处理领域中有着广泛的应用,对于理解和处理周期信号具有重要作用。

周期信号的频谱

周期信号的频谱

例题:O tf (t )T /31-TT如右图所示的周期性矩形脉冲信号(周期为T )经过一个低通滤波器,求其响应及响应的平均功率。

已知该滤波器的传递函数为()()⎪⎪⎩⎪⎪⎨⎧<≤<-≤=--时时时T T e T T e j H j j ωππωππωπωωωτωτ6,063,3/23,分析:周期信号可以分解成直流、基波、高次谐波等分量每个分量经过滤波器 复数解法解:求傅立叶系数:⎰-=3/001T tjn n dt eTC ωO tf (t )T /31-TT令ω0=2π/T3/0001T t jn eTjn ωω--=3/3sin 31ππjn e n c -⎪⎭⎫ ⎝⎛=3100==C A 2nj n n A eC ϕ=~基波和n 次谐波的复数表示低通滤波器只通过低于3ω0的信号,因此信号中只有直流、基波和二次谐波分量通过。

输出信号中的直流分量为:()3100==ωωj H A解:输出信号中的基波分量的复数表示为:()()τωπωωφπω0013/13sin 32+-=⎪⎭⎫ ⎝⎛=j j e c j H eA 输出信号中的二次谐波分量的复数表示为:()()τωπωωφπω00223/22232sin 94+-=⎪⎭⎫⎝⎛=j j e c j H e A 输出信号的时域表达式为:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+τωπωπτωπωπ00002322cos 32sin 943cos 3sin 3231t c t c 输出信号的平均功率为:280.02sin 41sin 211222≈⎥⎤⎢⎡⎪⎫⎛+⎥⎤⎢⎡⎪⎫ ⎛+⎪⎫ ⎛=ππc c P out第三章:信号的频谱§3-1 周期信号的频谱§3-2 非周期信号的频谱密度 傅立叶变换与频谱密度信号的频谱分布与带宽基本信号的频谱密度§3-3 频谱分析的基本定理§3-4 采样定理傅立叶变换的引出如何从频域描述一个非周期信号?tf (t )傅立叶级数?——显然不行怎么办?退而求其次,先考虑描述函数在有限区间[a,b)上的一段吧tf a,b (t )a btf T (t )a b考虑有限区间周期扩展再扩展成周期T =b -a 的函数f T (t )f T (t ):周期函数~可以用傅立叶级数表示在区间[a,b)上与f (t ) 相同傅立叶变换的引出tf T (t )a b()(),1100dt et f Tdte tf T C tjn bat jn ba T n ωω--⎰⎰==()()()⎪⎪⎩⎪⎪⎨⎧=-++∈-++=∑∞-∞=b a t b f a f b a t t f t f eC n tjn n或,2)0(0,,2)0(00ω傅立叶级数只在区间(a,b ) 上收敛于f (t ),因此C n 并不是f (t ) 的复频谱如果f T (t ) 满足狄利克雷条件,则可以展开成傅立叶级数:定义:则:ω0=2π/T傅立叶变换的引出进一步,选取对称区间[-T /2,T /2)。

周期信号的频谱的特点

周期信号的频谱的特点

周期信号的频谱的特点对于周期信号,其频谱特点主要有以下几个方面:1.频谱呈现出离散的频率分量:周期信号的频谱是由一系列离散的频率分量组成的,这些频率分量可以看作是正弦波的谐波。

具体来说,周期信号的基波频率对应着信号的周期,而高次谐波频率对应着信号的周期的整数倍。

因此,周期信号的频谱呈现出离散的频率分量。

2.频率分量的幅值逐渐衰减:对于周期信号的频谱,随着频率的增大,各个频率分量的幅值逐渐衰减。

这是因为周期信号的频谱是由一系列频率为整数倍的正弦波叠加而成的,而高次谐波频率对应着幅度较小的频率分量。

因此,随着频率的增大,高次谐波频率分量的幅值逐渐变小,频谱呈现出幅度逐渐衰减的特点。

3.频谱具有对称性:对于实信号的周期信号,其频谱具有对称性。

具体来说,周期信号的频谱关于零频率轴对称。

这是因为周期信号的频谱是由实信号频谱叠加而成的,而实信号频谱及其傅里叶变换的共轭都是对称的,因此周期信号的频谱具有对称的特点。

4.频谱的带宽与周期信号的周期有关:对于周期信号,其频谱的带宽与信号的周期有关。

具体来说,频谱的带宽在理论上等于周期的倒数。

这是因为在频谱中,由于频率分量的间隔等于周期的倒数,频谱的带宽也等于周期的倒数。

5.频谱的相位对称性:对于周期信号,它的频谱在幅度谱的基础上还有相位谱。

频谱的相位是随着频率变化的,由于周期信号的频率分量是正弦波,而正弦波的相位是以周期为单位的,所以频谱的相位也具有周期性。

具体来说,频谱的相位存在对称性,即频率分量的相位和其对称频率分量的相位相差180度。

这是由于正弦波的周期性特点决定的。

综上所述,周期信号的频谱特点包括频谱呈现出离散的频率分量、频率分量的幅值逐渐衰减、频谱具有对称性、频谱的带宽与周期信号的周期有关,以及频谱的相位对称性等。

这些特点在信号处理和通信系统中具有重要的理论和实际意义,为信号的分析、处理和传输提供了基础。

§3.3 周期信号的频谱

§3.3  周期信号的频谱

不变
T 增大
T Fn 0
2π = 0 T
周期信号的离散频谱过渡到 非周期信号的连续频谱。各频率 分量幅度的趋近于无穷小。
▲ ■ 第 11 页
©南昌航空大学电子信息工程学院电子工程系
信号与系统
电子教案
三.频带宽度
由频谱收敛性可知,信号功率集
中在低频段,第一个零点集中了信号
绝大部分能量。

©南昌航空大学电子信息工程学院电子工程系
▲ ■ 第 10 页
2、谱线结构与波形参数关系 信号与系统 电子教案
n Fn Sa( ) T T
2π 2π = 0 T

周期T、 脉宽 T 不变 减小
谱线 幅度 减小 减小
谱线 密度 不变 加密
零点 零点间谱线数 0/=T/ 频率0 增大 不变 增多 增多
一般把第一个零点作为信号的频带宽度。记为:
B

系统的通频带 > 信号的带宽,才能不失真
语音信号 频率大约为 300~3400Hz,

或B f ,带宽与脉宽成反比。
1

音乐信号 50~15,000Hz, 扩音器与扬声器 有效带宽约为 15~20,000Hz。
©南昌航空大学电子信息工程学院电子工程系
第 8页
信号与系统
电子教案
f (t )
n
F

n
e
jnt
n Fn Sa( ) , n = 0 ,±1,±2,… T 2

(1)包络线形状:抽样函数
(3)离散谱(谐波性)
(2) 其最大值在 n 0处,为 。 T
2π (4)第一个零点坐标: 2mπ n 令 m n= 2

周期信号的频谱

周期信号的频谱
2 T 2 an = ∫ T f (t) cos nt dt T 2 n = 1, 2,
(17-3)
2
实验原理与说明
2 T 2 bn = ∫ T f (t) sin nt dt T 2

n = 1, 2,
(17-4)
若将(17-1)式中同频率项加以合并,可以写成另一种形式 式中同频率项加以合并, 若将 式中同频率项加以合并
周期信号的频谱
1
实验原理与说明
周期信号的分解与合成
周期为T的周期信号 f (t),满足狄里赫利(Dirichlet)条 周期为 的周期信号 满足狄里赫利( ) 实际中遇到的所有周期信号都符合该条件), ),便可 件(实际中遇到的所有周期信号都符合该条件),便可 以展开为傅里叶级数的三角形式, 以展开为傅里叶级数的三角形式,即:
2 T2 2 T 2 cos nt bn = ∫ sin ndt ∫ sin ndt = T 0 T T2
1
T 2
T
t
图17-1
T2
cos nt + n 0
T2
T
将 = 2π 代入上式,并且对所有的n有 cos nπ =1 ,可得 T 2 bn = (1 cos nπ ) nπ
4
实验原理与说明
周期信号频谱和特点
1、周期信号的频谱由不连续的线条组成,每一条线代表一个正弦量, 周期信号的频谱由不连续的线条组成,每一条线代表一个正弦量, 故称为离散频谱; 故称为离散频谱; 2、周期信号频谱的每条谱线只能出现在基波频率的整数倍频率上。 周期信号频谱的每条谱线只能出现在基波频率的整数倍频率上。 这就是周期信号频谱的谐波性; 这就是周期信号频谱的谐波性; 3、各次谐波的振幅,总的趋势是随着谐波次数的增高而逐渐减小。 各次谐波的振幅,总的趋势是随着谐波次数的增高而逐渐减小。 所以,周期信号的频谱具有收敛性。 所以,周期信号的频谱具有收敛性。 以上就是周期信号频谱的三个特点:离散性、谐波性、收敛性。 以上就是周期信号频谱的三个特点:离散性、谐波性、收敛性。这 是所有周期信号共有的特点。 是所有周期信号共有的特点。 4、离散频谱与连续频谱 当周期信号的周期T增大,其频谱中的谱线也相应地渐趋密集, 当周期信号的周期T增大,其频谱中的谱线也相应地渐趋密集,频 谱的幅度也相应的渐趋减小。当 频谱线无限密集, 谱的幅度也相应的渐趋减小。T →∞ 时,频谱线无限密集,频谱 幅度无限趋小。这时,离散频谱就变成连续频谱。 幅度无限趋小。这时,离散频谱就变成连续频谱。

4.3周期信号的频谱

4.3周期信号的频谱
4.3周期信号的频谱
一、频谱的概念
广义上,信号某些特征量随信号频率变化的关系称信号频谱
画出的图形称为信号的频谱图。 周期信号的频谱即周期信号的各次谐波幅值,相位随频率的变 化关系。
频谱的分类
幅度频谱:以角频率 (或角频率 )为横坐标,以 An / Fn 为 纵坐标 相位频谱:以频率 (或角频率 )为横坐标,以 n 为纵 坐标 (A0为直流分量幅度;An为n次谐波的振幅; n 为n次谐波 的初相角)
A0 2 1 2 1 A0 2 2 T [( ) T 0 A n ] ( ) A n T 2 2 2 n 1 n 1 2
周期信号的功率等于直流分量的功率和各次谐波的功 率之和。 1 | Fn | An 2
1 P T
n

T 2 T 2
谐波性
频谱的每条谱线只能出现在基波频率的整数倍频率上。
结论
周期信号的频谱特点:
(1)离散性
(2)谐波性 (3)收敛性
信号的有效带宽
0~2 / 这段频率范围称为周期矩形脉冲信号的有效频带宽 度,即第一个零点以内的这段频率范围称为信号的频带宽度或 者信号的带宽。
B


结论:矩形脉冲的频带宽度与脉冲宽度成反比。 即 越大,其wB越小;反之, 越小,其wB 越大。 物理意义:在信号的有效带宽内,集中了信号绝大部 分谐波分量。若信号丢失有效带宽以外的谐波成分,不 会对信号产生明显影响。
(3)频谱结构与波形参数的关系(T1, )
(1)设f(t)中的 E不变,不变, 当周期1变化时,频谱如何变化?
(1)


1 s 20
1 s 20
T1
T1

一文看懂周期信号的频谱特点

一文看懂周期信号的频谱特点

一文看懂周期信号的频谱特点周期信号是指信号在一定时间间隔内重复出现的信号。

周期信号的频谱特点可以通过其周期性和基波谐波结构来分析。

首先,周期信号的频谱特点与其周期性密切相关。

周期信号的频谱是离散的,且谱线分布在频谱图中的离散位置。

这是因为周期信号的频谱中只包含了有限个离散的频率分量,这些分量分别对应着信号的基波和谐波。

这也意味着周期信号的频谱是分立的,没有连续频率分布。

其次,周期信号的频谱特点与其基波谐波结构密切相关。

周期信号的频谱中,基波分量位于频谱的最低频率位置,其频率等于信号的周期倒数。

在基波之上,谐波分量依次出现,其频率是基波频率的整数倍。

这种基波谐波结构体现了周期信号的周期性特点,每个周期内的波形形状相同,只是幅值和相位不同。

此外,周期信号的频谱特点还会受到信号幅度、相位和波形对称性的影响。

对称的周期信号,其频谱具有特定的对称性。

例如,偶对称的周期信号的频谱是关于频谱图原点对称的;奇对称的周期信号的频谱是关于频谱图原点对称后再次关于频谱图水平轴对称的。

信号幅度和相位的变化会影响基波和谐波的幅度和相位,进而影响频谱的形状。

最后,需要注意的是周期信号的频谱特点与信号的持续时间无关。

周期信号的频谱仅与信号的周期相关,而与信号的持续时间无关。

即使一个周期信号的持续时间很短,频谱特点仍然存在。

因此,周期信号的频谱通常是通过对一个完整的周期进行频谱分析来得到的。

综上所述,周期信号的频谱特点可以用其周期性和基波谐波结构来概括。

周期信号的频谱是离散的,分布在频谱图中的离散位置。

频谱中包含了基波和谐波分量,其频率是基波频率的整数倍。

信号幅度、相位和波形对称性的变化会影响频谱的形状。

另外,周期信号的频谱特点与其持续时间无关。

4.2周期信号的频谱

4.2周期信号的频谱
4A (n 1,3,5,...) nπ
矩形波:
图1
n 90o (n 1,3,5,...)
谱 线
相位值 振幅 图2 角频率
频谱
4.2-3
4.2.1 周期信号频谱的特点
频谱特点:

离散性:每根谱线代表一个谐波分量, 称为离散谱线。 谐波性:基波1的整数倍频率 收敛性:高次谐波幅度渐小,当谐波次 数无限增多时,谐波分量的振幅趋于无 穷小。
图5
信号与系统
4.2-7
f( t ) 的双边谱
Sa( t ) :
Fn :
图6
信号与系统
f( t ) 的幅度谱和相位谱
4.2-8

图7

信号与系统
4.2-9
周期 T 和脉冲宽度τ与频谱的关系
从上述周期信号的频谱图可以看出,信号能量主要部 分集中在 0 2π 的低频分量上,那些次数较高的频率 2π 0 分量实际上可以忽略不计。因此,常把 这段频率 范围称为矩形信号的有效带宽,或称为 “频带宽度”, 简称带宽,即
则复系数
则f(t)的指数形式的傅里叶级数为
A f (t ) T
n1 sin( ) 1 2 jn1t A n1 A 2 Fn Ae dt Sa ( ) n1 T 2 T T 2 ( ) 2
1 2 A F0 a0 Adt T 2 T
当n 1,3,5时
当n 2,4,6时
an bn 0
4 an f ( t ) cosn 1t d t T1 T1 4 2 bn f ( t ) sinn 1t d t T1 0
T1 2 0
奇谐函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文档通过实验方式深入探讨了周期信号的频谱特点。首先,周期信号可以被分解为傅里叶级数,这是一种将复杂信号分解为简单正弦波的方法。通过这种方式,我们可以更清晰地理解和分析周期信号。在频谱分析中,周期信号展现出三个显著特点:离散性、谐波性和收敛性。离散性表现为频谱由不连续的线条组成,每条线代表一个正弦量。谐波性则体现在每条谱线只能出现在基波频率的整数倍上,这揭示了周期信号中频率的倍数关系。最后,收敛性表明各次谐波的振幅随着谐波次数的增高而逐渐减小,这意味着高频成分在信号中的影响逐渐减弱。这三个特点共同构成了周期信号频谱的基本特征,对于我们理解和处理周期信号具有重要意义。此外,文档还通过计算示例展示了如何
相关文档
最新文档