高二年级物理培优材料《弹簧专题》[有答案及解析]
高二物理弹力试题答案及解析
高二物理弹力试题答案及解析1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①弹簧的左端固定在墙上;②弹簧的左端受大小也为F的拉力作用;③弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧质量都为零,以L1、L2、L3、L4依次表示四个弹簧的伸长量,则有().A.L2>L1B.L4>L3C.L1>L3D.L2=L4【答案】D【解析】弹簧伸长量由弹簧的弹力(F弹)大小决定.由于弹簧质量不计,这四种情况下,F弹都等于弹簧右端拉力F,因而弹簧伸长量均相同,故选D项。
【考点】胡克定律2.“探究弹力和弹簧伸长的关系”的实验中,选用的螺旋弹簧如图甲所示。
(1)将弹簧的上端O点固定悬吊在铁架台上,旁边置一刻度尺,刻度尺的零刻线跟O点对齐,在弹簧的下部A处做一标记,如固定一个指针。
在弹簧下端的挂钩上挂上钩码时(每个钩码的质量都是50g),指针在刻度尺上指示的刻度为x。
逐个增加所挂钩码的个数,刻度x随挂钩上的钩码所受的重力F而变化,几次实验测得相应的F、x各点描绘在图中,如图乙,请在图中描绘出x随F变化的图象。
由图象得出弹簧的劲度系数kA=________N/m(结果取2位有效数字)。
(2)如果将指针固定在A点的下方P处,再作出x随F变化的图象,得出弹簧的劲度系数与kA 相比,可能是________。
A.等于k B.大于kA C.小于kAD.无法确定【答案】(1)见解析;42(40~44均可) ; (2)A【解析】(1)如图所以;弹簧的劲度系数(40~44均可) ; (2)如果将指针固定在A点的下方P处,再作出x随F变化的图象,则在图像上x的变化量不变,得出弹簧的劲度系数与kA相比不变,仍等于k,选项A 正确。
【考点】“探究弹力和弹簧伸长的关系”的实验。
3.如图所示,在质量为m0的无下底的木箱顶部用一轻弹簧悬挂质量为m(m>m)的A、B两物体,箱子放在水平地面上,平衡后剪断A、B间的连线,A将做简谐运动,当A运动到最高点时,木箱对地面的压力为()A.mgB.(m- m)gC.(m+ m)gD.(m+ 2m)g【答案】A【解析】轻弹簧悬挂质量为的A、B两物体,箱子放在水平地面上,平衡后剪断A、B间的连线,A将做简谐运动,设弹簧形变量为,弹簧劲度系数为k,由平衡条件知,A将在弹簧形变量2x到0之间做振幅为x的简谐运动,即当A运动到最高点时弹簧被压缩x=0,木箱只受到重力和地面的支持力,由二力平衡知,再有牛顿第三定律知木箱对地面的压力为,A正确;【考点】考查了牛顿第二定律,共点力平衡条件,胡克定律4.如图所示,真空中A、B两个点电荷的电荷量分别为+Q和+q,放在光滑绝缘的水平面上,A、B之间用绝缘的轻弹簧连接。
高中物理弹簧问题(2021年整理)
高中物理弹簧问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理弹簧问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理弹簧问题(word版可编辑修改)的全部内容。
弹簧问题轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
高中物理弹簧问题分类全解析
高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。
细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。
物体静止在斜面上,弹簧秤的示数为4.9N 。
关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。
则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。
若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。
弹簧模型专题(有答案)
高中物理弹簧模型专题一、弹簧称的示数例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为 F 的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以 l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则判断l 1、l 2、l 3、l 4的大小关系。
变式训练.一个质量为m 的物体在一弹簧称的作用下沿竖直向上做加速度为a 的匀加速直线运动,忽略空气阻力,重力加速度为g ,求弹簧称的示数.规律总结:弹簧称的示数等于轻质弹簧一端的拉力大小,并不一定等于物体的重力二、与物体平衡相关的弹簧问题例2.如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 ( C )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2三、弹簧的瞬时性问题例3.质量分别为m 和2m 的小球P 、Q 用轻弹簧相连,P 用细线悬挂在天花板下,开始系统处于静止。
求:(1)剪断细线瞬间,P 、Q 的加速度(2)剪断弹簧瞬间,P 、Q 的加速度 变式训练.如图所示,小球P 、Q 质量均为m ,分别用轻弹簧b 和细线c 悬挂在天花板下,再用另一细线d 、e 与左边的固定墙相连,静止时细线d 、e 水平,b 、c 与竖直方向夹角均为θ=37º。
下列判断正确的是A .剪断d 瞬间P 的加速度大小为0.6gB .剪断d 瞬间P 的加速度大小为0.75gC .剪断e 前c 的拉力大小为0.8mgD .剪断e 后瞬间c 的拉力大小为1.25mg规律总结:当弹簧两端都有约束时,弹簧弹力不发生突变;细绳的弹力可以发生突变四、与动力学相关的弹簧问题例4.如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( BD )A.小球加速度方向始终向上B.小球加速度方向先向下后向上C.小球速度一直减小D.小球速度先增大后减小边式训练:如图所示,轻弹簧下端固定,竖立在水平面上。
高中物理弹簧类问题专题练习经典总结附详细答案
高中物理弹簧类问题专题练习、;用一绝缘弹簧联结,和mq,质量分别为a1.图中Mb为两带正电的小球,带电量都是。
现把一匀强电场作用弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d0),在两小球的加速度相等的时刻,弹簧的长度为d。
(于两小球,场强的方向由a指向b >dm,则dB.若M>A.若M = m,则d = d 00a b、M无关m D.d = d,与C.若M<m,则d<d 00 mM整个系统处于平衡状B用一轻弹簧相连接,、2. 如图a所示,水平面上质量相等的两木块A向上做匀加速直线运动,使木块A.现用一竖直向上的力F拉动木块A,态F刚离开地面的瞬B研究从力F刚作用在木块A的瞬间到木块b如图所示.的起始位置为坐标原点,则下A间这个过程,并且选定这个过程中木块A A)列图象中可以表示力F和木块A的位移x之间关系的是( B BFF F F a bx x x x OO O OD C B A的两物块相连接,并且静止在光滑的m和3.如图甲所示,一轻弹簧的两端分别与质量为m21两物块的速度随时间以此刻为时间零点,水平面上.现使m瞬时获得水平向右的速度3m/s,1)变化的规律如图乙所示,从图象信息可得(A.在t、t时刻两物块达到共同速度1m/s且弹簧都是处于压缩状态31时刻弹簧由伸长状态逐渐恢复原长t.从t到B43/m/sv2 m = 1∶C .两物体的质量之比为m∶213 m12 ∶∶t时刻两物体的动量之比为PP =1 D.在m2 22121 v0 /s tttttmm4 3 12 2 1 1-乙甲(可视为质.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q4大小相同,Q上。
现把与点)固定在光滑绝缘斜面上的M点,且在通过弹簧中心的直线ab与弹簧接触到速度变为N带电性也相同的小球P,从直线ab上的点由静止释放,在小球P 零的过程中()a 的速度是先增大后减小A.小球PQ和弹簧的机械能守恒,且PP速度最大时 B.小球PM 所受弹力与库仑力的合力最大N 的动能、重力势能、电势能与弹簧的弹 C.小球P 性势能的总和不变b 合力的冲量为零PD.小球、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B如图所示,5、A质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A22.)=10 m/sg的加速度竖直向上做匀加速运动(0.5 m/s由静止开始以.(1)使木块A竖直做匀加速运动的过程中,力F的最大值;B分离的过)若木块由静止开始做匀加速运动,直到A、(2 ,求这一过程F对程中,弹簧的弹性势能减少了0.248 J.木块做的功弹簧相连,m的物体B如图,质量为m的物体A经一轻质弹簧与下方地面上的质量为6、21都处于静止状态。
高中物理经典问题---弹簧类问题全面总结解读
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
压轴题03 弹簧类专题(解析版)-2020年高考物理挑战压轴题(尖子生专用)
压轴题03弹簧类专题1.足够长的光滑细杆竖直固定在地面上,轻弹簧及小球A 、B 均套在细杆上,弹簧下端固定在地面上,上端和质量为m 1=50g 的小球A 相连,质量为m 2=30g 的小球B 放置在小球A 上,此时A 、B 均处于静止状态,弹簧的压缩量x 0=0.16m ,如图所示。
从t=0时开始,对小球B 施加竖直向上的外力,使小球B 始终沿杆向上做匀加速直线运动。
经过一段时间后A 、B 两球分离;再经过同样长的时间,B 球距其出发点的距离恰好也为x 0。
弹簧的形变始终在弹性限度内,重力加速度取g=10m/s 2。
求:(1)弹簧的劲度系数k ;(2)整个过程中小球B 加速度a 的大小及外力F 的最大值。
【答案】(1)5N/m ;(2)2m/s 2,0.36N 【解析】 【详解】(1)根据共点力平衡条件和胡克定律得:()120m m g kx += 解得:5/k N m =;(2)设经过时间t 小球A 、B 分离,此时弹簧的压缩量为0x , 对小球A :11kx m g m a -=2012x x at -=小球B :()20122x a t =当B 与A 相互作用力为零时F 最大对小球B :22F m g m a -=解得:22/a m s = ,0.36F N =2.如图所示,半径为R 的光滑半圆形导轨固定在竖直面内的AB 两点,直径AB 与竖直方向的夹角为60°,导轨上的C 点在A 点的正下方,D 点是轨道的最低点,质量为m 的圆环套在导轨上,圆环通过两个相同的轻弹簧分别与A 、B 两点连接,弹簧原长均为R ,对圆环施加水平向右的力F =10可使其静止在D 点。
(1)求弹簧的劲度系数k :(2)由C 点静止释放圆环,求圆环运动到D 点的动能E k ;(3)由C 点静止释放圆坏,求圆环运动到D 点时对轨道的作用力N 。
【答案】(1)(310mgk R+=;(2)2k mgR E =;(3)1.7mg ,方向竖直向下【解析】 【分析】 【详解】(1)如图1所示,圆环在D 点时,BD 弹簧处于原长,AD 弹簧的伸长量为x =R 受力分析,正交分解sin 30F kx =解得k =(2)C 点与D 点的高度差 h =0.5R圆环从C 运动到D ,弹簧弹性势能不变,根据机械能守恒k mgh E =解得2k mgRE =(3)如图2所示,圆环运动到D 点时的速度v 受力分析,正交分解2cos30v kx N mg m R'+-=解得1.7N mg '=根据牛顿第三定律,圆环对轨道的作用力N 为1.7N N mg '==方向竖直向下.3.如图,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,C 球放在水平地面上.现用手控制住A ,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A 的质量为4m ,B 、C 的质量均为m ,重力加速度为g ,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态.释放A 后,A 沿斜面下滑至速度最大时,C 恰好离开地面.求:(1)斜面倾角α=?(2)A 获得的最大速度为多少?【答案】(1)30=α︒(2)2v = 【解析】 【分析】 【详解】(1)释放A 后,A 斜面加速下滑,当速度最大时,加速度0A a =,A 、B 之间通过绳连接,则A 速度最大时,B 的速度也最大,加速度0B a =,以A 、B 整体为研究对象,由平衡条件得:4sin mg F mg α=+,F 为此时弹簧弹力,因C 此时恰好离开地面,则有F mg =,联立方程得斜面倾角30=α︒.(2)刚开始以B 为研究对象弹簧弹力01F mg kx ==, C 恰好离开地面时以C 为研究对象, 弹簧弹力2F mg kx ==,所以12mgx x k==,由能量守恒得:2121214sin ()()(4)2mg x x mg x x m m v -α++=+,解得2v =【点睛】本题关键是对三个物体分别受力分析,得出物体B 速度最大时各个物体都受力平衡,然后根据平衡条件分析;同时要注意是那个系统机械能守恒4.一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a 相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0,从t=0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数; (2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式.【答案】(1)08sin 5mg x θ (2)sin 5g θ(3)22084sin sin 2525mg F mg x θθ=+ 【解析】 【详解】(1)对整体分析,根据平衡条件可知,沿斜面方向上重力的分力与弹簧弹力平衡,则有: kx 0=(m+35m )gsinθ 解得:k=8 5mgsin x θ(2)由题意可知,b 经两段相等的时间位移为x 0; 由匀变速直线运动相邻相等时间内位移关系的规律可知:1014x x = 说明当形变量为0010344x x x x =-=时二者分离; 对m 分析,因分离时ab 间没有弹力,则根据牛顿第二定律可知:kx 1-mgsinθ=ma 联立解得:a=15gsin θ(3)设时间为t ,则经时间t 时,ab 前进的位移x=12at 2=210gsin t θ则形变量变为:△x=x 0-x对整体分析可知,由牛顿第二定律有:F+k △x -(m+35m )gsinθ=(m+35m )a 解得:F=825mgsinθ+220425mg sin x θt 2 因分离时位移x=04x 由x=04x =12at 2解得:t =故应保证0≤tF 表达式才能成立.点睛:本题考查牛顿第二定律的基本应用,解题时一定要注意明确整体法与隔离法的正确应用,同时注意分析运动过程,明确运动学公式的选择和应用是解题的关键.5.如图所示,半径R =2.8m 的光滑半圆轨道BC 与倾角θ=37°的粗糙斜面轨道在同一竖直平面内,两轨道间由一条光滑水平轨道AB 相连,A 处用光滑小圆弧轨道平滑连接,B 处与圆轨道相切.在水平轨道上,两静止小球P 、Q 压紧轻质弹簧后用细线连在一起.某时刻剪断细线后,小球P 向左运动到A 点时,小球Q 沿圆轨道到达C 点;之后小球Q 落到斜面上时恰好与沿斜面向下运动的小球P 发生碰撞.已知小球P 的质量m 1=3.2kg ,小球Q 的质量m 2=1kg ,小球P 与斜面间的动摩擦因数μ=0.5,剪断细线前弹簧的弹性势能E p =168J ,小球到达A 点或B 点时已和弹簧分离.重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)小球Q 运动到C 点时的速度大小; (2)小球P 沿斜面上升的最大高度h ;(3)小球Q 离开圆轨道后经过多长时间与小球P 相碰. 【答案】(1)12m/s(2)0.75m(3)1s 【解析】 【详解】(1)两小球弹开的过程,由动量守恒定律得:m 1v 1=m 2v 2 由机械能守恒定律得:2211221122P E m v m v =+联立可得:v 1=5m/s ,v 2=16m/s小球Q 沿圆轨道运动过程中,由机械能守恒定律可得:22222211222C m v m v m gR =+ 解得:v C =12m/s ,(2)小球P 在斜面向上运动的加速度为a 1由牛顿第二定律得:m 1g sin θ+μm 1g cos θ=m 1a 1, 解得:a 1=10m/s 2故上升的最大高度为:211sin 2v h a θ==0.75m (3)设两小球相遇点距离A 点为x ,小球P 从A 点上升到两小球相遇所用的时间为t ,小球P 沿斜面下滑的加速度为a 2由牛顿第二定律得:m 1g sin θ-μm 1g cos θ=m 1a 2, 解得:a 2=2m/s 2小球P 上升到最高点所用的时间:111v t a ==0.5 s , 则:2221112()sin 22R gt h a t t θ=+-- 解得:t =1s.6.(2020·重庆市育才中学高三开学考试)如图所示,光滑斜面体ABC 固定在地面上,斜面AB 倾角为37°,斜面AC 倾角为53°,P 、Q 两个物块分别放在AB 、AC 斜面上,并用绕过斜面体顶端A 处光滑定滑轮的细线连接。
5、力与直线运动:弹簧问题-2021-2022年度高考尖子生培优专题(解析版)
5、力与直线运动:弹簧问题一.两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.2、求解瞬时加速度问题时应抓住“两点”(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变.二、动态变化问题力与运动的关系:力→加速度→速度变化→(运动状态变化)(1)分析物体的运动性质,要从受力分析入手,先求合力,然后根据牛顿第二定律分析加速度的变化。
(2)速度增大或减小取决于加速度和速度方向间的关系,和加速度的大小没有关系。
(3)加速度如何变化取决于物体的质量和合外力,与物体的速度没有关系。
三、临界问题物体分离的临界条件时两物体间相互作用力为0例1、(2021·山东泰安模拟)如图,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)( )A.0 B.2.5 NC.5 N D.3.75 N【解析】当细线剪断瞬间,细线的弹力突然变为零,则B物体的重力突然作用到A上,此时弹簧形变仍不变,对AB整体受力分析受重力G=(m A+m B)g=20 N,弹力为F=m A g=15 N,由牛顿第二定律G-F=(m A+m B)a,解得a=2.5 m/s2,对B受力分析,B受重力和A对B的弹力F1,对B有m B g-F1=m B a,可得F1=3.75 N,D选项正确.【答案】 D针对训练1. (多选)如图所示,质量为m的小球被一根橡皮筋AC和一根绳BC系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ【解析】:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mgcos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC 上的拉力F 也发生了突变,小球的加速度方向沿与BC 垂直的方向且斜向下,大小为a =mg sin θm=g sin θ,B 正确,A 错误;在BC 被突然剪断的瞬间,橡皮筋AC 的拉力不变,小球的合力大小与BC 被剪断前拉力的大小相等,方向沿BC 方向斜向下,故加速度a =Fm=gcos θ,C 正确,D 错误.【答案】 BC针对训练2、(多选)如图所示,在水平地面上的箱子内,用细线将质量均为m 的两个球a 、b 分别系于箱子的上、下两底的内侧,轻质弹簧两端分别与球相连接,系统处于静止状态时,弹簧处于拉伸状态,下端细线对箱底的拉力为F ,箱子的质量为M ,则下列说法正确的是(重力加速度为g )( )A .系统处于静止状态时地面受到的压力大小为(M +2m )g -FB .系统处于静止状态时地面受到压力大小为(M +2m )gC .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g +FD .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g【解析】 系统处于静止状态时,对整体进行受力分析,由平衡条件可得,地面对整体的支持力F N =(M +2m )g ,由牛顿第三定律可知地面受到的压力大小为(M +2m )g ,选项B 正确,A 错误;剪断连接球b 与箱底的细线瞬间,球b 向上加速运动,地面受到的压力大小为(M +2m )g +F ,选项C 正确,D 错误。
2019-2020学年第二学期人教版高二物理必修第二册第八章专题复习:《弹簧》学案及答案
弹簧专题学案1.如图所示,劲度系数为k 的弹簧下端悬挂一个质量为m 的重物,处于静止状态.手托重物使之缓慢上移,直到弹簧恢复原长,手对重物做的功为W 1.然后放手使重物从静止开始下落,重物下落过程中的最大速度为v ,不计空气阻力.重物从静止开始下落到速度最大的过程中,重物克服弹簧弹力做的功为W 2,则( )A .W 1>m 2g 2kB .W 1<m 2g 2kC .W 2=12mv 2D .W 2=m 2g 2k -12mv 2 2. 如图所示,轻质弹簧的一端与固定的竖直板P 拴接,另一端与物体A相连,物体A 静止于光滑水平桌面上,右端接一细线,细线绕过光滑的定滑轮与物体B 相连.开始时用手托住B ,让细线恰好伸直,然后由静止释放B ,直至B 获得最大速度.下列有关该过程的分析正确的是 ( )A .B 物体的机械能守恒B .B 物体的动能的增加量等于它所受重力与拉力做的功之和C .B 物体机械能的减少量等于弹簧的弹性势能的增加量D .细线拉力对A 物体做的功等于A 物体与弹簧所组成的系统机械能的增加量3.一个质量m=0.20 kg 的小球系于轻质弹簧的一端,且套在光滑竖立的圆环上,弹簧的另一端固定于环的最高点A,环的半径R =0.5 m,弹簧的原长L 0=0.50 m,如图所示.若小球从图中所示位置B 点由静止开始滑动到最低点C 时,弹簧的弹性势能E p =0.60 J.(g=10 m/s 2).求:(1)小球到C 点时的速度v C 的大小.(2)若弹簧的劲度系数为4.8 N/m,小球在C 点时对环的作用力的大小和方向.4.如图所示,在倾角θ=30°的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量均为m ,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态。
现开始用一沿斜面方向的力F 拉物块A 使之向上匀加速运动,当物块B 刚要离开C 时F 的大小恰为2mg 。
高中物理弹簧类问题试题与答案
高中物理弹簧类问题试题与答案1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为 F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4 依次表示四个弹簧的伸长量,则有()A.l 2>l 1 B.l 4>l 3 C.l 1>l 3 D.l 2=l 42、如图所示,a、b 、c为三个物块,M,N为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态()A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉伸状态D.有可能N处于拉伸状态而M处于不伸不缩状态3、如图所示,在一直立的光滑管内放置一轻质弹簧,上端O点与管口A的距离为2x0,一质量为m的小球从管口由静止下落,将弹簧压缩至最低点B,压缩量为x0,不计空气阻力,则()A.小球运动的最大速度大于 2 gxB.小球运动中最大动能等于2mgx0C.弹簧的劲度系数为mg/x0D.弹簧的最大弹性势能为3mgx04、如图所示,A、B质量均为m,叠放在轻质弹簧上,当对A施加一竖直向下的力,大小为F,将弹簧压缩一段,而且突然撤去力 F 的瞬间,关于 A的加速度及A、B间的相互作用力的下述说法正确的是()A、加速度为0,作用力为mg。
B 、加速度为F2m,作用力为mgF2C、速度为F/m,作用力为mg+F D 、加速度为F2m,作用力为F mg25、如图所示,一根轻弹簧上端固定,下端挂一质量为m1 的箱子,箱中有一质量为m2 的物体.当箱静止时,弹簧伸长L1,向下拉箱使弹簧再伸长L2 时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( ) L LA.. m g(1 B.. (1 )(m1 m2 )g2 ) 22L L1 1L L2 D. 2 m m g C.m g( 1 2 ) 2L L1 16、如图所示,在一粗糙水平面上有两个质量分别为m1 和m2 的木块1 和2,中间用一原长为L、劲度系数为K的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。
高中物理弹簧弹力问题(含答 案)
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为,另一端受力一定也为,若是弹簧秤,则弹簧秤示数为.图 3-7-1【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力和称外壳上的力,且,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: ,即,仅以轻质弹簧为研究对象,则弹簧两端的受力都,所以弹簧秤的读数为.说明:作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】二、质量不可忽略的弹簧图 3-7-2【例2】如图3-7-2所示,一质量为、长为的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度,取弹簧左部任意长度为研究对象,设其质量为得弹簧上的弹力为:,【答案】三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块与用轻弹簧相连,竖直放在木块上,三者静置于地面,的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块的瞬时,木块和的加速度分别是= 与=图 3-7-3【解析】由题意可设的质量分别为,以木块为研究对象,抽出木块前,木块受到重力和弹力一对平衡力,抽出木块的瞬时,木块受到重力和弹力的大小和方向均不变,故木块的瞬时加速度为0.以木块为研究对象,由平衡条件可知,木块对木块的作用力.以木块为研究对象,木块受到重力、弹力和三力平衡,抽出木块的瞬时,木块受到重力和弹力的大小和方向均不变,瞬时变为0,故木块的瞬时合外力为,竖直向下,瞬时加速度为.【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为的小球用水平弹簧连接,并用倾角为的光滑木板托住,使小球恰好处于静止状态.当突然向下撤离的瞬间,小球的加速度为 ( )A. B.大小为,方向竖直向下图 3-7-4C.大小为,方向垂直于木板向下D. 大小为, 方向水平向右【解析】 末撤离木板前,小球受重力、弹簧拉力、木板支持力作用而平衡,如图3-7-5所示,有.撤离木板的瞬间,重力和弹力保持不变(弹簧弹力不能突变),而木板支持力立即消失,小球所受和的合力大小等于撤之前的 (三力平衡),方向与相反,故加速度方向为垂直木板向下,大小为 【答案】 C.图 3-7-5四、弹簧长度的变化问题设劲度系数为的弹簧受到的压力为时压缩量为,弹簧受到的拉力为时伸长量为,此时的“-”号表示弹簧被压缩.若弹簧受力由压力变为拉力,弹簧长度将由压缩量变为伸长量,长度增加量为.由胡克定律有: ,.则:,即说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为的轻质弹簧两端分别与质量为、的物块1、2拴接,劲度系数为的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .图 3-7-6【解析】由题意可知,弹簧长度的增加量就是物块2的高度增加量,弹簧长度的增加量与弹簧长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧的弹力将由原来的压力变为0,弹簧的弹力将由原来的压力变为拉力,弹力的改变量也为 .所以、弹簧的伸长量分别为:和故物块2的重力势能增加了,物块1的重力势能增加了五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律,其中为弹簧的形变量,两端与物体相连时亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.图 3-7-7【例6】如图3-7-7所示,在倾角为的光滑斜面上有两个用轻质弹簧相连接的物块,其质量分别为,弹簧的劲度系数为,为一固定挡板,系统处于静止状态,现开始用一恒力沿斜面方向拉使之向上运动,求刚要离开时的加速度和从开始到此时的位移(重力加速度为).【解析】 系统静止时,设弹簧压缩量为,弹簧弹力为,分析受力可知:解得:在恒力作用下物体向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体刚要离开挡板时弹簧的伸长量为,分析物体的受力有:,解得设此时物体的加速度为,由牛顿第二定律有: 解得:因物体与弹簧连在一起,弹簧长度的改变量代表物体的位移,故有,即【答案】六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为的物体用一轻弹簧与下方地面上质量也为的物体相连,开始时和均处于静止状态,此时弹簧压缩量为,一条不可伸长的轻绳绕过轻滑轮,一端连接物体、另一端握在手中,各段绳均刚好处于伸直状态,物体上方的一段绳子沿竖直方向且足够长.现在端施加水平恒力使物体从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).图 3-7-8(1)如果在端所施加的恒力大小为,则在物体刚要离开地面时物体的速度为多大?(2)若将物体的质量增加到,为了保证运动中物体始终不离开地面,则最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量,物体刚要离开地面时弹簧的伸长量也是.(1)若,在弹簧伸长到时,物体离开地面,此时弹簧弹性势能与施力前相等,所做的功等于物体增加的动能及重力势能的和.即:得:(2)所施加的力为恒力时,物体不离开地面,类比竖直弹簧振子,物体在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体做简谐运动.在最低点有:,式中为弹簧劲度系数,为在最低点物体的加速度.在最高点,物体恰好不离开地面,此时弹簧被拉伸,伸长量为,则: 而,简谐运动在上、下振幅处,解得:[也可以利用简谐运动的平衡位置求恒定拉力.物体做简谐运动的最低点压缩量为,最高点伸长量为,则上下运动中点为平衡位置,即伸长量为所在处.由,解得: .]【答案】说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
高中物理弹簧类问题专题练习(经典总结附详细答案)
-v 甲 高中物理弹簧类问题专题练习1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。
现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。
( )A .若M = m ,则d = d 0B .若M >m ,则d >d 0C .若M <m ,则d <d 0D .d = d 0,与M 、m 无关2. 如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A列图象中可以表示力F 和木块A 的位移x 之间关系的是(3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( )A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长C .两物体的质量之比为m 1∶m 2 = 1∶2D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。
现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( )A.小球P 的速度是先增大后减小B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变D.小球P 合力的冲量为零5、如图所示,A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).A B C D b(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.6、如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。
高二物理弹簧类专题(附答案)
高二物理弹簧类专题轻弹簧是一种理想的物理模型,在《考试说明》中涉及它的知识点有: ①形变和弹力,胡克定律(该知识点为B 级要求); ②弹性势能(A 级要求)、弹簧振子等弹簧的弹力不能突变,它的变化要经历一个过程,这是由弹簧形变的改变要逐渐进行决定的。
因此,要知道在某一作用瞬间(如碰撞)弹力会保持不变。
弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
下文结合题例剖析弹簧类问题的研究方法。
〖典型例题透析〗 (一)平衡中的弹簧问题〖例1〗(2000年广东高考)S l 和S 2表示劲度系数分别为k 1和k :的两根弹簧。
k 1>k :,a 和b 表示质量分别为m a 和m b 的两个物块,m a >m b ,将弹簧与物块按图所示方式悬挂起来。
现要求两根弹簧的总长度最大,则应使:〖D 〗A.S 1在上,a 在上B. S 1在上,b 在上C.S 2在上,a 在上D. S 2在上,b 在上 (二)动力学中的弹簧问题〖例2〗(1991年三南高考)一条轻弹簧和一根细线共同拉住一个质量为m 的小球,平衡时细线是水平的,弹簧与竖直方向的夹角是θ,如图所示。
若突然剪断细线,则在刚剪断的瞬时,弹簧拉力的大小是 ,小球加速度的方向与竖直方向的夹角等于 。
〖解题思路〗在细线未断之前,小球受三个力作用,而处于平衡状态,如图所示θcos mgF =,T=mgtg θ。
当细线突然剪断瞬间,拉力了消失,但弹簧还没有恢复形变,此时,F 大小、方向均不变,仍为θcos mgF =。
细绳剪断瞬间,小球受的重力与弹簧的弹力的合力必与细绳未剪断时对它的作用力等值反向,即mgtg θ=ma ,a=gtg θ,a 的方向与竖直方向的夹角等于900。
高中物理经典问题---弹簧类问题全面总结解读
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
高二物理培优材料《弹簧专题》(有答案)
高二物理培优材料《弹簧专题》1.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面的木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢地向上提上面的木块,直到它刚离开上面的弹簧.⑴在这个过程中下面木块移动的距离为()A.m1g/k1B.m2g/k1C.m1g/k2D.m2g/k2⑵在这个过程中上面木块移动的距离为()A.m1g(1/k1+1/k2) B.m1g/k1+m2g/k2C.(m1+m2)g/k1D.(m1+m2)g/k22.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两木块和两根弹簧都连接在一起,整个系统处于平衡状态.现缓慢地向上提上面的木块,直到下面的弹簧刚离开地面.⑴在这个过程中下面木块移动的距离为()A.(m1+m2)g/k1B.(m1+m2)g/k2C.m1g(1/k1+1/k2) D.2(m1+m2)g/k2⑵在这个过程中上面木块移动的距离为()A.(m1+m2)g/k1+m2g/k2B.m1g/k1+m2g/k2C.m1g/k1+(m1+m2)g/k2D.(m1+m2)g(1/k1+1/k2)3.如图所示,一质量为m的物体一端系于长度为L1、质量不计的轻弹簧上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,另一端系于长度为L2的细线上,L2水平拉直,物体处于平衡状态.现将L2线剪断,则剪断瞬间物体的加速度大小为()A.g sinθB.g cosθC.g tanθ D.g cotθ4.如图所示,A、B两物块质量均为m,用一轻弹簧相连,将A用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B物块恰好与水平桌面接触,此时轻弹簧的伸长量为x,现将悬绳剪断,则下列说法正确的是()A.悬绳剪断瞬间A物块的加速度大小为零B.悬绳剪断瞬间A物块的加速度大小为gC.悬绳剪断后A物块向下运动距离x时速度最大D.悬绳剪断后A物块向下运动距离2x时速度最大5.如右图甲所示,在粗糙的水平面上,质量分别为m和M(m:M=1:2)的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数相同.当用水平力F作用于B上且两物块共同向右加速运动时,弹簧的伸长量为x1;当用同样大小的力F竖直加速提升两物块时(如图乙所示),弹簧的伸长量为x2,则x1:x2为()A.1:1 B.1:2 C.2:1 D.2:36.如图⑴所示,水平面上质量相等的两木块A、B,用一轻弹簧相连接,这个系统处于平衡状态.现用一竖直向上的力F拉动木块A,使木块A向上做匀加速直线运动,如图⑵所示,研究从力F刚作用在木块A瞬间到木块B刚离开地面瞬间的这一过程,并选定该过程中木块A的起点位置为坐标原点.则下列图中能正确表示力F和木块A的位移x之间关系的图是()7.水平地面上有一直立的轻质弹簧,下端固定,上端与物体A相连接,整个系统处于静止状态,如图(甲)所示.现用一竖直向下的力F作用在物体A上,使A向下做一小段匀加速直线运动(弹簧一直处在弹性限度内)如图(乙)所示.在此过程中力F的大小与物体向下运动的距离x间的关系图象正确的是()8.如图所示,一条轻质弹簧左端固定,右端系一小物块,物块与水平面各处动摩擦因数相同,弹簧无形变时,物块位于O点.今先后分别把物块拉到P1和P2点由静止释放,物块都能运动到O点左方,设两次运动过程中物块速度最大的位置分别为Q1和Q2点,则Q1和Q2点()A.都在O点右方,且Q1离O点近B.都在O点C.都在O点右方,且Q2离O点近D.都在O点右方,且Q1、Q2在同一位置9.如图所示,一根自然长度为l0的轻弹簧和一根长度为a的轻绳连接,弹簧的上端固定在天花板的O点上,P是位于O点正下方的光滑轻小定滑轮,已知OP=l0+a.现将绳的另一端与静止在动摩擦因数恒定的水平地面上的滑块A相连,滑块对地面有压力作用.再用一水平力F作用于A使之向右做直线运动(弹簧的下端始终在P之上),则滑块A受地面的滑动摩擦力()A.逐渐变小B.逐渐变大C.先变小后变大D.大小不变10.如图所示,放在水平桌面上的木块A处于静止状态,所挂的砝码和托盘的总质量为0.6kg,弹簧测力计读数为2N,滑轮摩擦不计,若轻轻取走盘中的部分砝码,使总质量减少到0.3 kg时,将会出现的情况是(g=10m/s2)()A.A所受的合力将要变大B.A仍静止不动C.A对桌面的摩擦力不变D.弹簧测力计的读数将变小11.如图所示,物体P左边用一根轻弹簧和竖直墙相连,放在粗糙水平面上,静止时弹簧的长度大于原长,若再用一个从零开始逐渐增大的水平力F向右拉P,直到拉动,那么在P被拉动之前的过程中,弹簧对P的弹力T的大小和地面对P的摩擦力f的大小变化情况是()A.T始终增大,f始终减小B.T先不变后增大,f先减小后增大C.T保持不变,f始终减小D.T保持不变,f先减小后增大12.竖直放置的轻弹簧,上端与质量为3kg的物块B相连接.另一个质量为1kg的物块A放在B上.先向下压A,然后释放,A、B共同向上运动一段后将分离,分离后A又上升了0.2m到达最高点,此时B的速度方向向下,且弹簧恰好为原长.则从A、B分离到A上升到最高点的过程中,弹簧弹力对B做的功及弹簧回到原长时B的速度大小分别是(g=10m/s2)()A.12J,2m/s B.0,2m/s C.0,0 D.4J,2m/s13.如图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m =12kg ,弹簧的劲度系数k =300N/m .现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t =0.2s 内F 是变力,在0.2s 以后F 是恒力,求F 的最大值和最小值各是多少?(g =10m/s 2)14.一个弹簧秤放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止,如右图所示,现给P 施加一个方向向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 时间内F 为变力,0.2s 以后F 为恒力,求力F 的最大值与最小值(取g =10m/s 2)15.如图所示,一个劲度系数为k =800N/m 的轻弹簧,两端分别连接着质量均为m =12kg 物体A 和B ,将它们竖直静止地放在水平地面上.现施加一竖直向上的变力F 在物体A 上,使物体A 从静止开始向上做匀加速运动,当 t =0.2s 时物体B 刚好离开地面,设整个匀加速过程弹簧都处于弹性限度内,取g =10m/s 2.求:⑴此过程中所加外力F 的最大值和最小值;⑵此过程外力F 所做的功.16. A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功.17.如图所示,质量10=A m kg 的物块A 与质量2=B m kg 的物块B 放在倾角θ=30°的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定挡板连接,弹簧的劲度系数k =400N /m .现给物块A 施加一个平行于斜面向上的力F ,使物块A 沿斜面向上做匀加速运动,已知力F在前t =0.2s 内为变力,0.2后为恒力,求(g 取10m /s 2)(1)力F 的最大值与最小值;(2)力F 由最小值达到最大值的过程中,物块A所增加的重力势能.18.如图所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过两个轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段沿竖直方向.若在挂钩上挂一质量为m3的物体C,则B将刚好离地.若将C换成另一个质量为m1+m3的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度大小是多少?(已知重力加速度为g)19.如图所示,一轻质弹簧下端固定在水平地面上,上端与物体A连接,物体A又与一跨过定滑轮的不可伸长的轻绳一端相连,绳另一端悬挂着物体B,B的下面又挂着物体C,A、B、C均处于静止状态.现剪断B和C之间的绳子,在A、B运动过程中,弹簧始终在弹性限度范围内.(已知弹簧的劲度系数为k,物体A质量为3m,B和C质量均为2m)试求:⑴物体A的最大速度;⑵轻绳对物体B的最大拉力和最小拉力.20. 如图甲所示,在地面上竖直固定着一劲度系数k =50N/m 的轻质弹,正上方O 点处由静止释放一个质量m =1. Okg 的小球,取O 点为原点,建立竖直向下的坐标轴Oy ,小球的加速度a 随其位置坐标y 的变化关系如图乙所示,其中y 0=0 .8m ,y m 对应弹簧压缩到最短时小球的位置,取g=10m/s 2 ,不计空气阻力。
高中物理 力学 综合 弹簧小专题 含答案
弹簧小专题(一)1.如图所示,在倾角为θ的光滑固定斜面上,劲度系数分别为k1、k2的两个轻弹簧平行于斜面悬挂着,k1在上 k2在下,两弹簧之间有一质量为m1的重物,现用力F(未知)沿斜面向上缓慢推动m2,当两弹簧的总长等于两弹簧的原长之和时,求:(1)k1轻弹簧的形变量(2)m1上移的距离(3)推力F的大小.考点:共点力平衡的条件及其应用;力的合成与分解的运用.专题:共点力作用下物体平衡专题.分析:(1)由题,两弹簧的总长等于两弹簧的原长之和,则知,k1的伸长量与k2的压缩量相等,由m1重物平衡可求出k1轻弹簧的形变量.(2)先求出k1原来的伸长量,再由几何关系求出m1上移的距离.(3)根据两弹簧的形变量相等,由胡克定律列方程,求出F.2.如图所示,倾角为θ的光滑斜面ABC放在水平面上,劲度系数分别为k1、k2的两个轻弹簧沿斜面悬挂着,两弹簧之间有一质量为m1的重物,最下端挂一质量为m2的重物,此时两重物处于平衡状态,现把斜面ABC 绕A点缓慢地顺时针旋转90°后,重新达到平衡.试求:m1、m2沿斜面各移动的距离.考点:共点力平衡的条件及其应用;力的合成与分解的运用;胡克定律.专题:共点力作用下物体平衡专题.分析:在旋转前后,物体均处于平衡状态,则共点力的平衡条件可得出物体弹簧弹力,由胡克定律可求得弹簧的伸长量,则可得出旋转前后的距离.3.如图所示,在倾角为θ的光滑斜面上放有两块小木块,劲度系数为k1的轻质弹簧两端分别与质量为m1和m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在挡板上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢沿斜面向上提,直到下面那个弹簧的下端刚脱离挡板.在此过程中,下列说法正确的是()考点:共点力平衡的条件及其应用;力的合成与分解的运用.专题:共点力作用下物体平衡专题.分析:先根据平衡条件和胡克定律求出原来两根弹簧的压缩量.当下面的弹簧刚脱离挡板时,再求出弹簧k1的伸长量,由几何关系即可求出两物块上升的距离.解答:解:未施力将物块1缓慢上提时,根据平衡条件和胡克定律得两根弹簧的压缩量分别为:4.如图所示,倾角为θ的固定光滑斜面底部有一直斜面的固定档板C.劲度系数为k1的轻弹簧两端分别与质量均为m的物体A和B连接,劲度系数为k2的轻弹簧一端与A连接,另一端与一轻质小桶P相连,跨过光滑的滑轮Q放在斜面上,B靠在档板C处,A和B均静止.现缓慢地向小桶P内加入细砂,当B与档板C间挤压力恰好为零时,小桶P内所加入的细砂质量及小桶下降的距离分别为()5.如图所示,在倾角为θ的光滑斜劈P的斜面上有两个用轻质弹簧相连的物块A、B,C为一垂直固定在斜面上的挡板.A、B质量均为m,斜面连同挡板的质量为M,弹簧的劲度系数为k,系统静止于光滑水平面.现开始用一水平恒力F作用于P,(重力加速度为g)下列说法中正确的是()考点:牛顿第二定律;力的合成与分解的运用;胡克定律.专题:牛顿运动定律综合专题.分析:先对斜面体和整体受力分析,根据牛顿第二定律求解出加速度,再分别多次对物体A、B或AB整体受力分析,然后根据牛顿第二定律,运用合成法列式分析求解.解答:解:A、F=0时,对物体A、B整体受力分析,受重力、斜面的支持力N1和挡板的支持力N2,根据共点力平衡条件,沿平行斜面方向,有N2-(2m)gsinθ=0,故正确;B、开始时,系统静止于水平面上,合外力等于零,当力F从零开始缓慢增大时,系统所受合外力就是水平外力F,系统产生的水平加速度缓慢增大,物块A也产生水平向左的加速度,支持力的水平分力与弹簧弹力的水平分力不再平衡,二者水平合力向左,必有弹力减小,因此,力F从零开始增加时,A就相对斜面向上滑行,选项B错误;C、物体B恰好离开挡板C的临界情况是物体B对挡板无压力,此时,整体向左加速运动,对物体B受力分析,受重力、支持力、弹簧的拉力,如图考点:共点力平衡的条件及其应用;力的合成与分解的运用;胡克定律.专题:共点力作用下物体平衡专题.分析:当两个弹簧的总长度等于两弹簧原长之和时,上边弹簧的伸长量与下边弹簧的压缩量相等.对m1受力分析,有m1g=k1x+k2x,得出伸长量和压缩量x.对物体m2受力分析有:F N=m2g+k2x,再结合牛顿第三定律,求出物体对平板的压力F N′.解答:解:当两个弹簧的总长度等于两弹簧原长之和时,下面弹簧的压缩量应等于上面弹簧的伸长量,设为x,点评:求出本题的关键知道当两个弹簧的总长度等于两弹簧原长之和时,上边弹簧的伸长量与下边弹簧的压缩量相等.7.已知在弹性限度内,弹簧的伸长量△L与受到的拉力F成正比,用公式F=k•△L表示,其中k为弹簧的劲度系数(k为一常数).现有两个轻弹簧L1和L2,它们的劲度系数分别为k1和k2,且k1=3k2,现按如图所示方式用它们吊起滑轮和重物,如滑轮和重物的重力均为G,则两弹簧的伸长量之比△L1:△L2为()考点:探究弹簧测力计原理的实验.专题:信息给予题.分析:分析图中的装置可知,滑轮两侧的拉力均为G,再加上滑轮的重力也等于G,所以,顶端的弹簧承担的拉力为3G,将这一关系与劲度系数的关系都代入公式中,就可以求出弹簧伸长量之比.解答:解:读图分析可知,底端弹簧所受拉力为G,顶端弹簧所受拉力为3G,故选A.点评:正确分析两根弹簧所受拉力的情况是解决此题的关键,在得出拉力关系、劲度系数关系的基础上,代入公式即可顺利求取弹簧伸长量的比.8.如图所示,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E、方向沿斜面向下的匀强电场中.一劲度系数为k的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态.一质量为m、带电量为q(q>0)的滑块从距离弹簧上端为S处静止释放,滑块在运动过程中电量保持不变.设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g.则()A.当滑块的速度最大时,弹簧的弹性势能最大B.当滑块的速度最大时,系统的机械能最大C.当滑块的加速度最大时,弹簧的弹性势能最大D.当滑块的加速度最大时,系统的机械能最大考点:机械能守恒定律;弹性势能.专题:机械能守恒定律应用专题.分析:滑块向下先做加速度减小的加速运动,然后做加速度增大的减速运动,到达最低点时,速度为0,此时加速度最大.在整个过程中,有动能、重力势能、弹性势能、电势能发生相互转化,动能、重力势能和弹性势能统称为系统的机械能,当电势能减小最多时,系统的机械能最大.解答:解:A、滑块向下先做加速度逐渐减小的加速运动,当加速度为0时,速度最大,然后做加速度逐渐增大的减速运动,到达最低点,速度减小到0,此时加速度最大,弹簧的弹性势能最大.故A错误,C正确. B、动能、重力势能和弹性势能统称为系统的机械能,根据能量守恒定律,电势能减小,系统的机械能增大,当滑块运动到最低点时,电场力做的正功最多,即电势能减小最多,此时系统机械能最大.故B错误,D正确.故选CD.点评:解决本题的关键知道滑块的运动是向下先做加速度减小的加速运动,然后做加速度增大的减速运动,到达最低点时,速度为0.知道在最低点时弹簧的弹性势能最大.在整个过程中,有动能、重力势能、弹性势能、电势能发生相互转化,当电势能减小最多时,系统的机械能最大.9.考点:牛顿第二定律;牛顿运动定律的应用-连接体.专题:牛顿运动定律综合专题.分析:(1)对小滑块受力分析,受重力、支持力和拉力;再根据牛顿第二定律求出合力的大小和方向,然后运用正交分解法列式求解;(2)小滑块对斜面体没有压力,则斜面体对小滑块也没有支持力,小滑块受到重力和拉力,物体的加速度水平向右,故合力水平向右,运用平行四边形定则求解合力,再根据牛顿第二定律求解加速度;(3)弹簧保持原长,弹力为零,小滑块受到重力和支持力,物体沿水平方向运动,加速度水平向左,合力水平向左,运用平行四边形定则求解合力,再根据牛顿第二定律求解加速度的大小.解答:解:(1)对小滑块受力分析,受重力、支持力和拉力,如图(3)弹簧保持原长,弹力为零,小滑块受到重力和支持力,物体沿水平方向运动,加速度水平向左,合力水平向左,运用平行四边形定则,如图点评:本题关键对小滑块受力分析后,根据牛顿第二定律,运用正交分解法或合成法列式求解.(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1;(2)若滑块在沿斜面向下运动的整个过程中最大速度大小为v m,求滑块从静止释放到速度大小为v m的过程中弹簧的弹力所做的功W;(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关系v-t图象.图中横坐标轴上的t1、t2及t3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的速度大小,v m是题中所指的物理量.(本小题不要求写出计算过程。
7高考二轮物理复习专题3.弹簧问题(附答案)7
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二物理培优材料《弹簧专题》1.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面的木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢地向上提上面的木块,直到它刚离开上面的弹簧.⑴在这个过程中下面木块移动的距离为()A.m1g/k1 B.m2g/k1 C.m1g/k2 D.m2g/k2⑵在这个过程中上面木块移动的距离为()A.m1g(1/k1+1/k2) B.m1g/k1+m2g/k2C.(m1+m2)g/k1 D.(m1+m2)g/k22.如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两木块和两根弹簧都连接在一起,整个系统处于平衡状态.现缓慢地向上提上面的木块,直到下面的弹簧刚离开地面.⑴在这个过程中下面木块移动的距离为()A.(m1+m2)g/k1 B.(m1+m2)g/k2C.m1g(1/k1+1/k2) D.2(m1+m2)g/k2⑵在这个过程中上面木块移动的距离为()A.(m1+m2)g/k1+m2g/k2 B.m1g/k1+m2g/k2C.m1g/k1+(m1+m2)g/k2 D.(m1+m2)g(1/k1+1/k2)3.如图所示,一质量为m的物体一端系于长度为L1、质量不计的轻弹簧上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,另一端系于长度为L2的细线上,L2水平拉直,物体处于平衡状态.现将L2线剪断,则剪断瞬间物体的加速度大小为()A.g sinθB.g cosθC.g tanθ D.g cotθ4.如图所示,A、B两物块质量均为m,用一轻弹簧相连,将A用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B物块恰好与水平桌面接触,此时轻弹簧的伸长量为x,现将悬绳剪断,则下列说法正确的是()A.悬绳剪断瞬间A物块的加速度大小为零B.悬绳剪断瞬间A物块的加速度大小为gC.悬绳剪断后A物块向下运动距离x时速度最大D.悬绳剪断后A物块向下运动距离2x时速度最大5.如右图甲所示,在粗糙的水平面上,质量分别为m和M(m:M=1:2)的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数相同.当用水平力F作用于B上且两物块共同向右加速运动时,弹簧的伸长量为x1;当用同样大小的力F竖直加速提升两物块时(如图乙所示),弹簧的伸长量为x2,则x1:x2为()A.1:1 B.1:2 C.2:1 D.2:36.如图⑴所示,水平面上质量相等的两木块A、B,用一轻弹簧相连接,这个系统处于平衡状态.现用一竖直向上的力F拉动木块A,使木块A向上做匀加速直线运动,如图⑵所示,研究从力F刚作用在木块A瞬间到木块B刚离开地面瞬间的这一过程,并选定该过程中木块A的起点位置为坐标原点.则下列图中能正确表示力F和木块A的位移x之间关系的图是()7.水平地面上有一直立的轻质弹簧,下端固定,上端与物体A相连接,整个系统处于静止状态,如图(甲)所示.现用一竖直向下的力F作用在物体A上,使A向下做一小段匀加速直线运动(弹簧一直处在弹性限度内)如图(乙)所示.在此过程中力F的大小与物体向下运动的距离x间的关系图象正确的是()8.如图所示,一条轻质弹簧左端固定,右端系一小物块,物块与水平面各处动摩擦因数相同,弹簧无形变时,物块位于O点.今先后分别把物块拉到P1和P2点由静止释放,物块都能运动到O点左方,设两次运动过程中物块速度最大的位置分别为Q1和Q2点,则Q1和Q2点()A.都在O点右方,且Q1离O点近 B.都在O点C.都在O点右方,且Q2离O点近 D.都在O点右方,且Q1、Q2在同一位置9.如图所示,一根自然长度为l0的轻弹簧和一根长度为a的轻绳连接,弹簧的上端固定在天花板的O点上,P是位于O点正下方的光滑轻小定滑轮,已知OP=l0+a.现将绳的另一端与静止在动摩擦因数恒定的水平地面上的滑块A相连,滑块对地面有压力作用.再用一水平力F作用于A使之向右做直线运动(弹簧的下端始终在P之上),则滑块A受地面的滑动摩擦力()A.逐渐变小B.逐渐变大C.先变小后变大D.大小不变10.如图所示,放在水平桌面上的木块A处于静止状态,所挂的砝码和托盘的总质量为0.6kg,弹簧测力计读数为2N,滑轮摩擦不计,若轻轻取走盘中的部分砝码,使总质量减少到0.3 kg时,将会出现的情况是(g=10m/s2)()A.A所受的合力将要变大B.A仍静止不动C.A对桌面的摩擦力不变D.弹簧测力计的读数将变小11.如图所示,物体P左边用一根轻弹簧和竖直墙相连,放在粗糙水平面上,静止时弹簧的长度大于原长,若再用一个从零开始逐渐增大的水平力F向右拉P,直到拉动,那么在P被拉动之前的过程中,弹簧对P的弹力T的大小和地面对P的摩擦力f的大小变化情况是()A.T始终增大,f始终减小 B.T先不变后增大,f先减小后增大C.T保持不变,f始终减小 D.T保持不变,f先减小后增大12.竖直放置的轻弹簧,上端与质量为3kg的物块B相连接.另一个质量为1kg的物块A放在B上.先向下压A,然后释放,A、B共同向上运动一段后将分离,分离后A又上升了0.2m到达最高点,此时B的速度方向向下,且弹簧恰好为原长.则从A、B分离到A上升到最高点的过程中,弹簧弹力对B做的功及弹簧回到原长时B的速度大小分别是(g=10m/s2)()A.12J,2m/s B.0,2m/s C.0,0 D.4J,2m/s13.如图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m =12kg ,弹簧的劲度系数k =300N/m .现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t =0.2s 内F 是变力,在0.2s 以后F 是恒力,求F 的最大值和最小值各是多少?(g =10m/s 2)14.一个弹簧秤放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止,如右图所示,现给P 施加一个方向向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 时间内F 为变力,0.2s 以后F 为恒力,求力F 的最大值与最小值(取g =10m/s 2)15.如图所示,一个劲度系数为k =800N/m 的轻弹簧,两端分别连接着质量均为m =12kg 物体A 和B ,将它们竖直静止地放在水平地面上.现施加一竖直向上的变力F 在物体A 上,使物体A 从静止开始向上做匀加速运动,当 t =0.2s 时物体B 刚好离开地面,设整个匀加速过程弹簧都处于弹性限度内,取g =10m/s 2.求:⑴此过程中所加外力F 的最大值和最小值;⑵此过程外力F 所做的功.16. A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功.17.如图所示,质量10=A m kg 的物块A 与质量2=B m kg 的物块B 放在倾角θ=30°的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定挡板连接,弹簧的劲度系数k =400N /m .现给物块A 施加一个平行于斜面向上的力F ,使物块A 沿斜面向上做匀加速运动,已知力F在前t =0.2s 内为变力,0.2后为恒力,求(g 取10m /s 2)(1)力F 的最大值与最小值;(2)力F 由最小值达到最大值的过程中,物块A所增加的重力势能.18.如图所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过两个轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段沿竖直方向.若在挂钩上挂一质量为m3的物体C,则B将刚好离地.若将C换成另一个质量为m1+m3的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度大小是多少?(已知重力加速度为g)19.如图所示,一轻质弹簧下端固定在水平地面上,上端与物体A连接,物体A又与一跨过定滑轮的不可伸长的轻绳一端相连,绳另一端悬挂着物体B,B的下面又挂着物体C,A、B、C均处于静止状态.现剪断B和C之间的绳子,在A、B运动过程中,弹簧始终在弹性限度范围内.(已知弹簧的劲度系数为k,物体A 质量为3m,B和C质量均为2m)试求:⑴物体A的最大速度;⑵轻绳对物体B的最大拉力和最小拉力.20. 如图甲所示,在地面上竖直固定着一劲度系数k =50N/m 的轻质弹,正上方O 点处由静止释放一个质量m =1. Okg 的小球,取O 点为原点,建立竖直向下的坐标轴Oy ,小球的加速度a 随其位置坐标y 的变化关系如图乙所示,其中y 0=0 .8m ,y m 对应弹簧压缩到最短时小球的位置,取g=10m/s 2,不计空气阻力。
求:( l )小球速度最大时的位置坐标值y 1;( 2 )弹簧的最大弹性势能E Pm 。
21.某缓冲装置的理想模型如图所示,劲度系数足够大的轻质弹簧与轻杆相连,轻杆可在固定的槽内移动,与槽间的滑动摩擦力恒为f ,轻杆向右移动不超过l 时,装置可安全工作,一质量为m 的小车若以速度v 0撞击弹簧,将导致轻杆向右移动l/4,轻杆与槽间最大静摩擦力等于滑动摩擦力,且不计小车与地面的摩擦。
(1)若弹簧的劲度系数为k ,求轻杆开始移动时,弹簧的压缩量x ;(2)为这使装置安全工作,允许该小车撞击的最大速度v m(3)讨论在装置安全工作时,该小车弹回速度v ˊ与撞击速度v的关系22.如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数为μ,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L.现给A、B一初速度v0使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求此过程中:⑴物体A向下运动刚到C点时的速度;⑵弹簧的最大压缩量;⑶弹簧中的最大弹性势能.23.如图所示,在竖直方向上A、B两物体通过劲度系数为k的轻质弹簧相连,A放在水平地面上,B、C 两物体通过细绳绕过轻质定滑轮相连,C放在固定的光滑斜面上.用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m,C的质量为4m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后它沿斜面下滑,斜面足够长.当A刚离开地面时,B获得最大速度,求:⑴当物体A从开始到刚离开地面时,物体C沿斜面下滑的距离;⑵斜面倾角 ;⑶B的最大速度v m.24.如图所示,在固定的足够长的光滑斜面上,一小物块用细绳通过光滑滑轮与轻质弹簧的一端相连,弹簧另一端固定在水平地面上,细绳与斜面平行,小物块在A 点时弹簧无形变,细绳刚好伸直但无拉力.把质量为m 的该小物块从A 点由静止释放,它下滑L /2距离时经过B 点速度最大,继续下滑L /2距离到达C 点时速度恰好为零,弹簧处于弹性限度内.斜面的倾角为θ重力加速度为g .求:⑴小物块刚被释放时加速度a A 的大小和方向;⑵小物块经过B 点时弹簧弹力F 的大小,以及到达C 点时弹簧的弹性势能;⑶若小物块的质量为2m ,仍从A 点由静止释放,求该物块运动的最大速度的v m 大小(弹簧仍处于弹性限度内).25.如图所示,用轻弹簧将质量均为m =1 kg 的物块A 和B 连结起来,将它们固定在空中,弹簧处于原长状态,A 距地面的高度h 1=0.90 m 。