新人教版九年级数学第一轮总复习教案

合集下载

新人教版九年级数学第一轮总复习教案

新人教版九年级数学第一轮总复习教案

第一章数与式课时1.实数的有关概念【考点】一、有理数的意义1.数轴的三要素为、和. 数轴上的点与构成一一对应.a =.2.实数a的相反数为________. 假设a,b互为相反数,那么b3.非零实数a的倒数为______. 假设a,b互为倒数,那么ab=.4.绝对值在数轴上表示一个数的点离开的距离叫做这个数的绝对值。

即一个正数的绝对值等于它;0的绝对值是;负数的绝对值是它的。

a (a>0)即│a│= 0 ( a=0 )-a ( a<0 )5.科学记数法:把一个数表示成的形式,其中1≤a<10的数,n是整数.6.一般地,一个近似数,四舍五入到哪一位,就说这个近似数准确到哪一位.这时,从左边第一个不是的数起,到止,所有的数字都叫做这个数的有效数字.二、实数的分类1.按定义分类正整数整数零自然数有理数负整数正分数分数有限小数或无限循环小数实数负分数正无理数无理数无限不循环小数负无理数2.按正负分类正整数正有理数正实数正分数正无理数实数零〔既不是正数也不是负数〕负整数负有理数负实数负分数负无理数【三年中考试题】1.(2008年,2分)8-的倒数是〔 〕A .8B .8-C .18D .18- 2.〔2008年,3分〕假设m n ,互为相反数,那么555m n +-=.3.〔2009年,3分〕假设m 、n 互为倒数,那么2(1)mn n --的值为.4.〔2009年,3分〕据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为.5.〔2010年,3分〕-的相反数是.6.〔2010年,3分〕如图7,矩形ABCD 的顶点A ,B 在数轴上,CD = 6,点A 对应的数为1-,那么点B 所对应的数为.图7课时2. 实数的运算与大小比拟【考点】一、实数的运算1.实数的运算种类有:加法、减法、乘法、除法、、六种,其中减法转化为运算,除法、乘方都转化为运算。

九年级数学第一轮复习教案(全)

九年级数学第一轮复习教案(全)

九年级数学第一轮复习教案(全)
教学目标
1. 温数学基础知识和技能,为进一步研究打下坚实基础。

2. 了解数学基本概念和方法,提高数学思维,培养解决实际问题的能力。

教学内容
1. 数学基本概念(如整数、有理数、无理数等)的复
2. 一元二次方程及其应用
3. 平面向量及其坐标表示
4. 三角函数及其应用
5. 统计与概率基础
教学方法
1. 讲、练相结合
2. 合作探究,小组讨论
3. 游戏化教学,提高学生兴趣
教学流程
1. 复整数、有理数、无理数,引入实数的概念
2. 研究一元二次方程,讲解标准式、一般式和求解方法
3. 研究平面向量,引入向量的概念和坐标表示
4. 研究三角函数,重点讲解正弦、余弦、正切函数的概念、性质和应用
5. 研究统计与概率,了解基本概念和应用方法
6. 总结、评价、作业布置
教学评价
1. 学生能够熟练掌握数学基本概念和技能,特别是一元二次方程、平面向量、三角函数等。

2. 学生能够运用所学知识解决实际问题,并能够合作探究,提高解决问题的能力。

3. 学生兴趣得到激发,获得数学的快乐和成就感。

作业安排
1. 完成课堂练和小组探究任务。

2. 课下巩固和扩展所学知识,完成书面练习。

九年级数学上册复习教案人教新课标版

九年级数学上册复习教案人教新课标版

九年级数学上册复习教案人教新课标版一、教学目标1. 知识点梳理:整理和巩固九年级数学上册的基本知识点,包括实数、代数、几何、统计与概率等模块的内容。

2. 能力培养:通过复习,提高学生的数学思维能力、分析问题和解题能力。

二、教学内容1. 第一章:实数与代数1.1 实数的概念与性质1.2 代数式的运算1.3 一元一次方程、一元二次方程的解法及应用2. 第二章:几何2.1 平面图形的性质与计算2.2 三角形、四边形的证明与计算2.3 圆的性质与计算3. 第三章:统计与概率3.1 数据的收集、整理与表示3.2 概率的计算与应用4. 第四章:函数及其图像4.1 一次函数、二次函数的图像与性质4.2 反比例函数、比例函数的图像与性质5. 第五章:综合应用题5.1 实数与代数综合题5.2 几何综合题5.3 统计与概率综合题5.4 函数及其图像综合题三、教学方法1. 课堂讲解:结合PPT课件,对每个章节的核心知识点进行详细讲解。

2. 例题解析:挑选典型例题,分析解题思路和方法,引导学生运用所学知识解决问题。

3. 练习巩固:布置适量课后练习题,巩固所学知识,提高解题能力。

4. 小组讨论:组织学生进行小组讨论,分享学习心得,互相解答疑问。

四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生的课后作业完成情况,评估学生的掌握程度。

3. 单元测试:定期进行单元测试,分析学生的成绩,找出存在的问题,及时进行针对性的辅导。

五、教学进度安排1. 第一章:实数与代数,安排2课时进行讲解和练习。

2. 第二章:几何,安排4课时进行讲解和练习。

3. 第三章:统计与概率,安排2课时进行讲解和练习。

4. 第四章:函数及其图像,安排4课时进行讲解和练习。

5. 第五章:综合应用题,安排2课时进行讲解和练习。

注意:根据学生的实际学习情况,可以适当调整教学进度和课时安排。

六、第六章:解方程与应用6.1 解一元一次方程、一元二次方程6.2 分式方程、无理方程的解法6.3 方程的实际应用七、第七章:不等式及其应用7.1 不等式的性质与解法7.2 不等式的实际应用7.3 绝对值不等式、不等式的组合八、第八章:初等函数8.1 一次函数、二次函数的图像与性质8.2 反比例函数、比例函数的图像与性质8.3 函数的实际应用九、第九章:数列9.1 数列的定义与通项公式9.2 等差数列、等比数列的性质与求和公式9.3 数列的实际应用十、第十章:数学综合题10.1 实数与代数、几何综合题10.2 统计与概率、函数及其图像综合题10.3 解方程与不等式、初等函数、数列综合题六、教学方法1. 课堂讲解:结合PPT课件,对每个章节的核心知识点进行详细讲解。

九年级数学上册复习教案_人教新课标版

九年级数学上册复习教案_人教新课标版

九年级(上)数学复习1第二十一章 二次根式∙知识网络图表∙∙习题练习∙1.2)x > 2.0=,求x 、y 的值。

3..已知0b >4.a b ==a 、b 表示为多少?5.6.=x 的取值范围是多少? 7.当x=_____时3的值最小,最小值是:_______. 8.在实数范围内分解因式:425x -(0,(0,ab a b a b ≥≥>a b ab =a a9.计算2 1)+(2).22--10.等式:x y-=:________11.下列二次根式中,最简二次根式是( )12.下列各式中,( )13.3x=-成立,则x的取值范围为( ) A.2x≥ B.3x≤ C.23x≤≤ D.23x<<14.计算,结果是:( )A.15.数5x, 小数部分是y, 则x-2y的值是( )A.1B.1-1 D.1--16.已知a b==()A.5 B.6 C.3 D.417.x的取值范围是:_________18.实数a在数轴上的位置如图,化简:1a-19.0=九年级(上)数学复习2第二十二章一元二次方程∙∙习题练习∙1.下列关于x 的方程中:①20ax bx c ++=,②2560k k ++=,31042x x --=,④22(3)20m x +-=.是关于x 的一元二次方程的是:______(只填序号)2.关于x 的方程1(3)50a a xx --++=是一元二次方程,则a =_______.3.如果210x x +-=,那么代数式3227x x +-的值为:____________. 4.已知m 是方程210x x --=的一个根,则代数式2m m -的值为多少? 5.用配方法解方程2410x x ++=,经过配方得:_____________根;△0<实根.12c x a =6.对于二次三项式21036,x x -+小明同学得出如下的结论:无论x 取何值什么实数时,它的值都不可能等于11。

初三第一轮数学复习教案

初三第一轮数学复习教案

初三第一轮数学复习教案一、教学内容本节课为初三第一轮数学复习,主要涉及教材第十四章《圆》的内容。

详细内容包括圆的基本概念、圆的性质、圆的方程、圆与直线的关系、圆与圆的位置关系等。

二、教学目标1. 理解并掌握圆的基本概念和性质,能熟练运用圆的方程解决问题。

2. 掌握圆与直线、圆与圆的位置关系,并能运用这些关系解决实际问题。

3. 培养学生的空间想象能力和逻辑推理能力,提高解决问题的策略和方法。

三、教学难点与重点重点:圆的基本概念、性质,圆的方程,圆与直线、圆与圆的位置关系。

难点:圆与圆的位置关系判断,解决实际问题中的圆相关计算。

四、教具与学具准备教具:圆规、直尺、三角板、多媒体课件。

学具:圆规、直尺、三角板、练习本。

五、教学过程1. 实践情景引入(5分钟)通过展示生活中的圆形物体,引导学生发现圆的特点,激发学习兴趣。

2. 复习回顾(15分钟)(2)学生展示圆的方程的推导过程,教师点评并强调注意事项。

3. 例题讲解(20分钟)例题1:已知圆的半径为5,求该圆的面积。

例题2:已知圆的直径为10,求该圆的周长。

例题3:判断点P(3,4)是否在圆O(x2)²+(y3)²=16内。

4. 随堂练习(10分钟)练习1:已知圆的周长为31.4,求该圆的半径。

练习2:已知圆的面积为50.24,求该圆的直径。

5. 知识拓展(10分钟)讲解圆与直线、圆与圆的位置关系,引导学生运用这些关系解决实际问题。

六、板书设计1. 圆的基本概念和性质2. 圆的方程3. 圆与直线、圆与圆的位置关系七、作业设计1. 作业题目:(1)求半径为6的圆的面积和周长。

(2)判断点A(1,2)是否在圆B(x3)²+(y4)²=9内。

(3)已知两圆的半径分别为5和8,求它们的圆心距离。

2. 答案:(1)面积:113.1,周长:37.7(2)不在(3)圆心距离:3或13八、课后反思及拓展延伸1. 反思:本节课学生对圆的基本概念和性质掌握较好,但在解决实际问题中还需加强训练。

九年级数学一轮复习全部教案

九年级数学一轮复习全部教案

第一部分 知识突破第1课:有理数【教学目标】1.掌握相反数、绝对值、倒数,乘方的意义与计算;2.会用数轴表示和比较数的大小;3.能熟练的进行有理数的运算与化简;4.掌握科学记数法的意义以及表示方法,理解近似数和有效数字. 【知识梳理】1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如: 3,,0.231,0.737373…,,等;无限不环循小数叫做无理数. 如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2. 数轴:规定了原点、正方向和单位长度的直线叫数轴。

实数和数轴上的点一一对应。

3. 绝对值:在数轴上表示数a 的点到原点的距离叫数a 的绝对值,记作∣a ∣。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

如:丨-_丨=;丨3.14-π丨=π-3.14.4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a 的相反数是-a ,0的相反数是0。

5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.6. 科学记数法:把一个数写成a ×10n 的形式(其中1≤a<10,n 是整数),这种记数法叫做科学记数法.如:407000=4.07×105,0.000043=4.3×10-5.7. 大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。

【典型例题】例1、(10宿迁)有理数a 、b 在数轴上的位置如图所示,则b a +的值( ) A.大于0 B.小于0C.小于a D.大于b例2、(10绍兴)自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光。

初三数学第一轮复习教案

初三数学第一轮复习教案

初三数学第一轮复习教案初三数学第一轮复习教案代数部分第二章:代数式1、了解代数式的概念,会列代数式,会求代数式的值。

2、了解整式、单项式、多项式概念,会把一个多项式按某个字母的升幂或降幂排列。

3、掌握合并同类项方法,去(添)括号法则,熟练掌握数与整式相乘的运算及整式的加减运算。

4、理解整式的乘除运算性质,并能熟练地进行整式的乘除运算。

5、理解乘法公式的意义,掌握五个乘法公式的结构特征,灵活运用五个乘法公式进行运算。

6、会进行整式的混合运算,灵活运用运算律与乘法公式使运算简便。

7、掌握因式分解的四种基本方法,并能用这些方法进行多项式因式分解。

8、掌握分式的基本性质,会熟练地进行约分和通分,掌握分式的加、减、乘、除、乘方的运算法则。

9、了解二次根式及分母有理化概念,掌握二次根式的性质,并能灵活应用它化简二次根式,掌握二次根式乘、除法则,会用它们进行运算,会将分母中含有一个或两个二次根式的式子进行分母有理化;了解最简二次根式,同类二次根式的概念,掌握二次根式的加、减、乘、除的运算法则,会用它们进行二次根式的混合运算。

1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。

单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

3、代数式的分类:,,单项式,整式,,,有理式多项式,,, 代数式,,分式,,,无理式,1、概念2(1)单项式:像x、7、2xy,这种数与字母的积叫做单项式。

单独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。

不含字母的项叫常数项。

升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

初三第一轮数学复习教案

初三第一轮数学复习教案

初三第一轮数学复习教案一、教学内容1. 实数与数轴2. 代数式的简化与运算3. 方程与不等式4. 函数及其图像5. 三角形与四边形6. 圆二、教学目标1. 熟练掌握实数、代数式、方程、不等式、函数、图形等基本概念及其性质。

2. 提高学生的运算能力,培养学生的逻辑思维能力和解决问题的能力。

3. 帮助学生建立知识体系,提高综合运用所学知识解决实际问题的能力。

三、教学难点与重点重点:实数与数轴、代数式的简化与运算、方程与不等式、函数及其图像、三角形与四边形、圆的基本概念及其性质。

难点:函数的性质及其图像、不等式的解法、几何图形的综合应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:教材、练习本、草稿纸、直尺、圆规。

五、教学过程1. 导入:通过实际生活中的例子,引入实数、方程、函数等概念,激发学生的兴趣。

2. 复习实数与数轴:讲解实数的分类、数轴上的点与实数的对应关系,举例说明实数在生活中的应用。

3. 复习代数式的简化与运算:讲解代数式的性质、运算法则,通过例题讲解,让学生掌握代数式的简化与运算。

4. 复习方程与不等式:讲解方程、不等式的解法,结合实际例子,让学生学会解决实际问题。

5. 复习函数及其图像:讲解函数的定义、性质,通过绘制图像,让学生直观地理解函数的变化规律。

6. 复习三角形与四边形:讲解三角形、四边形的性质,结合实例,让学生掌握几何图形的应用。

7. 复习圆:讲解圆的性质、圆与直线的关系,通过实例,让学生了解圆在实际生活中的应用。

8. 随堂练习:针对每个知识点,设计练习题,让学生及时巩固所学知识。

六、板书设计1. 实数与数轴2. 代数式的简化与运算3. 方程与不等式4. 函数及其图像5. 三角形与四边形6. 圆七、作业设计1. 作业题目:(1)计算:2^3 5 × (4 ÷ 2) + 7(2)解方程:2x 5 = 3(x + 1)(3)解不等式:3(x 1) > 2(x + 2)(4)绘制函数y = 2x + 1的图像(5)证明:等腰三角形的底角相等。

新人教版九年级数学第一轮总复习教案集2018年3月

新人教版九年级数学第一轮总复习教案集2018年3月

新人教版初三数学第一轮复习教案代数部分 第一章:实数教学目的:1、掌握数的概念及分类,正确理解和运用数学概念;2、熟练掌握数轴、相反数、绝对值、倒数的概念,灵活运用这些知识解决实际问题。

3、会进行实数的大小比较。

4、理解近似数与有效数字、指数、科学记数法等概念。

5、会熟练灵活正确地进行有理数的运算。

6、了解平方根、算术平方根、立方根的概念,会用平方运算求某些非负数的平方根和算术平方根。

"基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数: |(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

九年级数学上册复习教案人教新课标版

九年级数学上册复习教案人教新课标版

九年级数学上册复习教案人教新课标版一、教学目标:1. 知识点梳理:复习九年级上册数学的主要知识点,包括有理数、实数、代数式、方程与不等式、函数、几何图形等。

2. 能力培养:通过复习,提高学生的数学思维能力、分析问题解决问题的能力。

二、教学内容:1. 第一章:有理数1.1 复习有理数的定义及分类1.2 复习有理数的运算规则2. 第二章:实数2.1 复习实数的定义及分类2.2 复习实数的运算规则3. 第三章:代数式3.1 复习代数式的定义及表达方式3.2 复习代数式的运算规则4. 第四章:方程与不等式4.1 复习一元一次方程的解法4.2 复习不等式的解法5. 第五章:函数5.1 复习一次函数、二次函数的性质及图象5.2 复习函数的定义及表示方法三、教学方法:采用讲解法、问答法、练习法等多种教学方法,引导学生主动参与复习,提高学习效果。

四、教学步骤:1. 课堂讲解:对每个章节的重点知识点进行讲解,引导学生理解并掌握。

2. 课堂练习:针对每个章节的内容,设计相应的练习题,让学生在课堂上进行练习,巩固所学知识。

3. 课后作业:布置适量的课后作业,让学生进一步巩固所学知识。

4. 解答疑问:及时回答学生的问题,帮助学生解决学习中的困难。

五、教学评价:通过课堂练习、课后作业、测验等方式,对学生的学习情况进行评价,了解学生的学习进度,及时调整教学方法。

六、第六章:几何图形6.1 复习平面图形的性质及分类6.2 复习三角形、四边形的性质及判定七、第七章:三角函数7.1 复习锐角三角函数的定义及性质7.2 复习三角函数的图象和性质八、第八章:统计与概率8.1 复习统计的基本概念及图表8.2 复习概率的基本概念及计算方法九、第九章:综合应用9.1 复习数学知识在实际生活中的应用9.2 复习数学知识在其他学科中的应用十、第十章:总复习10.1 复习整个九年级上册数学的知识点10.2 分析学生的学习情况,针对性地进行强化训练六、教学方法:继续采用讲解法、问答法、练习法等多种教学方法,引导学生主动参与复习,提高学习效果。

九年级数学上册复习教案人教新课标版

九年级数学上册复习教案人教新课标版

九年级数学上册复习教案人教新课标版一、教学目标:1. 知识与技能:巩固和掌握九年级数学上册的基本知识和技能,提高解决问题的能力。

2. 过程与方法:通过自主学习、合作交流和探究活动,培养学生的数学思维能力和综合运用知识的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养积极的学习态度,增强自信心。

二、教学内容:第一章:实数1. 实数的定义和分类2. 实数的运算3. 实数与数轴第二章:代数式1. 代数式的定义和分类2. 代数式的运算3. 代数式的应用第三章:方程(一)1. 方程的定义和分类2. 一元一次方程的解法3. 二元一次方程组的解法第四章:不等式(一)1. 不等式的定义和性质2. 一元一次不等式的解法3. 不等式组的解法第五章:函数(一)1. 函数的定义和性质2. 一次函数的图象和性质3. 反比例函数的图象和性质三、教学方法:1. 采用问题驱动法,引导学生主动探究和解决问题。

2. 运用案例分析法,结合生活实际,让学生体验数学的应用。

3. 利用数形结合法,帮助学生直观地理解和掌握数学知识。

4. 采用小组合作学习法,培养学生的团队合作精神和沟通能力。

四、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现等。

2. 作业完成情况:检查学生作业的完成质量和对知识点的掌握程度。

3. 测验成绩:定期进行测验,评估学生的学习效果和进步情况。

4. 自我评价:鼓励学生进行自我评价,反思学习过程中的优点和不足。

五、教学资源:1. 教材:九年级数学上册人教新课标版。

2. 教辅资料:相关的练习题和复习资料。

3. 教学工具:黑板、粉笔、多媒体设备等。

4. 网络资源:相关的数学学习网站和在线教学资源。

九年级数学上册复习教案人教新课标版六、教学内容:第六章:图形与几何1. 平面图形的性质与判定2. 三角形的全等与相似3. 四边形的性质与判定4. 圆的性质与判定5. 几何图形的变换七、教学内容:第七章:统计与概率1. 数据的收集与处理2. 统计量的计算与分析3. 概率的计算与应用4. 随机事件的模拟与分析八、教学内容:第八章:综合应用1. 数学阅读与理解2. 数学问题解决与探究3. 数学建模与实践4. 数学思考与创新九、教学方法:1. 采用问题驱动法,引导学生主动探究和解决问题。

人教版九年级中考数学第一轮基础复习——一次函数及应用学案

人教版九年级中考数学第一轮基础复习——一次函数及应用学案

第一轮基础复习——一次函数及其应用知识梳理知识点1 一次函数的图象与性质2.正比例函数y=kx的图象是经过(0,0)和(1,k)两点的直线;,0)两点的直线.一次函数y=kx+b的图象是经过(0,b)和(−bk拓展内容:|k|的大小决定直线的倾斜程度,即|k|越大,直线与x轴相交所成的锐角越大,y 随x的变化越快;|k|越小,直线与x轴相交所成的锐角越小,y随x的变化越慢知识点2 确定一次函数关系式1.待定系数法:先根据条件设函数关系式,然后根据条件求出待定的系数,从而求出函数关系式的方法,其基本步骤是:(1)设、(2)代、(3)解、(4)还原.2.一次函数图象的平移(口诀:左加右减,上加下减)(1)直线y=kx+b向左平移m(m>0)个单位长度变为直线y=k(x+m)+b.(2)直线y=kx+b向右平移m(m>0)个单位长度变为直线y=k(x-m)+b.(3)直线y=kx+b向上平移m(m>0)个单位长度变为直线=y=kx+b+m.(4)直线y=kx+b向下平移m(m>0)个单位长度变为直线y=kx+b-m.拓展内容:当图象左右平移时,写函数变化后的解析式,一定要先提出x的系数,再对x进行变化.知识点4 一次函数的实际应用利用一次函数解决实际问题,首先建立函数模型,然后求出函数解析式,最后根据函数解析式、函数性质作答.精典范例考点1 一次函数的图象与性质1.(2020·荆州)在平面直角坐标系中,一次函数y=x+1的图象是( )2.(2020·镇江)一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是( )A.第一B.第二C.第三D.第四3.(2018·常德)若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则( )A.k<2B.k>2C.k>0D.k<0考点2 一次函数解析式的确定4.(2020·桂林)直线y=kx+2过点(-1,4),则k的值是( )A.-2B.-1C.1D.25.(2020春·陇西县期末)在平面直角坐标系中,一次函数y=kx+b的图象与直线y=2x平行,且经过点A(0,6),则一次函数的解析式为( )A.y=2x-3B.y=2x+6C.y=-2x+3D.y=-2x-66.(2020·黔西南州)如图,正比例函数的图象与一次函数y=-x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是____________.7.如图,直线y=kx-6经过点A(4,0),直线y=-3x+3与x轴交于点B,且两直线交于点C.(1)求k的值;(2)求△ABC的面积.考点3 一次函数与方程(组)、不等式的关系8.(2020·济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A.x=20B.x=5C.x=25D.x=159.(2020·湘潭)如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为( )A.x≤1B.x≥1C.x<1D.x>110.(2020春·盐池县期末)如图,一次函数y=kx+b与y=-x+5的图象的交点坐标为(2,3),则关于x的不等式-x+5>kx+b的解集为( )A.x<2B.x<3C.x>2D.x>311.已知二元一次方程组{x−y=−5x+2y=−2的解为{x=−4y=1,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=-12x-1的交点坐标为____________.考点4 一次函数与的实际应用12.一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象是如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?13.(2020·云南)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地车型A地(元/辆) B地(元/辆)大货车900 1 000小货车500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.随堂练习1.若点(m,n)在函数y=2x+1的图象上,则2m-n的值是( )A.2B.-2C.1D.-12.在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5图象交于点M,则点M 的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)3.(2016·广东,10)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系的图象大致是( )4.(2018·广东,10)如图,点P是菱形ABCD边上的一动点,它从点A出发沿A→B →C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )5.y=(m-1)x|m|+3是一次函数,则m=____________.6.一次函数y=3x+b的图象过坐标原点,则b的值为________.7.直线y=2x-3可由直线y=2x向__________平移__________个单位得到.8.直线y=x-2与直线y=kx平行,则k=____________.9.右图是一次函数y=kx+b的图象,则方程kx+b=0的解是__________;当x<2时, 函数值y的取值范围为___________.10.直线y=x与直线y=-x+1的交点坐标为____________.11.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分则按每吨2.8元收费,设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨时,y与x间的函数关系式;(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?12.(2019·常德)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.的交点的个数为( ) 13.在同一直角坐标系下,直线y=x+1与双曲线y=1xA.0个B.1个C.2个D.不能确定14.(2020·广州)一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2), (x1+2,y3),则( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y215.(2020·杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是( )16.(2020·济南)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型某营业厅购进A、B两种型号手机共花费32 000元,手机销售完成后共获得利润4 400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?。

初三数学一轮复习教学设计

初三数学一轮复习教学设计

初三数学一轮复习教学设计引言:初三是学生备战中考的关键时期,数学作为其中一门重要科目,对学生的数学能力和解题能力提出了更高的要求。

为了帮助学生进行有效的复习,本文设计了一套初三数学一轮复习的教学方案。

通过系统的梳理和总结,以及灵活的教学方法和策略,旨在帮助学生迅速掌握重要知识点,提高解题能力,为中考做好充分准备。

一、教学目标1. 系统复习重难知识点:通过对初三数学各个知识点的系统复习,帮助学生回顾和巩固重点、难点知识,确保学生对知识的掌握和理解。

2. 锻炼解题能力:通过大量的练习题和解题技巧的讲解,培养学生的数学思维和解题能力,提高解题的准确性和速度。

3. 强化考点训练:重点突出中考的重要考点和高频出现的题型,帮助学生熟悉考点,增强应对中考的信心。

二、教学内容和方法1. 复习重难知识点:根据初三数学教材的内容,对重难知识点进行系统的复习。

例如,复习集合的概念和运算,线性方程组的解法,平面图形的性质等。

通过讲解、讨论和习题演练,确保学生对这些知识点的掌握和理解。

2. 解题技巧的讲解:对于当年的中考题和历年真题,分析和总结其中涉及的解题技巧。

例如,针对代数式的化简、图形的分析和几何题中的证明等,讲解相应的解题方法和技巧。

通过实例演练和引导学生积极思考,提高解题的能力。

3. 考点突破:重点讲解中考的重要考点和高频出现的题型,例如函数的性质与应用、统计与概率等。

通过讲解和大量的练习题,帮助学生熟悉考点,做到“知其然知其所以然”,为应对中考做好准备。

4. 扩充知识面:在复习的过程中,引导学生拓宽数学的知识面,学习与实践数学领域的前沿知识。

例如,介绍数学与生活的应用,数学在科学研究中的重要地位等,以激发学生对数学的兴趣和学习的动力。

三、教学步骤1. 复习知识点:根据教材的顺序,逐个复习各个知识点。

可以通过讲解、讨论和示范等方式,帮助学生回顾和巩固知识。

2. 解题技巧讲解:选取一些中考常见题型,讲解其中的解题方法和技巧。

初三数学第一轮复习教案

初三数学第一轮复习教案

初三数学第一轮复习教案发光并非太阳的专利,你也可以发光。

初三数学第一轮复习教案代数部分第四章:列方程(组)解应用题教学目的:1、掌握列方程(组)解应用题的步骤:审、设、列、解、答;2、会分析等量关系正确列出方程(组)解应用题;3、会根据应用题的实际意义检查求得的结果是否合理;4、通过列方程(组)解应用题提高学生逻辑思维能力和分析问题解决问题的能力及数学意识知识点:一、列方程(组)解应用题的一般步骤1、审题:2、设未知数;3、找出相等关系列方程(组);4、解方程(组);5、检验作答;二、列方程(组)解应用题常见类型题及其等量关系;1、工程问题(1)基本工作量的关系:工作量=工作效率×工作时间(2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量(3)注意:工程问题常把总工程看作"1"水池注水问题属于工程问题2、行程问题(1)基本量之间的关系:路程=速度×时间(2)常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程追及问题(设甲速度快):同时不同地:甲的时间=乙的时间;甲走的路程-乙走的路程=原来甲、乙相距路程同地不同时:甲的时间=乙的时间-时间差;甲的路程=乙的路程3、水中航行问题:顺流速度=船在静水中的速度+水流速度;逆流速度=船在静水中的速度-水流速度4、增长率问题:常见等量关系:增长后的量=原来的量+增长的量;增长的量=原来的量×(1+增长率);5、数字问题:基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×100三、列方程解应用题的常用方法1、译式法:就是将题目中的关键性语言或数量及各数量间的关系译成代数式然后根据代数之间的内在联系找出等量关系2、线示法:就是用同一直线上的线段表示应用题中的数量关系然后根据线段长度的内在联系找出等量关系3、列表法:就是把已知条件和所求的未知量纳入表格从而找出各种量之间的关系4、图示法:就是利用图表示题中的数量关系它可以使量与量之间的关系更为直观这种方法能帮助我们更好地理解题意例题:例1、甲、乙两组工人合作完成一项工程合作5天后甲组另有任务由乙组再单独工作1天就可完成若单独完成这项工程乙组比甲组多用2天求甲、乙两组单独完成这项工程各需几天?分析:设工作总量为1设甲组单独完成工程需要x天则乙组完成工程需要(x+2)天等量关系是甲组5天的工作量+乙组6天的工作量=工作总量解:略例2、某部队奉命派甲连跑步前往90千米外的A地1小时45分后因任务需要又增派乙连乘车前往支援已知乙连比甲连每小时快28千米恰好在全程的处追上甲连求乙连的行进速度及追上甲连的时间分析:设乙连的速度为v千米/小时追上甲连的时间为t小时则甲连的速度为(v-28)千米/小时这时乙连行了小时其等量关系为:甲走的路程=乙走的路程=30解:略例3、某工厂原计划在规定期限内生产通讯设备60台支援抗洪由于改进了操作技术;每天生产的台数比原计划多50%结果提前2天完成任务求改进操作技术后每天生产通讯设备多少台?分析:设原计划每天生产通讯设备x台则改进操作技术后每天生产x(1+0.5)台等量关系为:原计划所用时间-改进技术后所用时间=2天解:略例4、某商厦今年一月份销售额为60万元二月份由于种种原因经营不善销售额下降10%以后经加强管理又使月销售额上升到四月份销售额增加到96万元求三、四月份平均每月增长的百分率是多少?分析:设三、四月份平均每月增长率为x%二月份的销售额为60(1-10%)万元三月份的销售额为二月份的(1+x)倍四月份的销售额又是三月份的(1+x)倍所以四月份的销售额为二月份的(1+x)2倍等量关系为:四月份销售额为=96万元解:略例5、一年期定期储蓄年利率为2.25%所得利息要交纳20%的利息税例如存入一年期100元到期储户纳税后所得到利息的计算公式为:税后利息=已知某储户存下一笔一年期定期储蓄到期纳税后得到利息是450元问该储户存入了多少本金?分析:设存入x元本金则一年期定期储蓄到期纳税后利息为2.25%(1-20%)x元方程容易得出例6、某商场销售一批名牌衬衫平均每天售出20件每件盈利40元为了扩大销售增加盈利减少库存商场决定采取适当的降低成本措施经调查发现如果每件衬衫每降价1元商场平均每天可多售出2件若商场平均每天要盈利1200元每件衬衫应降价多少元?分析:设每件衬衫应该降价x元则每件衬衫的利润为(40-x)元平均每天的销售量为(20+2x)件由关系式:总利润=每件的利润×售出商品的叫量可列出方程解:略。

中考数学第一轮复习教案9篇

中考数学第一轮复习教案9篇

中考数学第一轮复习教案9篇中考数学第一轮复习教案9篇数学教案对于老师是很重要的。

教案是老师在进行教学的重要参考材料,对教学进度和节奏的把控有重要的作用,可以提高教学效率。

下面小编给大家带来关于中考数学第一轮复习教案,希望会对大家的工作与学习有所帮助。

中考数学第一轮复习教案(篇1)本学期是初中学习的关键时期,教学任务非常艰巨。

因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。

九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

下面特制定以下教学复习计划。

一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。

通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。

虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。

其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想坚持贯彻党的__大教育方针,继续深入开展新课程教学改革。

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。

并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。

在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。

初三第一轮数学复习教案

初三第一轮数学复习教案
(2)重点解析
锐角三角函数的定义及其应用是教学的重点。定义是所有数学概念的基础,理解定义有助于学生准确把握函数的本质。应用则是检验学生知识掌握程度的试金石,通过实际问题的解决,可以加深学生对函数价值的认识。
二、例题讲解的深度和广度
例题讲解应注重深度和广度。深度上,教师需要引导学生深入分析问题,理清解题思路,强调关键步骤,讲解解题方法。广度上,应涵盖不同类型的题目,如基础计算题、综合应用题等,让学生见识到锐角三角函数在不同场景下的应用。
五、作业设计的针对性与答案的详尽性
(1)针对性解析
作业设计应针对课堂所学内容,突出重点,分散难点。例如,可以设计一些涉及到性质应用的题目,让学生在完成作业的过程中,进一步巩固课堂所学。
(2)答案详尽性解析
作业答案应详尽、清晰,不仅给出最终答案,还要展示解题过程,注明关键步骤。这样,学生可以对照答案,检查自己的解题思路和方法,发现并改正错误。
3.提高学生的逻辑思维能力和团队合作能力。
三、教学难点与重点
1.教学难点:锐角三角函数的性质及其图像变换。
2.教学重点:锐角三角函数的定义及其应用。
四、教具与学具准备
1.教具:三角板、多媒体课件、黑板。
2.学具:直尺、圆规、量角器。
五、教学过程
1.实践情景引入(5分钟)
利用三角板展示实际生活中与锐角三角函数相关的实例,引导学生思考如何运用锐角三角函数解决问题。
七、作业设计
1.作业题目:
1)计算题:给定一个锐角,求其正弦、余弦、正切值。
2)应用题:利用锐角三角函数解决实际问题。
2.答案:见课后附解答。
八、课后反思及拓展延伸
1.课后反思:针对本节课的教学效果,反思教学方法、手段及学生的掌握程度,为下一节课做好准备。

初三第一轮数学复习教案

初三第一轮数学复习教案

初三第一轮数学复习教案一、教学内容本节课我们将复习人教版初中数学九年级上册第十五章《图形的相似》,具体内容包括:相似图形的定义、性质、判定方法及其在实际问题中的应用。

二、教学目标1. 理解并掌握相似图形的基本概念和性质,能够运用判定方法识别相似图形。

2. 学会运用相似图形的相关知识解决实际问题,提高解决问题的能力。

3. 培养学生的观察能力、逻辑思维能力和空间想象力。

三、教学难点与重点重点:相似图形的定义、性质、判定方法。

难点:相似图形在实际问题中的应用。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。

学具:直尺、圆规、量角器、练习本。

五、教学过程1. 导入:通过展示实际生活中的相似图形,引导学生发现相似图形的美,激发学生学习兴趣。

实践情景引入:展示一组相似图形(如建筑、家具等),让学生观察并说出它们之间的相似关系。

例题讲解:讲解一组相似图形的例题,让学生通过观察、分析,找出相似图形的关键特征。

3. 判定方法学习:讲解相似图形的判定方法,通过例题让学生学会运用判定方法识别相似图形。

随堂练习:让学生完成一组相似图形的判定练习,巩固所学知识。

4. 实际应用:展示相似图形在实际问题中的应用,引导学生运用所学知识解决问题。

例题讲解:讲解相似图形在实际问题中的应用,如建筑设计、图形放大与缩小等。

六、板书设计1. 相似图形的定义与性质2. 相似图形的判定方法3. 相似图形在实际问题中的应用4. 例题与解答5. 课后作业七、作业设计1. 作业题目:(1)已知两个相似三角形的边长比是3:5,求它们的面积比。

(2)一个正方形与一个矩形相似,正方形的边长是8cm,矩形的边长分别是12cm和18cm,求矩形的面积。

2. 答案:(1)面积比为9:25。

(2)矩形的面积为216cm²。

八、课后反思及拓展延伸1. 反思:通过本节课的学习,学生对相似图形的概念、性质和判定方法有了更深入的理解,能够运用所学知识解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章数与式课时1.实数的有关概念【考点链接】一、有理数的意义1.数轴的三要素为、和. 数轴上的点与构成一一对应.a = .2.实数a的相反数为________. 若a,b互为相反数,则b3.非零实数a的倒数为______. 若a,b互为倒数,则ab= .4.绝对值在数轴上表示一个数的点离开的距离叫做这个数的绝对值。

即一个正数的绝对值等于它;0的绝对值是;负数的绝对值是它的。

a ( a>0 )即│a│= 0 ( a=0 )-a ( a<0 )5.科学记数法:把一个数表示成的形式,其中1≤a<10的数,n是整数. 6.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是的数起,到止,所有的数字都叫做这个数的有效数字.二、实数的分类1.按定义分类正整数整数零自然数有理数负整数正分数分数有限小数或无限循环小数实数负分数正无理数无理数无限不循环小数负无理数2.按正负分类正整数正有理数正实数正分数正无理数实数零(既不是正数也不是负数)负整数负有理数负实数负分数负无理数【三年中考试题】1.(2008年,2分) 8-的倒数是( )A .8B .8-C .18D .18-2.(2008年,3分)若m n ,互为相反数,则555m n +-= . 3.(2009年,3分)若m 、n 互为倒数,则2(1)mn n --的值为 .4.(2009年,3分)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 .5.(2010年,3分)-的相反数是 .6.(2010年,3分)如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A 对应的数为1-,则点B 所对应的数为 .课时2. 实数的运算与大小比较【考点链接】一、实数的运算1.实数的运算种类有:加法、减法、乘法、除法、 、 六种,其中减法转化为 运算,除法、乘方都转化为 运算。

2. 数的乘方 =na ,其中a 叫做 ,n 叫做 . 3. =0a (其中a 0 且a 是 )=-p a (其中a 0)4. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算里面的,同一级运算按照从 到 的顺序依次进行.二、实数的大小比较1.数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.2.正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的.3.实数大小比较的特殊方法⑴设a 、b 是任意两个数,若a-b>0,则a b ;若a-b=0,则a b ,若a-b<0,则a b.⑵平方法:如3>2⑶商比较法:已知a>0、b>0,若b a >1,则a b ;若b a =1,则a b ;若b a <1,则a b. ⑷近似估算法 ⑸找中间值法4.n 个非负数的和为0,则这n 个非负数同时为0.例如:若a +2b+c =0,则a=b=c=0.图7【三年中考试题】1.(2009年,3分)比较大小:-6 -8.(填“<”、“=”或“>”)2.(2009年,2分)3(1)-等于( )A .-1B .1C .-3D .33.(2010年,2分)计算3×(-2) 的结果是A .5B .-5C .6D .-6课时3.整式及其运算【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值.3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 相加,所得的结果作为合并后的系数,字母和字母的指数 。

5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n = .6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ;(3) (a +b)2= ;(4)(a -b)2= .7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【三年中考试题】1.(2008年,2分) 计算223a a +的结果是( )A .23aB .24aC .43aD .44a 2.(2009年,2分)下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷22 3.(2010年,2分) 下列计算中,正确的是A .020= B .2a a a =+ C 3=± D .623)(a a =课时4.因式分解【考点链接】1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶=+-222b ab a . 5. 十字相乘法:()=+++pq x q p x 2. 6.因式分解的一般步骤:一“提”(取公因式),二“套”(公式).7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【三年中考试题】课时5.分式【考点链接】1. 分式:整式A 除以整式B ,可以表示成 A B的形式,如果除式B 中含有 ,那么称 A B 为分式.若 ,则 A B 有意义;若 ,则 A B无意义;若 ,则 A B=0. 2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的 .用式子表示为 .3. 约分:把一个分式的分子和分母的 约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,把异分母的分式化为 的分式,这一过程称为分式的通分.5.约分的关键是确定分式的分子与分母的 ;通分的关键是确定n 个分式的。

6.分式的运算(用字母表示)⑴ 加减法法则:① 同分母的分式相加减: .② 异分母的分式相加减: .⑵ 乘法法则: .乘方法则: .⑶ 除法法则: .【河北三年中考试题】1.(2008年,3分)当x = 时,分式31x -无意义. 2.(2008年,7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.3.(2009年,8分)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.4.(2010年,2分)化简ba b b a a ---22的结果是 A .22b a - B .b a + C .b a - D .1课时6.二次根式【考点链接】一、平方根、算术平方根、立方根1.若x 2=a (a 0),则x 叫做a 的 ,记作±a ; 叫做算数平方根,记作 。

2.平方根有以下性质:①正数有两个平方根,他们互为 ;②0的平方根是0;③负数没有平方根。

3.如果x 3=a ,那么x 叫做a 的立方根,记作3a 。

二、二次根式1.二次根式的有关概念⑴ 式子)0(≥a a 叫做二次根式.注意被开方数a 只能是 .并且根式.⑵ 简二次根式被开方数所含因数是 ,因式是 ,不含能 的二次根式,叫做最简二次根式.(3) 同类二次根式化成最简二次根式后,被开方数 几个二次根式,叫做同类二次根式.2.二次根式的性质⑴ (a ≥0); ⑵()=2a (a ≥0) ⑶ =2a ; ⑷ =ab (a ≥0, b ≥0); ⑸=b a (a ≥0,b >0). 3.二次根式的运算(1) 二次根式的加减:①先把各个二次根式化成 ;②再把 分别合并,合并时,仅合并 ,不变.(2) 二次根式的乘除法二次根式的运算结果一定要化成 。

【河北三年中考试题】1.(2009年,2分)在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <0第二章 方程(组)与不等式(组)课时7.一次方程及方程组【考点链接】一、等式与方程的有关概念1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式.⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca . 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a .3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.二、二元一次方程(组)及解法1.二元一次方程:含有 未知数(元)并且未知数的次数是 的整式方程.2. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组.3.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.4.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解.5. 解二元一次方程的方法步骤:二元一次方程组方程. 消元是解二元一次方程组的基本思路,方法有消元和 消元法两种.6.易错知识辨析:(1)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.(2)二元一次方程有无数个解,它的解是一组未知数的值;(3)二元一次方程组的解是两个二元一次方程的公共解,是一对确定的数值;(4)利用加减法消元时,一定注意要各项系数的符号.【三年中考试题】 1.图8所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g .2.(2009年,3分)如图9,两根铁棒直立于桶底水平的木桶中,在桶中 加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是 它的15.两根铁棒长度之和为55 cm , 此时木桶中水的深度是 cm . 消元 转化图8图93.(2010年,2分)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是A .48)12(5=-+x xB .48)12(5=-+x xC .48)5(12=-+x xD .48)12(5=-+x x课时8.一元二次方程及其应用【考点链接】1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用 直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二 次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n +=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是21,240)x b ac =-≥. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 . (1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=2,1x . (2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x .(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根. 4. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .5.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。

相关文档
最新文档