1.1.2集合的表示方法

合集下载

1.1.2集合的表示法

1.1.2集合的表示法
集合的表示法
文德信息工程职业学校 2019年9月
1.1.2 集合的表示方法
1.列举法
把集合的元素一一列举出来,元素中间用逗
号隔开,写在花括号“列举法.
例如,由小于5的自然数所组成的集合用列举法
表示为:
{0,1, 2, 3, 4};
自然数集 N为无限集,用列举法表示为:
用列举法表示集合可以明确地看到集合中的每一个元素,而用
提示 描述法表示集合可以很清晰地反映出集合元素的特征性质,因此在
具体的应用中要根据实际情况灵活选用.
作业
P7 第2、3题和4题的(1)、(2)
{0,1, 2, 3, , n, }.
2.描述法 把描述集合元素的特征性质或表示集合中元素的规律写在
花括号内用来表示集合的方法叫做描述法. 例如,由大于 2 的所有实数所组成的集合用描述法表示为: {x | x 2, x R}
花括号内竖线左侧的 x 表示这个集合中的任何一个元素,元素 x 从实数 R 中取值,竖线的右侧写出的是元素的特征性质.

高中数学 1.1.2集合的表示方法 新人教A版必修1

高中数学 1.1.2集合的表示方法 新人教A版必修1
§1.1.2 集合的表示方法
1.列举法
将集合中的元素一一列举出来写在大括号内。
①有限集:
由两个元素0,1构成的集合 24的所有正因数构成的集合
0,1
12, 24}
{1, 2, 3, 4, 6, 8,
不大于100的自然数的全体构成的集合
②无限集:
自然数集:
0,1,2,3, ,10 0
0 ,1 ,2 ,3 ,4 , ,n ,
解:
(1) A={1,2,3,4,5} (2)B={2,3}
例2: 用特征性质描述法表示下列集合 (1){-1,1} (2)大于3的全体偶数构成的集合 (3)在平面α内,线段AB的垂直平分线
解: (1) {x| |x|=1} (2) {x| x>3,且x=2n,n∈N} (3){点P∈平面α|PA=PB}
思考: 1. 0、{0}、{ }、 的关系
2. 1,与 21,2区别在哪儿
3. 数集:x 1 ,x 2 ,x 3 , ,x n ,
点集:( x 1 ,y 1 ) ( x 2 ,y 2 ) ( x 3 ,y 3 ) ( , x n ,y n )
2.特征性质描述法:
如果在集合I中,属于集合A的任意 一个元素x都具有性质p(x),而不属于集合A 的元素x都不具有性质p(x),则性质p(x)叫做 集合A的一个特征性质.
于是,集合A可以用它的特征性质p(x)
描述为: { xI P(x)
}
3.Venn图法:
用平面内一条封闭曲线的内部表示集合的方法
A1,2,3,4 B3,4,5,6
A
12 3
34 54 6 5 6
B
B
例1 用列举法表示下列集合
(1)A={x∈N| 0< x ≤5} (2)B={x| x2-5x +6=0}

1.1.2集合的表示方法

1.1.2集合的表示方法

条竖线“|”,在竖线后写出集合中元素所具有的 共同特征.
“小于7的所有实数的集合”
{ x ∈R|x<7}
“小于7的所有整数的集合”
{ x ∈Z|x<7}
“不小于7的所有有理数的集合”
{ x ∈Q|x≥7}
或{ x |x<7}
注意:“x∈R可以简写成 x”,其他不能省略。
2
描述法
请用描述法表示下列集合:
4
5
6
7
8
9 10 11 12 13 14 15 16
8.下列六种表示方法:

x=1,



①{x=1,y=4}; ②x,y
y=4





;③{1,4}; ④(1,4);⑤{(1,4)};


⑥{x,y|x=1或y=4}.
其中,能表示“一次函数y=x+3与y=-2x+6的图象的交点组成的集合”
解析
因为A={x|3x-7<0,x∈N+},所以A={1,2}.
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
{a|a≤-2}
7.已知集合A={x|2x+a>0},且1∉A,则实数a的取值范围是__________.
解析
∵1∉{x|2x+a>0},
∴2×1+a≤0,即a≤-2.
1
2
3
1 2 3 4 5
3.集合{x∈N+|x<5}的另一种表示法是
A.{0,1,2,3,4}
C.{0,1,2,3,4,5}
解析
B.{1,2,3,4}

D.{1,2,3,4,5}

1.1.2 集合的表示方法

1.1.2 集合的表示方法

表示 方法
列举 法
定义
表达 形式
把集合中的所有
元素一一列举出 来,并置于花括 号“{ }”内的
如{1,2, 3,4,5}
方法
适用 对象
①元素个数 不多;②元素 个数多但有 规律
表现 重点
集合 外延
特点
直观、 明了
用集合中元 描述 素的共同特
法 征表示集合 的方法
{x|P(x)}
元素的特征 清晰
集合 内涵
④集合{x|4<x<5}可以用列举法表示.
正确的是( C )
(A)①和④ (B)②和③
(C)②
(D)以上语句都不对
解析:①错误,③由集合中元素的互异性知错误,④集合是无限集,不能列举, 故错误,只有②正确.
2.(2018·福建三明三地三校联考)已知集合M={x∈Z|-2<x≤1},则M的元素个
数为( B )
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/172021/9/172021/9/172021/9/179/17/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月17日星期五2021/9/172021/9/172021/9/17 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/172021/9/172021/9/179/17/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/172021/9/17September 17, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/172021/9/172021/9/172021/9/17

必修一第一章--1.1.2-集合的表示方法

必修一第一章--1.1.2-集合的表示方法

1. 集合的表示方法课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法 把集合的所有元素都______出来,并用花括号“{ }”括起来表示集合的方法叫做列举法. 2.描述法 一般地,如果在集合I 中,属于集合A 的任意一个元素x 都具有性质p (x ),而不属于集合A 的元素都不具有性质p (x ),则性质p (x )叫做集合A 的一个__________.于是,集合A 可以用它的特征性质p (x )描述为____________,它表示集合A 是由集合I 中具有性质p (x )的所有元素构成的.这种表示集合的方法,叫做特征性质描述法,简称描述法.;一、选择题 1.集合{x ∈N +|x -3<2}用列举法可表示为( ) A .{0,1,2,3,4}B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5} 2.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y ) C .平面直角坐标系中的所有点组成的集合 D .函数y =2x -1图象上的所有点组成的集合、 3.将集合⎩⎪⎨⎪⎧ x ,y |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法,正确的是( )A .{2,3}B .{(2,3)}C .{x =2,y =3}D .(2,3) 4.用列举法表示集合{x |x 2-2x +1=0}为( ) A .{1,1}B .{1} C .{x =1}D .{x 2-2x +1=0} 5.已知集合A ={x ∈N |-3≤x ≤3},则有( ) A .-1∈A B .0∈A ∈A D .2∈A 6.集合{x |x =a |a |+|b |b -c |c |,a ,b ,c ∈R }的列举法表示应该是( ) — A .{-3,-1,1,3}B .{1,3}C .{-1,1,3}D .{-题 号 1 2 3 4 5 6答 案 ~二、填空题7.用列举法表示集合A ={x |x ∈Z ,86-x∈N }=____________.8.下列可以作为方程组⎩⎪⎨⎪⎧ x +y =3x -y =-1的解集的是__________(填序号). (1){x =1,y =2}; (2){1,2};- (3){(1,2)}; (4){(x ,y )|x =1或y =2};(5){(x ,y )|x =1且y =2};(6){(x ,y )|(x -1)2+(y -2)2=0}.9.已知a ∈Z ,A ={(x ,y )|ax -y ≤3}且(2,1)∈A ,(1,-4)∉A ,则满足条件的a 的值为________.三、解答题10.用适当的方法表示下列集合①方程x (x 2+2x +1)=0的解集;②在自然数集内,小于1000的奇数构成的集合;③不等式x -2>6的解的集合;④大于且不大于6的自然数的全体构成的集合.!!11.用描述法表示下列集合:(1)所有正偶数组成的集合;(2)方程x 2+2=0的解的集合;(3)不等式4x -6<5的解集;(4)函数y =2x +3的图象上的点集.…能力提升12.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是( ) A .x 0∈N B .x 0∉N! C .x 0∈N 或x 0∉N D .不能确定13.对于a ,b ∈N +,现规定:a *b =⎩⎪⎨⎪⎧ a +b a 与b 的奇偶性相同a ×b a 与b 的奇偶性不同.集合M ={(a ,b )|a *b =36,a ,b ∈N +}(1)用列举法表示a ,b 奇偶性不同时的集合M ;(2)当a 与b 的奇偶性相同时集合M 中共有多少个元素。

1.1.2 集合的表示方法

1.1.2 集合的表示方法

1.1.2 集合的表示方法教材知识检索考点知识清单 1.列举法将集合中的元素____,写在____表示集合的方法. 2.描述法描述法的一般形式为 ,其意义是表示由集合I 中具r 有性质____的所有元素构成的集合.要点核心解读1.集合常用的表示方法有列举法、描述法(1)列举法,把集会中的元素一一列举出来,写在大括号内表示集合的方法,叫列举法,例,如,A={指南针:,造纸,火药,印刷}.列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示这榉的集合较为方便,而且使人一目了然.(2)描述法,把集合中元素的公共 属性描述出来,写在大括号内表示集合的方法,叫做描述法 ,它的一般形式为)},(|{x P x 竖线前面的x 表示集合中元素的一般形式,而后面的P(x)表示集合元素x 的公共属性,例如,n {z n A ∈=}.8<n 在不引起混淆的情况下,为了简便,有些集合用描述法表示时,可省去竖线及左边的部分,例如由所有圆组成的集合,可表示为{圆}.如表示由直线y=x 上所有的点构成的集合,可用下列三种方法: ①文学语言形式:直线y=x 上所有的点构成的集合; ②符号语言形式:};|),{(x y y x =③图形语言形式:在平面直角坐标系内画出直线x y =(图略).2.对集合表示法的理解(1)列举法可以看清集合的元贰描述法可以看清集合元素的特征.(2)两种表示法里的“{ }”都有“全体”“集合”的含义,因此,{全体整数}中的“全体”二字是多余的,应改为{ 整数}.(3)除了用列举法和描述法来表示集合,还可以利用图形表示集合,也可以通过集合的运算来表示集合,例如 }2,1{=A ⋅}3,2{3.选择适当的方法表示集合的规律集合的常用表示方法:列举法和描述法,在集合的运算中经常用到,在具体解题中:要根据题目的特点,选用适当的方法表示集合.(1)对于有限集或元素间存在明显规律的无限集,可采用列举法.(2 )对于无明显规律的无限集,不能将它们一一列举出来,可以通过将集合中元素(只有这个集合才有)的共同特征描述出来,即采用描述法.(3)有些集合既可用列举法,又可用描述法.典例分类剖析考点1集合的表示方法[例1]用适当的方法表示下列集合: (1)所有非负偶数组成的集合;(2)所有小于20的既是奇数又是质数的正整数组成的集合;9)3(2-x 的一次因式组成的集合;(4)方程0)5)(2)(1(2=---x x x 的解组成的集合; (5)直角坐标系内第三象限的点组成的集合. [解析] };,8,6,4,2,0{},2|){1( 或N n n x x ∈=};3,3){3(};19,17,13,11,7,5,3){2(+-x x⋅<<-}0,0|),){(5(};5,5,2,1){4(y x y x[点拨]这里(1)中第二种表示法及(2)、(3)、(4)为列举法,而(1)中第一种表示法和(5)为描述法.实数的集合、点的集合是集合的两种重要形式,通过本例,读者要学会熟练地写出一定条件下的这两种形式的集合,为今后的学习奠定基础.母题迁徙1.分别用自然语言、图形语言、集合语言表示“直线y=x 上所有点构成的集合”. 考点2 列举法与描述法的转换[例2] (1)已知集合},16|{z xN x M ∈+∈=求M ; (2)已知集合},|16{N x z xC ∈∈+=求C . [解析] 集合M 、C 中元素的形式不一致,要正确认识。

【教育资料】18-19 第1章 1.1 1.1.2 集合的表示方法学习专用

【教育资料】18-19 第1章 1.1 1.1.2 集合的表示方法学习专用

1.1.2集合的表示方法学习目标:1.掌握集合的两种表示方法——列举法、描述法.(重点)2.能够运用集合的两种表示方法表示一些简单集合.(重点、难点)[自主预习·探新知]1.列举法把集合中的所有元素都列举出来,写在花括号“{__}”内表示集合的方法.思考1:什么类型的集合适合用列举法表示?[提示]①元素个数少且有限时,全部列举,如{1,2,3,4};②元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1 000的所有自然数”可以表示为{1,2,3,…,1 000};③元素个数无限但有规律时,也可以类似地用省略号列举,如:自然数集N 可以表示为{0,1,2,3,…}.2.集合的特征性质如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个特征性质.3.描述法思考2:用列举法能表示不等式x-7<3的解集吗?为什么?[提示]不能.由不等式x-7<3,得x<10,由于比10小的数有无数个,用列举法是列举不完的,所以不能用列举法.[基础自测]1.思考辨析(1)集合0∈{x|x>1}.()(2)集合{x|x<5,x∈N}中有5个元素.()(3)集合{(1,2)}和{x|x2-3x+2=0}表示同一个集合.()[解析] (1)×.{x |x >1}表示由大于1的实数组成的集合,而0<1,所以(1)错误.(2)√.集合{x |x <5,x ∈N }表示小于5的自然数,为0,1,2,3,4,共5个,所以(2)正确.(3)×.集合{(1,2)}中只有一个元素为(1,2),而{x |x 2-3x +2=0}中有两个元素1和2,所以(3)错误.[答案] (1)× (2)√ (3)×2.方程组⎩⎨⎧x +y =1,x -y =-3的解集是( ) 【导学号:60462019】A .(-1,2)B .(1,-2)C .{(-1,2)}D .{(1,-2)} C [由⎩⎪⎨⎪⎧ x +y =1x -y =-3解得⎩⎪⎨⎪⎧x =-1y =2,用列举法可表示为{(-1,2)},故选C.] 3.不等式x -3<2且x ∈N +的解集用列举法可表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}B [由x -3<2得x <5,又x ∈N +所以x =1,2,3,4.用列举法表示为{1,2,3,4},故选B.]4.不等式4x -5<7的解集为________.{x |x <3} [由4x -5<7解得x <3,所以可表示为{x |x <3}.][合 作 探 究·攻 重 难](1)36与60的公约数组成的集合; (2)方程(x -4)2(x -2)=0的根组成的集合;(3)一次函数y =x -1与y =-23x +43的图象的交点组成的集合.[思路探究] (1)(2)可直接先求相应元素,然后用列举法表示.(3)联立⎩⎨⎧ y =x -1,y =-23x +43→求方程组的解→写出交点坐标→用集合表示.[解] (1)36与60的公约数有1,2,3,4,6,12,所求集合为{1,2,3,4,6,12}.(2)方程(x -4)2(x -2)=0的根是4或2,所求集合为{4,2}.(3)方程组⎩⎪⎨⎪⎧ x -y =1,2x +3y =4的解是⎩⎪⎨⎪⎧ x =75,y =25,所求集合为⎩⎨⎧⎭⎬⎫⎝⎛⎭⎪⎫75,25. [规律方法] 使用列举法表示集合时,需要注意以下几点1.用列举法书写集合时,先应明确集合中的元素是什么.如本题(3)是点集{(x ,y )},而非数集{x ,y }.集合的所有元素用“{ }”括起来,元素间用分隔号“,”.2.元素不重复,元素无顺序,所以本题(2)中,{4,4,2}为错误表示.3.对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.4.适用条件:有限集或元素间存在明显规律的无限集.需要说明的是,对于有限集,由于元素的无序性,如集合{1,2,3,4}与{2,1,4,3}表示同一集合,但对于具有一定规律的无限集{1,2,3,4,…},就不能写成{2,1,4,3,…}.[跟踪训练]1.用列举法表示下列集合:【导学号:60462019】(1)不大于10的非负偶数组成的集合;(2)方程x 2=2x 的所有实数解组成的集合;(3)直线y =2x +1与y 轴的交点所组成的集合.[解] (1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是 {0,2,4,6,8,10}.(2)方程x 2=2x 的解是x =0或x =2,所以方程的解组成的集合为{0,2}.(3)将x =0代入y =2x +1,得y =1,即交点是(0,1),故交点组成的集合是{(0,1)}.(1)小于100的所有非负整数的集合.(2)数轴上与原点的距离大于6的点的集合.(3)平面直角坐标系中第二、四象限内的点的集合(4)方程组⎩⎨⎧x +y =2,x -y =2的解的集合. (5)被5除余3的所有整数组成的集合.(6)不等式3x -6≤2x +7的解组成的集合.[思路探究] 先分析集合中元素的特征,再分析元素满足的条件,最后根据要求写出集合.[解] (1)小于100的所有非负整数的集合,用描述法表示为{x |0≤x <100,x ∈Z }.(2)数轴上与原点的距离大于6的点的集合,用描述法表示为{x ||x |>6}.(3)平面直角坐标系中第二、四象限内的点的集合,用描述法表示为{(x ,y )|xy <0}.(4)方程组⎩⎪⎨⎪⎧ x +y =2,x -y =2的解的集合,用描述法表示为 ⎩⎨⎧ (x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x +y =2,x -y =2或⎩⎨⎧ (x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =2,y =0.(5)被5除余3的所有整数组成的集合为{x |x =5k +3,k ∈Z }.(6)解不等式3x -6≤2x +7得x ≤13,所以不等式3x -6≤2x +7的解组成的集合为{x |x ≤13}.[规律方法] 利用描述法表示集合应关注五点1.写清楚该集合代表元素的符号.例如,集合{x ∈R |x <1}不能写成{x <1}.2.所有描述的内容都要写在花括号内.例如,{x ∈Z |x =2k },k ∈Z ,这种表达方式就不符合要求,需将k ∈Z 也写进花括号内,即{x ∈Z |x =2k ,k ∈Z }.3.不能出现未被说明的字母.4.在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x 2-2x +1=0的实数解集可表示为{x ∈R |x 2-2x +1=0},也可写成{x |x 2-2x +1=0}.5.在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等.[跟踪训练]2.已知A ={x |3-2x >0},则有( )【导学号:60462019】A .3∈AB .1∈AC .32∈AD .0∉AB [A ={x |3-2x >0}={x |x <32},∴1∈A .]3.集合{2,4,6,8,10,12}用描述法表示为________.[答案] {x |x =2n ,n ∈N +,且n ≤6}[1.集合{x ||x |<2,x ∈Z }用列举法如何表示?提示:{-1,0,1}.2.集合{(x ,y )|y =x +1}与集合{(x ,y )|y =2x +1}中的元素分别是什么?这两个集合有公共元素吗?如果有,用适当的方法表示它们的公共元素所组成的集合,如果没有,请说明理由.提示:集合{(x ,y )|y =x +1}中的元素是直线y =x +1上所有的点;集合{(x ,y )|y =2x +1}中的元素是直线y =2x +1上所有的点,它们的公共元素是两直线的交点,由⎩⎪⎨⎪⎧ y =x +1,y =2x +1,解得⎩⎪⎨⎪⎧x =0,y =1,即它们的公共元素为(0,1),用集合可表示为{(0,1)}.3.设集合A ={x |ax 2+x +1=0},集合A 中的元素是什么?提示:集合A 中的元素是方程ax 2+x +1=0的解.集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合.[思路探究] 明确集合A 的含义→对实数k 加以讨论→求出实数k 的值→用集合表示[解](1)当k=0时,方程kx2-8x+16=0变为-8x+16=0,解得x=2,满足题意;(2)当k≠0时,要使集合A={x|kx2-8x+16=0}中只有一个元素,则方程kx2-8x+16=0只有一个实数根,所以Δ=64-64k=0,解得k=1,此时集合A={4},满足题意.综上所述,k=0或k=1,故实数k的值组成的集合为{0,1}.母题探究:(变条件)若将本例中的条件“只有一个元素”换成“至多有一个元素”,求相应问题.[解]集合A至多有一个元素,即方程kx2-8x+16=0只有一个实数根或无实数根.∴k=0或Δ=64-64k≤0,解得k=0或k≥1.故所求k的值组成的集合是{k|k≥1或k=0}.[规律方法]识别集合含义的两个步骤1.一看代表元素:例如{x|p(x)}表示数集,{(x,y)|y=p(x)}表示点集.2.二看条件:既看代表元素满足什么条件(公共特性).[跟踪训练]4.选择适当的方法表示下列集合.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合.(2)大于1且小于7的有理数.(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.[解](1)方程x(x2-2x-3)=0的实数根为-1,0,3,故可以用列举法表示为{-1,0,3),当然也可以用描述法表示为{x|x(x2-2x-3)=0}.(2)由于大于1且小于7的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|1<x<7}.(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.[当堂达标·固双基]1.用列举法表示大于2且小于5的自然数组成的集合应为()A.{x|2<x<5,x∈N}B.A={2,3,4,5}C.{2<x<5} D.{3,4}D[大于2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.]2.下列集合表示的内容中,不同于另外三个的是()【导学号:60462019】A.{x|x=1} B.{y|(y-1)2=0}C.{x|x-1=0} D.{x=1}D[选项A、B、C都表示用描述法表示集合,集合中的元素是1,而选项D 中元素为等式x=1.]3.若A={-2,2,3,4},B={x|x=t2,t∈A},用列举法表示B=________.{4,9,16}[由题意知,A={-2,2,3,4},B={x|x=t2,t∈A},∴B={4,9,16}.]4.设集合A={x|x2-3x+a=0},若4∈A,则集合A用列举法表示为________.{-1,4}[∵4∈A,∴16-12+a=0,∴a=-4,∴A ={x |x 2-3x -4=0}={-1,4}.]5.用适当的方法表示下列集合:【导学号:60462019】(1)方程组⎩⎨⎧ 2x -3y =14,3x +2y =8的解集; (2)所有的正方形;(3)抛物线y =x 2上的所有点组成的集合.[解] (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故解集为{(4,-2)}. (2)集合用描述法表示为{x |x 是正方形},简写为{正方形}.(3)集合用描述法表示为{(x ,y )|y =x 2}.。

1.1.2 集合的表示方法

1.1.2 集合的表示方法

1.1.2 集合的表示方法教材知识检索考点知识清单1.列举法将集合中的元素____,写在____表示集合的方法.2.描述法描述法的一般形式为 ,其意义是表示由集合I 中具r 有性质____的所有元素构成的集合.要点核心解读1.集合常用的表示方法有列举法、描述法(1)列举法,把集会中的元素一一列举出来,写在大括号内表示集合的方法,叫列举法,例,如,A={指南针:,造纸,火药,印刷}.列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示这榉的集合较为方便,而且使人一目了然.(2)描述法,把集合中元素的公共 属性描述出来,写在大括号内表示集合的方法,叫做描述法 ,它的一般形式为)},(|{x P x 竖线前面的x 表示集合中元素的一般形式,而后面的P(x)表示集合元素x 的公共属性,例如,n {z n A ∈=}.8<n 在不引起混淆的情况下,为了简便,有些集合用描述法表示时,可省去竖线及左边的部分,例如由所有圆组成的集合,可表示为{圆}.如表示由直线y=x 上所有的点构成的集合,可用下列三种方法:①文学语言形式:直线y=x 上所有的点构成的集合;②符号语言形式:};|),{(x y y x =③图形语言形式:在平面直角坐标系内画出直线x y =(图略).2.对集合表示法的理解(1)列举法可以看清集合的元贰描述法可以看清集合元素的特征.(2)两种表示法里的“{ }”都有“全体”“集合”的含义,因此,{全体整数}中的“全体”二字是多余的,应改为{ 整数}.(3)除了用列举法和描述法来表示集合,还可以利用图形表示集合,也可以通过集合的运算来表示集合,例如 }2,1{=A ⋅}3,2{3.选择适当的方法表示集合的规律集合的常用表示方法:列举法和描述法,在集合的运算中经常用到,在具体解题中:要根据题目的特点,选用适当的方法表示集合.(1)对于有限集或元素间存在明显规律的无限集,可采用列举法.(2 )对于无明显规律的无限集,不能将它们一一列举出来,可以通过将集合中元素(只有这个集合才有)的共同特征描述出来,即采用描述法.(3)有些集合既可用列举法,又可用描述法.典例分类剖析考点1集合的表示方法[例1]用适当的方法表示下列集合:(1)所有非负偶数组成的集合;(2)所有小于20的既是奇数又是质数的正整数组成的集合;9)3(2-x 的一次因式组成的集合;(4)方程0)5)(2)(1(2=---x x x 的解组成的集合;(5)直角坐标系内第三象限的点组成的集合.[解析] };,8,6,4,2,0{},2|){1( 或N n n x x ∈=};3,3){3(};19,17,13,11,7,5,3){2(+-x x⋅<<-}0,0|),){(5(};5,5,2,1){4(y x y x[点拨]这里(1)中第二种表示法及(2)、(3)、(4)为列举法,而(1)中第一种表示法和(5)为描述法.实数的集合、点的集合是集合的两种重要形式,通过本例,读者要学会熟练地写出一定条件下的这两种形式的集合,为今后的学习奠定基础.母题迁徙1.分别用自然语言、图形语言、集合语言表示“直线y=x 上所有点构成的集合”. 考点2 列举法与描述法的转换[例2] (1)已知集合},16|{z x N x M ∈+∈=求M ; (2)已知集合},|16{N x z xC ∈∈+=求C . [解析] 集合M 、C 中元素的形式不一致,要正确认识。

1.1.2集合的表示方法

1.1.2集合的表示方法

数学学科教案设计(首页)班级: 课时:2 授课时间:课题:§1.1.2 集合的表示方法目的要求:掌握集合的列举法与描述法,会用恰当的方法表示集合.重点难点:教学重点是掌握集合的表示法及规范书写. 教学难点是能选择恰当的方法表示集合.教学方法及教具:采用讲授法与讨论法相结合完成教学,多媒体设备辅助教学.教学反思:作业或思考题:(1)读书部分:复习教材中§1.1.2;(2)书面作业:修改课堂练习并完成学习手册第7-9页中强化练习1 —3.教学过程*揭示新知识问题1回顾上节课讲的集合的概念与性质是什么? 集合是由某些确定的对象构成的整体,具有确定性、互异性和无序性.问题2常用数集有哪些?分别用什么字母表示的?自然数集,N ;正整数集,N* ;整数集,Z ; 有理数集,Q;实数集,R .问题3下列语句是否能确定一个集合?(1) 中国古代的四大发明;小于5的自然数的全体;不等式2XA4的解;(4)用自然语言描述集合往往是不够简明,那么集合有没有其它的表示方法.专业课实操技能好的同学.*创设情景新知识导入提出问题上面的问题3中能确定集合的是(1)(2)(3),这些集合分别有哪些元素?解决问题问题字印刷术;问题3 (2) 的元素有:造纸术、指南针、火药、活教师活动学生活动设计意图质疑引导总结播放课件回忆回答思考观看课件问题归纳小结3( 3)的元素有0,1, 2,3,4 ;的元素都大于2 .集合的元素可以一一列举时,可以用列举的方法表示集合;当集合中的元素无法一一列举,但元素具有统一的特征时,我们可以用这个特征来表示集合.*观察思考探索新知列举法把集合中的元素一一列举出来,写在大括号内表示集合的方法叫做列举法.一般格式是{a, b, c,||)}.例如:(1)由1, 3, 5, 7这几个数组成的集合,可引导分析思考了解归纳讲解强调探究掌握记忆复习上一小节的学习内容,为本次课的学习做准备.通过提问引导学生自觉参与新知识学习,并思考如何恰当表示集合.通过集合表示法的讲解,引导学生掌握集合表示法的概念及其书写方法.教学时间分钟10分钟20分钟表示为{l, 3, 5, 7 }; 教学过程教师活动学生活动设计意图教学时间归纳探究(2)偶数集可表示为{汕-4, —2, 0, 2, 4, HI };(3)不大于100的正整数集合可表示为{1, 2,3, 讲解掌握山99,100 };(4)中国古代的四大发明构成的集合,可以表示为{指南针,造纸术,活字印刷术,火药}说明:(1)当集合元素不多时,常用列举法表示.(2)由集合的无序性可知,集合{a, b, c}与{c, b, a }表示同一个集合.性质描述法.对于给定的集合A,集合A的任一元素x都具有共同性质p(x),把集合中的元素所具有的共同性质描述出来,写在大括号内,这种表示集合的方法叫做描述法.一强调记忆通过集合表示法的讲解,引导学生掌握集合表示法的概念及其规范的书写方法.例如: (1)方程X2 -2x =0的解集可表示为集合R|x2—2x =0 };(2) 奇数集可表示为{x|x=2n+1, Z }或{x\X是奇数}(3)小于3的全体实数构成的集合,可以表示为说明:(1)当集合元素较多时,常用描述法表示.(2)我们约定当R时,可略去R ,简写为x .例如:R I XV3 }可以表示为{x|x<3 }.数学学科教案设计(副页)教学过程*巩固知识典型例题例题3用列举法表示下列集合:(1){ x|x是大于-2且小于5的自然数+ x —6=0(3)方程组fx—yrn的解集. x+ y =1解:(1) { -1, 0, 1, 2, 3,4 };(2) 解方程<+ X —6 = 0得为=-3, X2 =2,故方程的解集为{ -3, 2 };(3)解方程组J 2x - y=5,得]X = 2,故方程组的.x + y =1 .y 7解集为{ (2, _1 )}.评注:方程组的解写在大括号内,需要用小括号括起来.比如:例题3的第(3)题.例题4用性质描述法表示下列集合:(1) 不等式2x -3>0的解集;大于0且小于3的实数的全体构成的集合;平面a内到定点0距离等于6的点的全体构成的集合;(4) 由平面直角坐标系中第二象限的点组成的集合.解:(1 )解不等式2x-3 30得x>-,故不等式的2 教师活动质疑分析讲解质疑分析讲解学生活动设计意图思考回答掌握思考回答掌握通过例题的讲解,让学生掌握用列举法表示集合的常规方法与技巧.通过例题的讲解,让学生掌握用描述法表示集合的常规方法与技巧,并强调书写的规范.教学时间20~分钟(2) { X 1 0 <x <;3 };数学学科教案设计(副页)3-4XA0的解集;(2)被3整除余2的全体构成的集合;(3)平面a 内到两个定点 A 、B 距离相等的点的全体构成的集合;(4 )由平面直角坐标系中第三象限的点组成的集 合.教学过程教师 活动 学生 活动设计 意图教学 时间(3) { P 壬平面a |P0|=6, 0为a 内的定点}; (4) {(X , y )1 X c O, y A O评注:(1)在用描述法表示集合过程中,忌将p (x )}写成{ P (X )}.例如:将{ x | 0 C X ■<3 }错写成{ 0 e x c B }.(2)在几何中,通常用大写字母表示点(元素) 用小写字母表示点的集合.*运用知识跟踪练习跟踪练习3用列举法表示下列集合:(1)绝对值小于4的整数构成的集合; (2)方程I x +2 I =3的解集;(3)方程组lx +y =5 ry 5,的解集.3x+y =1质疑巡视指导思考求解交流及时了 解学生 对集合 的表示方法的 掌握情 况,并 查漏补 缺.25分钟 跟踪练习4用性质描述法表示下列集合:(1)不等式本次课学了哪些内容?重点和难点各是什么?(1)本次课学了哪些内容?(2)通过本次课的学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?。

1.1.2 集合的表示方法

1.1.2   集合的表示方法

1.1.2 集合的表示方法一、学习目标:1、理解列举法和特征性质描述法的实质,能运用它们表示集合.2、体验用集合语言表示文字的过程,尝试用集合语言表示集合.二、重点难点:1、集合的表示法2、对集合的特征性质的理解3、运用特征性质描述法正确的表示集合三、基础知识探究:1、列举法定义:__________________________________________试分析以下集合可否用列举法来表示,并探究列举法表示集合的适用范围及注意问题。

(1)由1~20中的所有质数组成的集合;=的所有实数根组成的集合;(2)方程2x x(3)不大于200的正偶数构成的集合;(4)自然数构成的集合;列举法的使用范围:①_____________________________________________;②_____________________________________________;2、描述法P示例,回答下列内容并探究描述法表示集合时的注意问题。

阅读课本6(1)特征性质:______________________________________________________________ ____________________________________________。

(2)特征性质的描述法:_______________________________________________________ 3、集合的表示方法的变换试分别用列举法和描述法表示下列集合,并探究两种表示方法之间的转换关系,比较优缺点。

x-=的所有实数根组成的集合;(1)方程220(2)由大于10小于20的所有整数组成的集合。

四、典型例题剖析例1、用列举法表示下列集合(1){}|05A x N x =∈<≤ (2){}2|560B x x x =-+=【跟踪训练】用列举法表示下列集合:(1)大于2小于15的偶数全体;(2)平方等于16的实数全体;(3)比2大3的实数全体;(4)方程24x =的解集;(5)大于0小于5的整数的全体;(6)我国现有直辖市的全体。

1.1.2 集合的表示方法

1.1.2  集合的表示方法
A.5 B.4 C.3 D.2
【解答】解:A={x∈Z||x|≤2}={﹣2,﹣1,0,1,2}, B={y|y=x2+1,x∈A}={5,2,1} B 的元素个数是 3 故选 C.
4.已知集合 A={x|51-2x∈N,x∈N},则用列举法表示为________.
解析:根据题意,5-x 应该是 12 的因数,故其可能的取值为 1,2,3,4,6,12,从而可得到 对应 x 的值为 4,3,2,1,-1,-7.因为 x∈N,所以 x 的值为 4,3,2,1.
练习:已知集合 A={x∈R|ax2+2x+1=0},其中 a∈R.
(1)1 是 A 中的一个元素,用列举法表示 A;
【解答】解:(1)∵1 是 A 的元素,∴1 是方程 ax2+2x+1=0 的一个根,
(2)若 A 中有且仅有一个元素,求实∴a数+2+1a=0的,组即 a成=﹣的3,集合 B;
(3)若 A 中至多有一个元素,试求 此a时的A取={x值|﹣范3x2围+2x.+1=0}.
解:(1)用列举法表示为{3,-3},用描述法表示为{x|x2-9=0}.集合中有 2 个元素, 是有限集.
(2)用列举法表示为{1,3,5,7,9},用描述法表示为{x|x=2k-1,k∈N+且 1≤k≤5}.集合 中有 5 个元素,是有限集.
(3)用描述法表示为{x|x>5}.集合中有无数个元素,是无限集. (4)用描述法表示为{(x,y)|y=x2}.抛物线上的点有无数个,因此该集合是无限集. (5)方程 x2+x+1=0 无实数解,故该方程的解集为∅,是有限集.
(3)若 A≠∅ ,求实数 a 的取值范围.
(2)当 a=0 时,A={x|ax2﹣3x+2=0}={x|﹣3x+2=0}={ }.满足条件.只有一个 元素, 当 a≠0 时,若 A 是只有一个元素的集合,判别式△=9﹣8a=0,解得 a= ,此时

1.1.2集合的表示9.3

1.1.2集合的表示9.3
(1) {x2,3x+2,5x3-x}即{5x3-x,x2,3x+2}√
(2) 若4x=3,则 xN
(3) 若x Q,则 x R (4)若X∈N,则x∈N+
√ × ×
例2 若方程x2-5x+6=0和方程x2-x -2=0的解为元素的集合为M,则M 中元素的个数为( C ) A.1 B.2 C.3 D.4
例3.已知集合 A={x ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值和这个元 素..
课堂练习 1.若M={1,3},则下列表示方法 正确的是( C ) A. 3 M C. 1 M B.1 M
D. 1 M且 3 M
2.用符号表示下列集合,并写 出其元素: (1) 12的质因数集合A; (2) 大于 11且小于 29 的整数 集B.
课堂小结
集合的表示方法;
作 业
教 教材P.6
教材P.6
A组 B组 T2,3,4,5 T1,2


1. 用符号“∈”或“
空 (1) 3.14
”填 Q

Q (2)

(4) (6)

(3) 0 + N 2 3 (5) Q
0 (-2) N+ 2 3
R
⑤方程x2+x +1=0的解集合.
描述法:用确定条件表示某些对 象是否属于这个集合的方法.
⑶ 图示法(Venn图)
我们常常画一条封闭的曲线,用 它的内部表示一个集合. 图1-2表示集合{1,2,3,4,5} .
例如,图1-1表示任意一个集合A;
A 图1-1
1,2,3, 5, 4.
图1-2
例1判断下列说法是否正确:

高一数学新人教B版必修1教学课件:第1章 集合 1.1.2 集合的表示方法.ppt

高一数学新人教B版必修1教学课件:第1章 集合 1.1.2 集合的表示方法.ppt

• 1.表示集合的方法常用___描__述__法_、___列__举__法_、____维__恩__图__法. • 2.把集合中元素的___公__共__属__性_描述出来,写在大括号内表示集合的方法叫描
述法.描述法有两种形式: • (1)一般形式:{x∈A|p(x)}.例如:不大于100的自然数构成的集合可表示为
{0,1,2,3,4,5,6,7,8,9}. • (2)方程x2=x的实数根为0,1,设方程x2=x的所有实数根构成的集合为B,则B
={0,1}. • (3)设由1~20的所有质数构成的集合为C,则C={2,3,5,7,11,13,17,19}.
『规律方法』 对于元素个数较少的集合或元素个数不确定但元素间存在 明显规律的集合,可采用列举法.应用列举法时要注意:①元素之间用“,” 而不是用“、”隔开;②元素不能重复.
• 3.如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集 合A的元素都不具有性质p(x),则性质p(x)叫做集合A的一个__________.于 是,集合A可以用它的特征性质p(x)描述为{x∈I|p(x)}.它表示特集征合性A质是由集合I 中具有性质p(x)的所有元素构成的.
A.0∈A
B.2∉A
C.-2∈A
D.0∉A
• [解析] ∵A={x|x(x-2)=0}={0,2},∴0∈A,2∈A,-2∉A,故选A.
3.直线 y=2x+1 与 y 轴的交点所组成的集合为@ziyuanku (
A.{0,1}
B.{(0,1)}
C.{-12,0}
D.{(-12,0)}
[解析] 由xy==02x+1 ,得xy= =01 ,故选 B.
(2)解方程组2x-x+y=y=18 ,得xy= =32 .

中职数学人教版基础模块上册1.1.2集合的表示方法

中职数学人教版基础模块上册1.1.2集合的表示方法
1.1.1集合的表示方法
1
教学目标
1、掌握集合的表示方法:列举法、描述法 2、能用恰当的方法表示集合
2
问题情境 自然数集用字母N表示,那么小于100的自然数的 全体组合成的集合除了用自然语言表示,还可以 用什么方式表示呢?
3
1.列举法
把集合的所有元素一一列举出来(相邻元素之间 用逗号分隔),并写在大括号内,这种表示集合 的方法称为列举法。 例如,由1,2,3,4,5,6这6个数组成的集合,可表示 为{1,2,3,4,5,6} 神十七航天员乘组成员组成的集合,可表示为 {杨洪波,唐胜杰,江新林}
(3)在直角坐标平面内,直线y=x上所有点的坐标组成的集合.
解(1){x|x>3}
(2){x|x是两组对边分别平行的四边形}
(3){(x,y)|y=x}
注:一个集合的特征性质不是唯一的,因此(2)也可表示为
{x|x是有一组对边平行且相等的四边形}
9
课堂练习
A组1、2题
10
课后练习
B组1、2题
11
问题情境中的集合可以表示为 {x ∈N|x<100}
7
例题分析
例1 用列举法表示下列集合: (1)大于3且小于10的奇数的全体组成的集合; (2)方程2x-7=5的解集。 解(1){5,7,9}
(2){6}
8
例题分析
例2 用描述法表示下列集合:
(1)大于3的实数的全体组成的集合;
(2)平行四边形的全体组成的集合;
5
2.描述法
探索研究 下面的集合用列举法表示方便吗?如果不方便,可以怎样表示呢? (1)不等式x-2<3的解组成的集合A; (2)所有有理数组成的集合Q. (1){x|x是小于5的数}

1.1.2集合的表示方法

1.1.2集合的表示方法
1.概念
当集合中元素不多时,我们常常把集合的元素一一列举出来, 写在大括号内表示这个集合,这种表示集合的方法称为例举法。
三、师生互动、提炼知识
解决问题 集合的表示方法-列举法
2.举例
(1)由1,2,3,4,5,6组成的集合,可以表示为
1,2,3,4,5,6
(2)中国古代四大发明组成的集合,可以表示为
5,7,9
(2)方程x-2=0的解的全体组成的集合;
2
(3)一次函数y=-x+1的图像与两坐标轴所有交点组成的集合。
( 1,0),(0,1)
三、师生互动、提炼知识
解决问题 集合的表示方法-性质描述法
1.概念
一般地,若集合A中元素的特征性质用p表示,则属于集合A的 元素都具有p,不属于集合A的元素都不具有p.这时,集合A可以表
A ( x, y) y x
(4)所有偶数组成的集合.
A xR x 2n, nZ
三、师生互动、提炼知识 解决问题 集合的表示方法-性质描述法
一般地
当x的取值集合是实数时:
A x R x 6
A x x 6
A xR x 2n,nZ
A x x 2n, nZ
四、演练反馈
题组练习
题组一
指南针,造纸术,印刷 术,火药
(3)方程x2=9组成的集合,可以表示为
3,3
三、师生互动、提炼知识
解决问题 集合的表示方法-列举法
3.区别
0与 0
0表示一个集合,0是 0集合的一个元素。
三、师生互动、提炼知识
解决问题 集合的表示方法-列举法
4.例1 用列举法表示下列集合
(1)大于3且小于10的所有奇数组成的集合;
示为 A xU p

学案1.1.2集合的表示方法

学案1.1.2集合的表示方法

第一章 集合学案1.1.2集合的表示方法【教学目标】1、集合和元素的表示法;2、掌握一些常用的数集及其记法3、掌握集合两种表示法:列举法、描述法。

【教学重难点】集合的两种表示法:列举法和描述法。

自主预习案 自主复习 夯实基础【双基梳理】1. 集合的常用表示方法:(1)列举法将集合的元素一一列举出来,并____________________表示集合的方法叫列举法.注意:①元素与元素之间必须用“,”隔开; ②集合的元素必须是明确的;③各元素的出现无顺序; ④集合里的元素不能重复;⑤集合里的元素可以表示任何事物.(2)描述法将集合的所有元素都具有性质( )表示出来,写成_________的形式, 称之为描述法. 注意:①写清楚该集合中元素满足性质;②不能出现未被说明的字母;③多层描述时,应当准确使用“或”,“且”;④所有描述的内容都要写在集合的括号内;⑤用于描述的语句力求简明,准确. 思考:还有其它表示集合的方法吗?【答】文字描述法:是一种特殊的描述法,如:{正整数},{三角形}图示法(Venn 图):用平面上封闭曲线的内部代集合.2. 集合相等如果两个集合A ,B 所含的元素完全相同,___________________________________ 则称这两个集合相等,记为:_____________考点探究案 典例剖析 考点突破考点一 列举法表示集合【例1】(1)、小于5的正奇数组成的集合;(2)、能被3整除且大于4小于15的自然数组成的集合;(3)、方程x 2-9=0的解组成的集合;(4)、{15以内的质数};(5)、{x|x36∈Z ,x ∈Z }.第一章集合变式训练:用列举法表示下列集合:(1)x2-4的一次因式组成的集合;(2){y|y=-x2-2x+3,x∈R,y∈N};(3)方程x2+6x+9=0的解集;(4){20以内的质数};(5){(x,y)|x2+y2=1,x∈Z,y∈Z};(6){大于0小于3的整数};(7){x∈R|x2+5x-14=0};(8){(x,y)|x∈N且1≤x<4,y-2x=0};(9){(x,y)|x+y=6,x∈N,y∈N}.考点二描述法表示集合【例2】用描述法分别表示下列集合:(1)二次函数y=x2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.第一章 集合与逻辑 推理与证明变式训练:用描述法表示下列集合:(1)方程2x+y=5的解集;(2)小于10的所有非负整数的集合;(3)方程ax+by=0(ab≠0)的解;(4)数轴上离开原点的距离大于3的点的集合;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)方程组⎩⎨⎧==+1y -x 1,y x 的解的集合; (7){1,3,5,7,…};(8)x 轴上所有点的集合;(9)非负偶数;(10)能被3整除的整数.巩固提高案 日积月累 提高自我1.用列举法表示下列集合:(1) {x|x 2+x+1=0}(2){x|x 为不大于15的正约数}(3) {x|x 为不大于10的正偶数}(4){(x,y)|0≤x ≤2,0≤y<2,x ,y ∈Z}2. 用描述法表示下列集合:(1) 奇数的集合;(2)正偶数的集合;(3)不等式2x-3>5的解集;(4)直角坐标平面内属于第四象限的点的集合; .3. 下列集合表示法正确的是(1) {1,2,2};(2) {Ф};(3) {全体有理数};(4) 方程组31420x y x y +=⎧⎨-=⎩的解的集合为{2,4};(5)不等式x 2-5>0的解集为{x 2-5>0}.第一章集合4.已知A={a|6,3N a Za∈∈-},试用列举法表示集合A.5.集合A={x|y=x2+1},B={t|p=t2+1},这三个集合的关系?。

1.1.2集合的表示方法

1.1.2集合的表示方法
小试牛刀:用性质描述法表示下列集合:
(1)不等式 x 15 的解构成的集合;
(2)大于 10 且小于 20 的所有有理数构成的集合。
二、合作探究:(议一议,你会有更大的收获!)
1、0 与{0}有什么区别?那么 a与a又有什么区别呢?
2、正偶数 2、4、6、8、…的全体构成的集合,你能用多少种方法把它 表示出来。
小试牛刀:用列举法表示下列集合: (1)大于 3 且小于 10 的所有奇数构成的集合;
(2)方程 x2 x 0 的解的全体构成的集合; (3)一次函数 y x 1的图像与两坐标轴所有交点构成的集合。
2、性质描述法:大括号竖线左边的 x 表示____________________,并 标出元素的_____________,在竖线的右边写出只有集合内的元素 x 才具 有的________________,这种用集合 的特征性质表 示集合的方法叫 做性 质描述法。记作:___________________________
2、用性质描述法表示下列集合:
(1)由山东省的省会城市构成的集合;
(2)目前你所在的班级所有同学构成的集合;
(3)正奇数的全体构成的集合;
(4)绝对值等于 3 的实数的全体构成的集合;
(5)所有的正方形构成的集合。
四、拓展延伸:(徜徉于知识的海洋,你会有意想不到的收获!)
先用性质描述法表示下列集合,再思考集合 A 与集合 B 之年月

2.能够熟练运用这两种方法表示集合。
三、达标测试:(相信自己,你一定会取得成功!)
1、用列举法表示下列集合 (1)大于 3 且小于 10 的偶数的全体;
(2)绝对值等于 1 的实数的全体;
(3)比 2 大 3 的实数的全体;

新教材人教B版必修第一册 1.1.1.2第2课时 集合的表示方法 课件(51张)

新教材人教B版必修第一册  1.1.1.2第2课时 集合的表示方法 课件(51张)

个集合不相等.
(3)×.集合{x|1<x≤3}可表示为(1,3].
2.有下列说法:
①{1,2}与{2,1}不同;
②0∈{x|x2+x=0};
③方程 (x 1)(x 2)2 =0的所有解的集合可表示为{1,2,2}; ④集合 {x | 3 x 4} 是有限集.
其中正确的说法是
()
A.只有①和④
第2课时 集合的表示方法
必备知ቤተ መጻሕፍቲ ባይዱ·自主学习
导思
1.如何表示一个集合?在表示的过程中要注意什么问题? 2.列举法和描述法表示集合时有什么优缺点?
1.列举法 把集合中的元素_一__一__列__举__出来(相邻元素之间用逗号分隔),并写在大括号内, 以此来表示集合的方法.
【思考】 一一列举元素时,需要考虑元素的顺序吗? 提示:用列举法表示集合时不必考虑元素的顺序. 例如:{a,b}与{b,a}表示同一个集合.
A.d∈M
B.d∈N
C.d∈P
D.d∈M且d∈N
2.若集合A={x|mx2+2x+m=0,m∈R}中有且只有一个元素,则m的取值集合是 ________ . 【思路导引】1.作为单选题,可以对a,b,c赋值来确定. 2.集合A有且只有一个元素,即方程有且只有一个解.
【思考】 (1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗? 提示:不是任何数集都能用区间表示,如集合{0}就不能用区间表示. (2)“∞”是数吗?以“-∞”或“+∞”作为区间一端时,这一端可以是中括号 吗? 提示:“∞”读作“无穷大”,是一个符号,不是数. 所以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.
【补偿训练】
设a,b,c为非零实数,则x= |ab| bc abc 的所有可能取值构成的集合为

人教B版数学必修一(讲义):第1章1.1.2 集合的表示方法

人教B版数学必修一(讲义):第1章1.1.2 集合的表示方法

1.1.2 集合的表示方法1.列举法把集合中的所有元素都列举出来,写在花括号“{__}”内表示集合的方法. 思考1:什么类型的集合适合用列举法表示?[提示] ①元素个数少且有限时,全部列举,如{1,2,3,4};②元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1 000的所有自然数”可以表示为{1,2,3,…,1 000};③元素个数无限但有规律时,也可以类似地用省略号列举,如:自然数集N 可以表示为{0,1,2,3,…}.2.集合的特征性质如果在集合I 中,属于集合A 的任意一个元素x 都具有性质p (x ),而不属于集合A 的元素都不具有性质p (x ),则性质p (x )叫做集合A 的一个特征性质.3.描述法思考2:用列举法能表示不等式x -7<3的解集吗?为什么?[提示] 不能.由不等式x -7<3,得x <10,由于比10小的数有无数个,用列举法是列举不完的,所以不能用列举法.1.集合{x |x 2-4x +3=0}用列举法表示为( )A .{1,3}B .{x |x =1,x =3}C .{x 2-4x +3=0}D .{x =1,x =3}A [解方程x 2-4x +3=0得x =1或x =3,应用列举法表示解集为{1,3}.]2.已知集合M ={y |y =x 2},用自然语言描述M 应为( )A .满足y =x 2的所有函数值y 组成的集合B .满足y =x 2的所有自变量x 的取值组成的集合C .函数y =x 2图象上的所有点组成的集合D .以上均不对A [由于集合M ={y |y =x 2}的代表元素是y ,而y 为函数y =x 2的函数值,则M 为满足y =x 2的所有函数值y 组成的集合.]3.不等式4x -5<7的解集为________.{x |x <3} [由4x -5<7解得x <3,所以可表示为{x |x <3}.]【例1】 (1)大于1且小于6的整数组成的集合A ;(2)方程x 2-9=0的实数根组成的集合B ;(3)一次函数y =x +3与y =-2x +6的图象的交点组成的集合C .[解] (1)因为大于1且小于6的整数包括2,3,4,5,所以A ={2,3,4,5}.(2)方程x 2-9=0的实数根为-3,3,所以B ={-3,3}.(3)由⎩⎨⎧ y =x +3,y =-2x +6得⎩⎨⎧x =1,y =4, 所以一次函数y =x +3与y =-2x +6的图象的交点为(1,4),所以C ={(1,4)}.使用列举法表示集合时,需要注意几点(1)用列举法书写集合时,先应明确集合中的元素是什么.如本题(3)是点集{(x ,y )},而非数集{x ,y }.集合的所有元素用“{ }”括起来,元素间用分隔号“,”.(2)元素不重复,元素无顺序.(3)对于含较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但是必须把元素间的规律表述清楚后才能用省略号.(4)适用条件:有限集或元素间存在明显规律的无限集.需要说明的是,对于有限集,由于元素的无序性,如集合{1,2,3,4}与{2,1,4,3}表示同一集合,但对于具有一定规律的无限集{1,2,3,4,…},就不能写成{2,1,4,3,…}.1.用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x 2=2x 的所有实数解组成的集合;(3)直线y =2x +1与y 轴的交点所组成的集合.[解] (1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是 {0,2,4,6,8,10}.(2)方程x 2=2x 的解是x =0或x =2,所以方程的解组成的集合为{0,2}.(3)将x =0代入y =2x +1,得y =1,即交点是(0,1),故交点组成的集合是{(0,1)}.【例2】 (1)小于100的所有非负整数的集合;(2)数轴上与原点的距离大于6的点的集合;(3)平面直角坐标系中第二、四象限内的点的集合;(4)方程组⎩⎨⎧x +y =2,x -y =2的解的集合; (5)被5除余3的所有整数组成的集合;(6)不等式3x -6≤2x +7的解组成的集合.[思路探究] 先分析集合中元素的特征,再分析元素满足的条件,最后根据要求写出集合.[解] (1)小于100的所有非负整数的集合,用描述法表示为{x |0≤x <100,x ∈Z }.(2)数轴上与原点的距离大于6的点的集合,用描述法表示为{x ||x |>6}.(3)平面直角坐标系中第二、四象限内的点的集合,用描述法表示为{(x ,y )|xy <0}.(4)方程组⎩⎨⎧ x +y =2,x -y =2的解的集合,用描述法表示为 ⎩⎪⎨⎪⎧ (x ,y )⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎨⎧ x +y =2x -y =2或⎩⎪⎨⎪⎧ (x ,y )⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎨⎧ x =2y =0. (5)被5除余3的所有整数组成的集合为{x |x =5k +3,k ∈Z }.(6)解不等式3x -6≤2x +7得x ≤13,所以不等式3x -6≤2x +7的解组成的集合为{x |x ≤13}.利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x ∈R |x <1}不能写成{x <1}. (2)所有描述的内容都要写在花括号内.例如,{x ∈Z |x =2k },k ∈Z ,这种表达方式就不符合要求,需将k ∈Z 也写进花括号内,即{x ∈Z |x =2k ,k ∈Z }.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x 2-2x +1=0的实数解集可表示为{x ∈R |x 2-2x +1=0},也可写成{x |x 2-2x +1=0}.(5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等.2.用描述法表示下列集合:(1)正偶数集;(2)使y =1x 2+x -6有意义的实数x 的集合; (3)坐标平面内第一、三象限角平分线上的点的集合.[解] (1)正偶数集可表示为{x |x =2n ,n ∈N *}.(2)要使y 有意义,必须使分母不为0,即x 2+x -6≠0,可得x ≠2且x ≠-3,故集合可表示为{x |x ∈R ,x ≠2且x ≠-3}.(3)第一、三象限的角平分线应是直线y =x ,故集合为{(x ,y )|y =x ,x ∈R ,y ∈R }.[1.集合{x ||x |<2,x ∈Z }用列举法如何表示?提示:{-1,0,1}.2.集合{(x ,y )|y =x +1}与集合{(x ,y )|y =2x +1}中的元素分别是什么?这两个集合有公共元素吗?如果有,用适当的方法表示它们的公共元素所组成的集合,如果没有,请说明理由.提示:集合{(x ,y )|y =x +1}中的元素是直线y =x +1上所有的点;集合{(x ,y )|y =2x +1}中的元素是直线y =2x +1上所有的点,它们的公共元素是两直线的交点,由⎩⎨⎧ y =x +1,y =2x +1,解得⎩⎨⎧x =0,y =1,即它们的公共元素为(0,1),用集合可表示为{(0,1)}.3.设集合A ={x |ax 2+x +1=0},集合A 中的元素是什么?提示:集合A 中的元素是方程ax 2+x +1=0的解.【例3】 集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合.[思路探究] 明确集合A 的含义→对实数k 加以讨论→求出实数k 的值→用集合表示[解] (1)当k =0时,方程kx 2-8x +16=0变为-8x +16=0,解得x =2,满足题意;(2)当k ≠0时,要使集合A ={x |kx 2-8x +16=0}中只有一个元素,则方程kx 2-8x +16=0只有一个实数根,所以Δ=64-64k =0,解得k =1,此时集合A ={4},满足题意.综上所述,k =0或k =1,故实数k 的值组成的集合为{0,1}.(变条件)若将本例中的条件“只有一个元素”换成“至多有一个元素”,求相应问题.[解]集合A至多有一个元素,即方程kx2-8x+16=0只有一个实数根或无实数根.∴k=0或Δ=64-64k≤0,解得k=0或k≥1.故所求k的值组成的集合是{k|k≥1或k=0}.识别集合含义的两个步骤(1)一看代表元素:例如{x|p(x)}表示数集,{(x,y)|y=p(x)}表示点集.(2)二看条件:即看代表元素满足什么条件(公共特性).3.选择适当的方法表示下列集合.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于1且小于7的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.[解](1)方程x(x2-2x-3)=0的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0}.(2)由于大于1且小于7的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|1<x<7}.(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.1.本节课的重点是掌握用列举法和描述法表示集合,难点是对描述法表示集合的理解及两种表示法的灵活运用.2.本节课要重点掌握的规律方法(1)列举法表示集合的注意点.(2)描述法表示集合的注意点.3.本节课的易混点是点集与数集,易错点是描述法表示集合中除代表元素以外的字母而未加说明.1.思考辨析(1)集合{0}∈{x |x >1}.( )(2)集合{x |x <5,x ∈N }中有5个元素.( )(3)集合{(1,2)}和{x |x 2-3x +2=0}表示同一个集合.( )[解析] (1)×.{x |x >1}表示由大于1的实数组成的集合,而0<1,所以(1)错误.(2)√.集合{x |x <5,x ∈N }表示小于5的自然数,为0,1,2,3,4,共5个,所以(2)正确.(3)×.集合{(1,2)}中只有一个元素为(1,2),而{x |x 2-3x +2=0}中有两个元素1和2,所以(3)错误.[答案] (1)× (2)√ (3)×2.不等式x -3<2且x ∈N +的解集用列举法可表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}B [由x -3<2得x <5,又x ∈N +所以x =1,2,3,4.用列举法表示为{1,2,3,4},故选B.]3.集合{2,4,6,8,10,12}用描述法表示为________.[答案] {x |x =2n ,n ∈N +,且n ≤6}4.用适当的方法表示下列集合:(1)方程组⎩⎨⎧ 2x -3y =14,3x +2y =8的解集; (2)所有的正方形;(3)抛物线y =x 2上的所有点组成的集合.[解] (1)解方程组⎩⎨⎧ 2x -3y =14,3x +2y =8,得⎩⎨⎧x =4,y =-2,故解集为{(4,-2)}. (2)集合用描述法表示为{x |x 是正方形},简写为{正方形}.(3)集合用描述法表示为{(x ,y )|y =x 2}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) 一年中不满 31 天的月份; { 二月,四月,六月,九月,十一月 }. (4) 大于 3.5 且小于 12.8 的整数的全体. {4,5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 } .
性质描述法:给定 x 的取值集合 I,如果属于集合 A
的任意元素 x 都具有性质 p(x),而不属于集合 AБайду номын сангаас的元 素都不具有性质 p(x),则性质 p(x) 叫做集合 A 的一个 特征性质. 于是集合 A 可以用它的特征性质描述为 { x I | p(x) } , 它表示集合 A 是由集合 I 中具有性质 p(x) 的所有元素
性质描述法
教材 P 8 ,练习B 组 第 1、2 题.
集 集合 合 1.1.2 集合的表示方法
集合 集合
1. 集合、元素、有限集和无限集的概念是什么?
2. 用符号“”与“”填空: (1)0 N; (2) - 2 Q; (3) - 2R.
中国古代四大发明能否构成集合,怎么表示?
当集合元素不多时,我们常常把集合的元素列举出 来,写在大括号“{ }”内表示这个集合,这种表示集合的 方法叫列举法.
构成的.这种表示集合的方法,叫做性质描述法.
例2 用性质描述法表示下列集合: (1) 大于 3 的实数的全体构成的集合; (2) 平行四边形的全体构成的集合; (3) 平面 内到两定点 A,B 距离相等的点的全体
构成的集合.
解: (1) { x | x>3 }; (2) { x | x 是有一组对边平行且相等的四边形}; (3) l={ P平面 , |PA|=|PB|,A,B 为 内两定点}.
{指南针,活字印刷术,造纸术,火药} 注:元素与元素之间用逗号分开.
练习
用列举法表示下列集合:
(1) 由 1、2、3、4、5、6 构成的集合; 解:{1,2,3,4,5,6 }. 注:大括号不能缺失.
(2) 小于100的所有自然数组成的集合;
解:{0,1,2,3,…,99}.
注:有些集合元素个数较多,在不至于发生误解的情况下, 可列几个元素为代表,其他元素用省略号表示.
(3) 比 2 大 3 的实数的全体;
解:{ 5 }.
注:有的集合只有一个元素如 { a }等,但是 { a }是集合,a 是集合{ a }的一个元素,有 a { a }.
想一想:{1,2} 与 {2,1} 是否表示同一个集合?
注:用列举法表示集合时不必考虑元素的前后次序.
例1
用列举法表示下列集合:
练习2
用性质描述法表示下列集合:
(1) 目前你所在班级所有同学构成的集合;
(2) 正奇数的全体构成的集合;
(3) 绝对值等于 3 的实数的全体构成的集合;
(4) 不等式 4 x − 5<3 的解构成的集合; (5) 所有的正方形构成的集合.
集合表示方法
适用范围
列 举 法
元素个数不多的有限集或元素个数 较多但呈现出一定的规律 无限集或元素较多的有限集
(1) 所有大于 3 且小于 10 的奇数构成的集合; (2) 方程 x2-5 x+6=0 的根的全体构成的集合. 解 (1) {5,7,9}; (2) {2,3}.
练习1
用列举法表示下列集合:
(1) 大于 3 小于 9 的自然数; { 4,5,6,7,8 }.
(2) 绝对值等于 1 的实数的全体; { -1,1 }.
相关文档
最新文档