(完整)2017年4月嘉定区中考数学二模试卷及答案,推荐文档

合集下载

上海嘉定中考数学二模试卷及答案(word版)

上海嘉定中考数学二模试卷及答案(word版)

上海嘉定中考数学二模试卷及答案(word
版)
2019年4月上海嘉定初三数学二模考了哪些题目?数学网中考频道第一时间为大家整理2019.4上海嘉定中考数学二模试卷及答案,更多上海中考二模试卷及答案详见
2019.4上海黄浦中考数学二模试卷及答案
2019.4上海浦东中考数学二模试卷及答案
2019.4上海徐汇中考数学二模试卷及答案
2019.4上海长宁中考数学二模试卷及答案
2019.4上海静安中考数学二模试卷及答案
2019.4上海普陀中考数学二模试卷及答案
2019.4上海闸北中考数学二模试卷及答案
2019.4上海虹口中考数学二模试卷及答案
2019.4上海杨浦中考数学二模试卷及答案
2019.4上海闵行中考数学二模试卷及答案
2019.4上海宝山中考数学二模试卷及答案
2019.4上海嘉定中考数学二模试卷及答案
2019.4上海金山中考数学二模试卷及答案
2019.4上海松江中考数学二模试卷及答案
2019.4上海奉贤中考数学二模试卷及答案
2019.4上海崇明中考数学二模试卷及答案。

最新嘉定区中考数学二模试卷及答案

最新嘉定区中考数学二模试卷及答案

2016学年嘉定区九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)(2017.4)同学们注意:1.本试卷含三个大题,共25题;2.答题时,同学们务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果a 表示不为0的任意一个实数,那么下列四个算式中,正确的是 ················· (▲)(A )a a a =-2323; (B )a a a =⋅313;(C )a a a =÷23; (D )a a =212)(.2.在解答“一元二次方程021212=+-a x x 的根的判别式为 ▲ ”的过程中,某班同学的作业中出现了下面几种答案,其中正确的答案是 ············································ (▲) (A )0241≥-a ; (B )a 241-; (C )081≥-a ; (D )a 81-.3.如果函数122++=x ax y 的图像不经过第四象限,那么实数a 的取值范围为 ······· (▲) (A )0<a ;(B )0=a ;(C )0>a ;(D )0≥a .4.从概率统计的角度解读下列诗词所描述的事件,其中属于确定事件的是 ·············· (▲) (A )黄梅时节家家雨,青草池塘处处蛙; (B )人间四月芳菲尽,山寺桃花始盛开; (C )水面上秤锤浮,直待黄河彻底枯;(D )一夜北风紧,开门雪尚飘.5.已知⊙A 的半径长为2,⊙B 的半径长为5,如果⊙A 与⊙B 内含,那么圆心距AB 的长度可以为 ·············································· ······························ ························ (▲) (A )0;(B )3;(C )6;(D )9.6.将两个底边相等的等腰三角形按照图1所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是 ······················································································ (▲)(A )有两组邻边相等的四边形称为“筝形”; (B )有两组对角分别相等的四边形称为“筝形”; (C )两条对角线互相垂直的四边形称为“筝形”;(D )以一条对角线所在直线为对称轴的四边形称为“筝形”.1二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】 7.计算:=-1)21( ▲ .8.已知73.13≈,那么≈31▲ (保留两个有效数字........)9.不等式组⎩⎨⎧>+<01,32x x 的解集是 ▲ .10.方程2+x =x 的实数解是 ▲ .11.已知点),(11y x A 、点),(22y x B 在反比例函数xy 2-=的图像上.如果210x x <<,那么1y 与2y 的大小关系为:1y ▲ 2y (从“<”、“=”、“>”中选择).12.某校学生综合素质评价方案中有这样一段话:“学生自评、同学互评与班级评定小组评价在学生综合素质评价中所占的权重分别为%10、%30、%60”.如果甄聪明同学的自评分数、同学互评分数、班级评定小组给出的分数分别为96分、95分、95分,那么甄聪明同学的综合素质评价分数为 ▲ 分.13.一名射击运动员连续打靶9次,假如他打靶命中环数的情况如图2所示,那么该射击运动员本次打靶命中环数的中位数为 ▲ 环.14.如果非零向量a r 与向量b r 的方向相反,且b a ρρ32=,那么向量a r 为 ▲ (用向量b r 表示).15.从山底A 点测得位于山顶B 点的仰角为︒30,那么从B 点测得A 点的俯角为 ▲ 度. 16.已知扇形的弧长为8,如果该扇形的半径长为2,那么这个扇形的面积为 ▲ . 17.命题“相等的角不一定是对顶角”是 ▲ 命题(从“真”或“假”中选择). 18.已知在△ABC 中,︒=∠90ACB ,10=AB ,53cos =A (如图3),将△ABC 绕着点C 旋转,点A 、B 的对应点分别记为A '、B ',B A ''与边AB 相交于点E .如果B A ''⊥AC ,那么线段E B '的长为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:2122442--++-x x x ,其中2=x .20.(本题满分10分)解方程组:⎩⎨⎧=--=-.,032222y xy x y xABC图3将大小相同,形状也相同的三个菱形按照图4的方式拼接在一起(其中,点B 、C 、F 、G 在同一条直线上),3=AB .联结AG ,AG 与EF 相交于点P . (1)求线段EP 的长;(2)如果︒=∠60B ,求△APE 的面积.22.(本题满分10分,第(1)小题6分;第(2)小题4分)某种型号的家用车在高速公路上匀速行驶时,测得部分数据如下表:(1)如果该车的油箱内剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,求y关于x 的函数解析式(不需要写出它的定义域);(2)张老师租赁该型号的家用车也在该高速公路的相同路段以相同的速度匀速行驶300千米(不考虑小轿车载客的人数以及堵车等因素).假如不在高速公路上的服务区加油,那么在上高速公路之前,张老师这辆车的油箱内至少..需要有多少升汽油?请根据题目中提供的相关信息简要说明理由. 23.(本题满分12分,每小题6分)已知:正方形ABCD ,点E 在边CD 上,点F 在线段BE 的延长线上,且CBE FCE ∠=∠. (1)如图5,当点E 为CD 边的中点时,求证:EF CF 2=; (2)如图6,当点F 位于线段AD 的延长线上,求证:DFDEBE EF =.ABCDEF图5ABCD 图6FEABCD图4FEGHP在平面直角坐标系xOy (如图7)中,已知点A 的坐标为(3,1),点B 的坐标为(6,5),点C 的坐标为(0,5);某二次函数的图像经过点A 、点B 与点C . (1)求这个二次函数的解析式;(2)假如点Q 在该函数图像的对称轴上,且△ACQ 是等腰三角形,直接..写出点Q 的坐标; (3)如果第一象限内的点P 在(1)中求出的二次函数 的图像上,且21tan =∠PCA ,求PCB ∠的正弦值.25.(满分14分,第(1)小题5分,第(2)小题5分、第(3)小题4分)已知:8=AB ,⊙O 经过点A 、B .以AB 为一边画平行四边形ABCD ,另一边CD 经过点O (如图8).以点B 为圆心,BC 为半径画弧,交线段OC 于点E (点E 不与点O 、点C 重合).(1)求证:OE OD =;(2)如果⊙O 的半径长为5(如图9),设x OD =,y BC =,求y 关于x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为5,联结AC ,当AC BE ⊥时,求OD 的长.图7图9备用图图82016学年嘉定区九年级第二次质量调研数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1、C ;2、B ;3、D ;4、C ;5、A ;6、D.二、填空题:(本大题共12题,每题4分,满分48分)7、2;8、58.0;9、231<<-x ;10、2=x ;11、>;12、1.95;13、9环;14、b a ρρ23-=;15、︒30;16、8;17、真命题;18、524.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 解:2122442--++-x x x )2)(2(2)2)(2()2(2)2)(2(4-++--+-+-+=x x x x x x x x ······ 3分 21)2)(2()2()2)(2(2424+=-+-=-+---+=x x x x x x x x . ··································· 2+2+1分当2=x 时,原式=221221-=+. ···················································· 2分20.(本题满分10分)解:03222=--y xy x 可以化为:0))(3(=+-y x y x ,所以:03=-y x 或0=+y x . ·································································· 2分原方程组可以化为:⎩⎨⎧=-=-032y x y x ,(Ⅰ)与⎩⎨⎧=+=-02y x y x ,(Ⅱ) ·························· 2分 解(Ⅰ)得⎩⎨⎧==1,3y x ; 解(Ⅱ)得⎩⎨⎧-==1,1y x ················································· 2+2分 所以,原方程组的解为:⎩⎨⎧==;1,311y x 与⎩⎨⎧-==.1,122y x ················································· 2分21.(本题满分10分,每小题5分)解:(1)由题意得四边形ABGH 、ABFE 是平行四边形. ·································· 1分 ∴ AE ∥FG . ····················································································· 1分∴FGAEFP EP =. ······················································································· 1分ABCD图4FEGHPH 将6=AE ,3=FG 代入,得 2=FP EP ,即32=EF EP ································· 1分 又∵四边形ABFE 是平行四边形,3=AB ,∴3==AB EF .∴2=EP . ··········· 1分 (2)过点P 作AE PH ⊥,垂足为H (如图4). ········································· 1分 ∵四边形ABFE 是平行四边形,︒=∠60B ,∴︒=∠=∠60B PEH . ············ 1分 在Rt △PEH 中,︒=∠90PHE ,︒=∠60PEH ,2=EP ,∴323260sin =⨯=︒⋅=EP PH . ······················································· 2分 ∴△APE 的面积为33362121=⨯⨯=⋅PH AE . ··································· 1分22.(本题满分10分)解:(1)设油箱内剩余油量y (升) 与行驶路程x (千米)之间的函数关系式为b kx y +=. ······················································································· 1分分别将100=x ,52=y ;150=x ,48=y 代入上式,得⎩⎨⎧=+=+.48150,52100b k b k ······· 2分解得:⎪⎩⎪⎨⎧=-=.60,252b k ···················································································· 2分 ∴所求的函数关系式为60252+-=x y ························································· 1分 (2)方法1:由题意可得,该型号的汽车在该路段行驶时,每行驶100耗油8升. ·· 2分 设行驶300公里时需要耗油x 升,可得8:100:300x =,解得24=x 升. ············· 1分方法2:将300=x 代入60252+-=x y ,得36=y . ······································ 2分 243660=-. ··············································································· 1分 答:张老师的这辆车的油箱内至少..需要有24升汽油. ········································ 1分 备注:学生若是在得到24升油的基础上又考虑了其它因素(如离开高速公路之后还需要再行驶一段路程才可以抵达目的地(或寻找到加油站),因此给出了大于24升油的其它数据,只要能够自圆其说,且符合生活实际情况,那么可以酌情评分. 23.(本题满分12分,每小题6分)(1)证明:∵四边形ABCD 是正方形,∴BC CD =. ··········································· 1分∵点E 为CD 边的中点,∴CD CE 21=BC 21=. ··································· 1分 ∵CBE FCD ∠=∠,F F ∠=∠,∴△FCE ∽△FBC . ··························· 2分 ∴BCCECF EF =. ·················································································· 1分 又∵BC CE 21=,∴21=CF EF .即EF CF 2=. ············································· 1分(2)∵四边形ABCD 是正方形,∴DE ∥AB ,AD ∥BC ,AD =CD . ················ 1分∵点F 位于线段AD 的延长线上,DE ∥AB ,∴ADDFBE EF =. ························ 1分 又∵AD =CD ,∴CDDFBE EF =.(1) ··························································· 1分 ∵AF ∥BC ,∴CBE DFE ∠=∠.又∵CBE DCF ∠=∠,∴DCF DFE ∠=∠. ················································ 1分 又∵CDF FDE ∠=∠,∴△FDE ∽△CDF . ················································ 1分∴CD DF DF DE =(2).由(1)、(2)得 DFDE BE EF =. ········································ 1分24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为c bx ax y ++=2,将A (3,1)、B (6,5)、C (0,5)代入,得 ⎪⎩⎪⎨⎧==++=++.5,5636,139c c b a c b a 解得 94=a ,38-=b ,5=c . ································· 3分所以,这个二次函数的解析式为538942+-=x x y . ·········································· 1分 (2))6,3(1Q ,)4,3(2-Q ,)9,3(3Q ,)825,3(4Q . ············································ 4分(3)由题意得,该二次函数图像的对称轴为直线3=x . ····································· 1分 联结PC 交直线3=x 于点M ,过点M 作AC MN ⊥,垂足为N (图7-1) . 将直线3=x 与BC 的交点记为H ,易得3=CH ,4=AH ,5=AC .∴53sin ==∠CA CH CAH ········································································ 1分 故可设k MN 3=,则k AM 5=,k AM 4=.又∵21tan =∠PCA ,则k CN 6=.由题意得方程:564=+k k .解得21=k ,25=AM ,23254=-=MH ·········· 1分∴523)23(322=+=CM .∴55sin ==∠CM MH PCB . ···························· 1分A B CDEF图5ABCD 图6FE25.(满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)解:(1)联结OA 、OB (如图8-1),易得OB OA =,OBA OAB ∠=∠. ···················· 1分∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC AD =.∵BC BE =,BC AD =,∴BE AD =. ······················································ 1分 又 ∵AB ∥CD ,∴四边形ABED 是等腰梯形.∴EBA DAB ∠=∠. ····················· 1分又 ∵OBA OAB ∠=∠,∴OBA EBA OAB DAB ∠-∠=∠-∠.即 OBE OAD ∠=∠. ·················································································· 1分在△AOD 和△BOE 中,∵OB OA =,OBE OAD ∠=∠,BE AD =,∴△AOD ≌△BOE. ∴OE OD =. ························· 1分方法2:∵BED ADE ∠=∠,EBO DAO ∠=∠,BE AD =,∴△AOD ≌△BOE.…… 方法3:∵BED ADE ∠=∠,EBO DAO ∠=∠,OB OA =,∴△AOD ≌△BOE.…… 方法4:如图8-2,过点O 作AB OH ⊥,过点D 作AB DG ⊥,过点E 作AB EI ⊥.…… 方法5:如图8-3,过点O 作AB OH ⊥,垂足为H ,联结DH 、EH .…… (2)方法1:如图9-1,过点O 作AB OH ⊥,垂足为H ,过点D 作AB DG ⊥,垂足为G . 联结OB ,3=OH ,4==BH AH ,得1分;得到3==OH DG ,得2分;在Rt △ADG 中,写出x AG -=4,y BC AD ==,得1分;利用222AG DG AD +=得到2582+-=x x y ,得1分,函数定义域40<<x ,得1分.方法2、方法3见评分细则.(3)如图10-1,过点O 作AC OM ⊥,交AC 于点M ,交AB 于点N .证明四边形ONBE 图8-1是平行四边形,得1分;利用OD OE BN ==,CD AB =得到AN OC =,得1分;利用△AMN ≌△CMO 或COANCM AM =得到CN AM =,进而得到OM 是AC 的垂直平分线,5==OA OC ,得1分;利用8==AB CD ,5=OC 得到3=OD ,得1分.方法2.如图10-,2;方法3:如图10-3;方法4(利用圆周角,略).图9-1图10-1 图10-2 图10-3。

2017年上海市各区数学二模压轴题图文解析

2017年上海市各区数学二模压轴题图文解析

本解析由华东师范大学出版社《挑战压轴题》作者马学斌老师独家提供。

可作学习材料,切勿做其他用途。

更多信息,欢迎关注“挑战压轴题”微信公众号(ti ao z han y azho u ti).《2017年上海市各区中考数学二模压轴题图文解析》目录2017 年上海市宝山区中考模拟第 24、25 题/ 22017 年上海市崇明区中考模拟第 24、25 题/ 62017 年上海市奉贤区中考模拟第 24、25 题/ 102017 年上海市虹口区中考模拟第 24、25 题/ 142017 年上海市黄浦区中考模拟第 24、25 题/ 182017 年上海市嘉定区中考模拟第 24、25 题/ 232017 年上海市静安区中考模拟第 24、25 题/ 272017 年上海市闵行区中考模拟第 24、25 题/ 312017 年上海市浦东新区中考模拟第 24、25 题/ 342017 年上海市普陀区中考模拟第 24、25 题/ 382017 年上海市松江区中考模拟第 24、25 题/ 422017 年上海市徐汇区中考模拟第 24、25 题/ 472017 年上海市杨浦区中考模拟第 24、25 题/ 522017 年上海市长宁区青浦区金山区中考模拟第 24、25 题/ 552017 年上海市宝山区中考模拟第 18 题/ 592017 年上海市崇明区中考模拟第 18 题/ 602017 年上海市奉贤区中考模拟第 18 题/ 612017 年上海市虹口区中考模拟第 18 题/ 622017 年上海市黄浦区中考模拟第 18 题/ 632017 年上海市嘉定区中考模拟第 18 题/ 642017 年上海市静安区中考模拟第 18 题/ 652017 年上海市闵行区中考模拟第 18 题/ 662017 年上海市浦东新区中考模拟第 18 题/ 672017 年上海市普陀区中考模拟第 18 题/ 682017 年上海市松江区中考模拟第 18 题/ 692017 年上海市徐汇区中考模拟第 18 题/ 702017 年上海市杨浦区中考模拟第 18 题/ 712017 年上海市长宁区青浦区金山区中考模拟第 18 题/ 722015 年上海市中考第 24、25 题/ 732016 年上海市中考第 24、25 题/ 77例2017年上海市宝山区中考模拟第24题如图 1,已知直线y x与x轴交于点B,与y轴交于点C,抛物线1 22 12y x b x2 2与x 轴交于A、B 两点(A 在B 的左侧),与y 轴交于点C.(1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△ABM 和△ABC 相似,求点M 的坐标;(3)联结AC,求顶点D、E、F、G 在△ABC 各边上的矩形DEFG 面积最大时,写出该矩形在AB 边上的顶点的坐标.图 1动感体验请打开几何画板文件名“17 宝山 24”,拖动点D 在BC 上运动,可以体验到,当点D是BC 的中点时,矩形DEFG 的面积最大,最大值是△ABC 面积的一半.思路点拨1.第(2)题△ABM 和△ABC 相似,只存在这两个三角形全等的情形,此时M、C 关于抛物线的对称轴对称.2.第(3)题的矩形DEFG 存在两种情况.用二次函数表示矩形的面积,求二次函数的最大值,然后看看最大值时矩形顶点的位置具有什么特殊性.图文解析(1)由1y x 2 ,得B(4, 0),C(0,-2).2将点B(4, 0)代入y 1 x2 bx 2 ,得 8+4b-2=0.解得 3b .2 2所以抛物线的解析式为 1 2 3 2 1 ( 1)( 4)y x x x x .所以A(-1, 0).2 2 2(2)如图 2,由A(-1, 0)、B(4, 0)、C(0,-2),可得 tan∠CAO=tan∠BCO=2.又因为∠CAO 与∠ACO 互余,所以∠BCO 与∠ACO 互余.所以△ABC 是直角三角形.过点A、B 分别作x 轴的垂线,不可能存在点M.所以只存在∠AMB=90°的情况,此时点M 在x 轴的下方(如图 3 所示).图 2 图 32如图 3,如果△ABM 和△ABC 相似,那么△ABM ≌△BAC .所以点 M 与点 C 关于抛物线的对称轴对称,点 M 的坐标为(3,-2).(3)矩形 DEFG 有两种情况:1①如图 4,在 AB 边上的顶点有两个,坐标分别为(2, 0)和( ,0) .23②如图 5,在 AB 边上的顶点有一个,坐标为( ,0).2考点伸展第(3)题的解题思路是这样的:在 Rt △ABC 中,AB =5,高 CO =2.情形一,如图 4,F 、G 两点在 AB 上.设 DE =m ,DG =n .根据相似三角形对应高的比等于对应边的比,得 2 .所以 5(2 )n m nm . 2 52 所以 S =mn = 5 2 n n = 5 ( 1)2 5 (2 )n . 2 2所以当 n =1 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面积 最大,最大值是△ABC 面积的一半.情形二,如图 5,点 G 在 AB 上.同样的,设 DE =m ,DG =n .由 BD DG ,得 2 5.所以 2 5 n . m n m BE EA 22 55 所以 S =m n = (2 5 ) m m 2 = 1 ( 5)2 5 m .2 2所以当 m 5 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面 积最大,最大值也是△ABC 面积的一半.此时点 G 为 AB 的中点.图 4 图 53例2017年上海市宝山区中考模拟第25题如图 1,在△ABC 中,∠ACB 为直角,AB=10,∠A=30°,半径为 1 的动圆Q 的圆心从点C 出发,沿着CB 方向以 1 个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5),以P 为圆心、PB 为半径的⊙P 与AB、BC 的另一个交点分别为E、D,联结ED、EQ.(1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值;(2)当⊙P 和AC 相交时,设CQ 为x,⊙P 被AC 解得的弦长为y,求y 关于x 的函数解析式,并求当⊙Q 过点B 时⊙P 被AC 截得的弦长;(3)若⊙P 与⊙Q 相交,写出t 的取值范围.图 1动感体验请打开几何画板文件名“17 宝山 25”,拖动Q 由C 向B 运动,可以体验到,⊙P 与⊙Q 的位置关系依次为外离、外切和相交.思路点拨1.第(1)题Q、D 重合时,根据CQ+BD=BC 列关于t 的方程.2.第(2)题⊙Q 过点B 时,CQ=5-1=4.3.第(3)题求⊙P 与⊙Q 相交,先求临界位置外切时t 的值.图文解析(1)如图 2,根据直径所对的圆周角是直角,可以知道ED⊥BC.在 Rt△ABC 中,AB=10,∠A=30°,所以BC=5.在 Rt△BDE 中,BE=2BP=2t,∠BED=30°,所以BD=t,DE= 3 t.如图 3,当点Q 与点D 重合时,BD+CQ=BC=5.所以 2t=5.解得t=2.5.图 2 图 3(2)如图 4,设⊙P 和AC 相交于M、N 两点.作PH⊥MN 于H,那么MH=NH.在 Rt△PAH 中,PA=10-t,∠A=30°,所以PH=12(10t)t.=5 12在 Rt△PMH 中,PM=PB=t,由勾股定理,得MH2=PM2-PH2= 2 (5 1 )2t t .2 于是得到y=MN=2MH=3t2 20t 100 .4如图 5,当⊙Q 过点B 时,CQ=x=4,此时MN=y=316 20 4 100 =2 7 .图 4 图 5<t≤5.(3)当⊙P与⊙Q相交时,t的取值范围是17974考点伸展第(3)题的解题过程分三步:第一步,罗列三要素.对于圆P,r P=t;对于圆Q,r Q=1;圆心距PQ 需要求一下.如图 6,作PF⊥BC 于F.在Rt△PFQ 中,由勾股定理,得PQ=( 3 )2 (5 3 )2t t .2 2第二步,列方程.如图 7,当⊙P 与⊙Q 外切时,r P+r Q=PQ.所以t 1( 3 t)2 (5 3t)2 .整理,得 2t2-17t+24=0.解得17 97t .2 2 4第三步,写结论.图 6 图 75例2017年上海市崇明区中考模拟第 24题 如图 1,已知抛物线 y =ax 2-2x +c 经过△ABC 的三个顶点,其中点 A (0, 1),点 B (9, 10),AC //x 轴. (1)求这条抛物线的解析式;(2)求 tan ∠ABC 的值;(3)若点 D 为抛物线的顶点,点 E 是直线 AC 上一点,当△CDE 与△ABC 相似时,求 点 E 的坐标.图 1动感体验请打开几何画板文件名“17 崇明 24”,拖动点 E 在点 C 左侧运动,可以体验到,△CDE 与△ABC 相似存在两种情况.思路点拨1.求 tan ∠ABC 的值,首先要将∠ABC 放在某个直角三角形中.作 AB 边上的高 CH 以 后,有两种解法:一种解法是∠BAC =45°为特殊值;另一种解法是一般性的,已知三角形 的三边,作高不设高,设 AH =m .2.探究△CDE 与△ABC 相似,首选的方法是寻找一组等角,然后按照对应边成比例分 两种情况列方程.图文解析 c1,(1)将 A (0, 1)、B (9, 10)两点分别代入 y =ax 2-2x +c ,得81a 18 c 10.1 3 解得 a = ,c =1.所以这条抛物线的解析式为 12 2 1y x x . 3(2)由于 AC //x 轴,抛物线的对称轴为 x =3,所以 C (6, 1).如图 2,作 BM ⊥AC ,垂足为 M .作 CH ⊥AB 于 H .由 A (0, 1)、B (9, 10),可知 AM =BM =9,所以∠BAC =45°,AB =9 2 .在 Rt △ACH 中,AC =6,所以 AH =CH =3 2 .在 Rt △BCH 中,BH =AB -AH =6 2 ,所以 tan ∠ABC = C H B H= 3 2 6 2 = 1 2 . 6(3)由 1 2 2 1 1 ( 3)2 2y x x x ,得顶点D 的坐标为(3,-2).3 3由C(6, 1)、D(3,-2),可知∠ACD=45°,CD=3 2 .当点E 在点C 左侧时,∠DCE=∠BAC.分两种情况讨论△CDE 与△ABC 相似:①当C E A B时,CE 9 2 .解得CE=9.此时E(-3, 1)(如图 3 所示).C D A C32 6②CE AC 时,CE 6 .解得CE=2.此时E(4, 1)(如图 4 所示).C D A B329 2图 2 图 3 图 4考点伸展第(2)题还有一般的解法:如图 2,△ABC 的三边长是确定的,那么作AB 边上的高CH,设AH=m,就可以求得AH,进而求得CH、BH 的长.由A(0, 1)、B(9, 10)、C(6, 1),可得AB=9 2 ,BC=3 10 ,AC=6.由CH2=CA2-AH2,CH2=CB2-BH2,得CA2-AH2=CB2-BH2.解方程62 m2 (3 10)2 (9 2 m)2 ,得m 3 2 .于是得到BH=6 2 ,CH=3 2 .7例 2017年上海市崇明区中考模拟第 25题如图,梯形 ABCD 中,AB //CD ,∠ABC =90°,AB =6,BC =8,tan D =2,点 E 是射线 CD 上一动点(不与点 C 重合),将△BCE 沿着 BE 进行翻折,点 C 的对应点记为点 F .(1)如图 1,当点 F 落在梯形 ABCD 的中位线 MN 上时,求 CE 的长;S (2)如图 2,当点 E 在线段 CD 上时,设 CE =x , △BFCS△E F C=y ,求 y 与 x 之间的函数关系式,并写出定义域;(3)如图 3,联结 AC ,线段 BF 与射线 CA 交于点 G ,当△CBG 是等腰三角形时,求 CE 的长.图 1 图 2 图 3动感体验请打开几何画板文件名“17 崇明 25”,拖动点 E 运动,可以体验到,等腰三角形 BCG 存在三种情况,每种情况的点 G 的位置都具有特殊性.思路点拨1.第(1)题点 F 到 AB 的距离等于 BF 的一半,得到∠FBA =30°.2.第(2)题△BFC 与△EFC 的面积比等于 BH 与 EH 的比,通过 Rt △BCH ∽Rt △CEH 得到 BH 与 EH 的比.3.第(3)题先求 CG 的长,再求 CE 的长.延长 BF 交 CD 的延长线于 K ,得到△KEF ∽△KBC .图文解析(1)如图 4,在 Rt △FNB 中,BN = 所以∠B F N =30°. 1 2 B C = 1 2B F ,所以∠FBA =30°.所以∠FBC =60°. 所以∠FBE =∠CBE =30°.= 8 3 3所以 C E =B C t a n 30°=83 3. 图 4(2)如图 5,设 BE 垂直平分 FC 于点 H ,那么∠CBH =∠ECH . 所以△CBH ∽△ECH .S 所以CBH△S△ECHBH = ( )2EH= 64 x 2 S .所以 y = BFC △S△EFC= 2S △CBHC2S △ECH = 64 x2. 定义域是 0<x ≤10.8图 5图 6(3)①如图 6,当 CG =CB =8 时,AG =2.CK CG 延长 BF 交 CD 的延长线于 K .由 4 ,得 CK =4AB =24.AB AG1 3在 Rt △KBC 中,BC =8,CK =24,所以 tan ∠K =.所以 sin ∠K = 10 10. 在 Rt △KEF 中,FE =CE =x ,EK =CK -CE =24-x .由 sin ∠K =F E E K = 10 10,得10 x 24 x 10.解得 x =CE = 8 10 83.②如图 7,当 GC =GB 时,点 G 在 BC 的垂直平分线上,此时四边形 ABCK 为矩形. 在 Rt △EKF 中,sin ∠EKF =B C B K = 8 10 = 4 5,FE =CE =x ,KE =CK -CE =6-x .所以 4 x6 x 5.解得 x =CE = 8 3.③如图 8,当 BG =BC =8 时,由于 BC =BF ,所以 F 、G 重合.此时 BE ⊥AC .由 tan ∠CEB =tan ∠ACB = 3 4 ,得B C C E 3 .所以 CE = 432 3.图 7 图 8考点伸展第(3)题的①、②两种情况,解 Rt △KEF ,可以用勾股定理列方程.9例 2017年上海市奉贤区中考模拟第 24题如图 1,在平面直角坐标系中,抛物线 y =-x 2+bx +c 经过点 A (3, 0)和点 B (2, 3),过点1 3A 的直线与 y 轴的负半轴相交于点 C ,且 tan ∠CAO =(1)求这条抛物线的表达式及对称轴;. (2)联结 AB 、BC ,求∠ABC 的正切值;(3)若点 D 在 x 轴下方的对称轴上,当 S △ABC =S △ADC 时,求点 D 的坐标.图 1动感体验请打开几何画板文件名“17 奉贤 24”,可以体验到,△ABC 是等腰直角三角形,B 、D 两点到直线 AC 的距离相等.思路点拨1.直觉告诉我们,△ABC 是直角三角形.2.第(3)题的意思可以表达为:B 、D 在直线 AC 的两侧,到直线 AC 的距离相等.于 是我们容易想到,平行线间的距离处处相等.图文解析(1)将 A (3, 0)、B (2, 3)两点分别代入 y =-x 2+bx +c ,得93b c 0,4 2b c 3.解得 b =2,c =3.所以 y =-x 2+2x +3.对称轴是直线 x =1.O C OA (2)由 t a n ∠C A O == 1 3,OA =3,得 OC =1.所以 C (0,-1). 由两点间的距离公式,得 AB 2=12+32=10,AC 2=32+12=10,BC 2=22+42=20. 所以∠BAC =90°,且 AB =AC .所以△ABC 是等腰直角三角形,tan ∠ABC =1.(3)因为△ABC 与△ADC 有公共底边 AC ,当 S △ABC =S △ADC 时,B 、D 到直线 AC 的距离相等.如图 2,因为点 B (2, 3)关于点 A (3, 0)的对称点为 E (4,-3),那么过点 E 作 AC 的平行线 与抛物线的对称轴的交点即为所求的点 D .由 A (3, 0)、C (0,-1)可得直线 AC 的解析式为1y x 1.3设直线 DE 的解析式为y x b ,代入点 E (4,-3),得 13 1b .3 3 10所以直线DE 的解析式为11 3 y x .当x=1 时,y=-4.3 3所以点D 的坐标为(1,-4).考点伸展第(2)题也可以构造 Rt△ABM 和 Rt△CAN(如图 3),用“边角边”证明△ABM≌△CAN,从而得到等腰直角三角形ABC.图 2 图 3第(3)题也可以这样思考:如图 4,过点B 与直线AC 平行的直线为y 1 x 7 ,与y 轴交于点F(0, 7)33 3.F、C 两点间的距离为710(1) .3 3把直线AC:y 1 x 向下平移1013 3个单位,得到直线113y x .3 3感谢网友上海交大昂立教育张春莹老师第(3)题的解法:如图 5,如果把BL、KD 分别看作△ABC 和△ADC 的底边,那么它们的高都是A、C 两点间的水平距离,当△ABC 与△ADC 的面积相等时,BL=KD.1 ),K(1,2 ).所以3 ( 1) ( 2) 由直线AC 的解析式可以求得L (y .2,D3 3 3 3解得y D=-4.所以D(1,-4).图 4 图 511例2017年上海市奉贤区中考模拟第25题如图 1,线段AB=4,以AB 为直径作半圆O,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC,过点C 作CD//AB,且CD=PC,过点D 作DE//PC,交射线PB 于点E,PD 与CE 相交于点Q.(1)若点P 与点A 重合,求BE 的长;PD=y,当点P 在线段AO 上时,求y 关于x 的函数关系式及定义域;C E(2)设P C=x,(3)当点Q 在半圆O 上时,求PC 的长.图 1 备用图动感体验请打开几何画板文件名“17 奉贤 25”,拖动点P 在AO 上运动,可以体验到,PD 与CE的比就是菱形的对角线的比,可以转化为PQ 与EQ 的比,进而转化为∠PEQ 的正切值.拖动点P 在OB 上运动,可以体验到,当点Q 落在圆上时,点Q 到AB 的距离等于圆的半径的一半.思路点拨1.四边形PCDE 是菱形,对角线互相垂直平分.2.第(2)题根据∠PEQ 和∠CEO 是同一个角,用正切值得到关系式.3.第(3)题画图的步骤是:点Q 在OC 的中垂线与圆的交点处,延长CQ 交AB 的延长线于点E,过点Q 作CE 的垂线得到点P、D.图文解析(1)如图 2,由CD//AB,DE//PC,得四边形PCDE 是平行四边形.又因为CD=PC,所以四边形PCDE 是菱形.在等腰直角三角形AOC 中,AC= 2 OA=2 2 .当点P 与点A 重合,PE=AC=2 2 .所以BE=AB-PE=4-2 2 .图 2 图 3(2)如图 3,在 Rt△CPO 中,PC=x,CO=2,所以PO=x 2 4 .所以EO=PE-PO=PC-PO=x x 2 4 .12因为PD 与CE 互相垂直平分于Q,所以y=P DC E=PQE Q =tan∠PEQ=tan∠CEO=C OE O.所以y2x x 42x x2 442.定义域是2≤x≤22 .(3)如图 4,作QH⊥AB 于H.因为菱形PCDE 的对边CD 与PE 间的距离保持不变,等于圆的半径CO=2,当点Q在半圆O 上时,QH=12OQ=1.所以∠QOH=30°.此时∠COQ=60°,△COQ 是等边三角形.所以∠DCE=30°.所以∠PCE=30°.在 Rt△COP 中,∠OCP=30°,CO=2,所以PC=C O= 2c o s3032=4 33.图 4 图 5考点伸展在本题情境下,当点P 从A 运动到B 的过程中,求点Q 运动过的路径长.因为点Q 是CE 的中点,所以点Q 的运动轨迹与点E 的运动轨迹平行,点Q 的路径长等于点E 路径长的一半.如图 2,当点P 与点A 重合时,AE=AC=2 2 .如图 5,当点P 与点B 重合时,BE=BC=2 2 .所以点E 运动的路径长为 4,点Q 运动的路径长为 2.13例2017年上海市虹口区中考模拟第24题如图 1,在平面直角坐标系中,抛物线1y x bx c 经过点A(-2, 0)和原点,点B 在4抛物线上且 tan∠BAO=12,抛物线的对称轴与x 轴相交于点P.(1)求抛物线的解析式,并直接写出点P 的坐标;(2)点C 为抛物线上一点,若四边形AOBC为等腰梯形且AO//BC,求点C 的坐标;(3)点D 在AB 上,若△ADP 与△ABO 相似,求点D 的坐标.图 1动感体验请打开几何画板文件名“17 虹口 24”,拖动点D 在AB 上运动,可以体验到,△ADP与△ABO 相似存在两种情况.点击屏幕左下角的按钮“第(2)题”,可以体验到,以A、O、B、C 为顶点的等腰梯形存在三种情况,其中AO//BC 时,点C 与点B 关于抛物线的对称轴对称.思路点拨1.已知二次函数的二次项系数和抛物线与x 轴的两个交点,可以直接写出交点式.2.等腰梯形AOBC 当AO//BC 时,C、B 两点关于抛物线的对称轴对称.3.分两种情况讨论△ADP 与△ABO 相似.由于∠A 是公共角,根据夹∠A 的两边对应成比例,分两种情况列方程,先求AD 的长,再求点D 的坐标.图文解析(1)因为抛物线1y x bx c 与x 轴交于点A(-2, 0)和原点,所以411 1y x(x2)x x.244 2抛物线的对称轴是直线x=-1,点P 的坐标为(-1, 0).1(2)作BH⊥x 轴于H.设点B 的坐标为(x, x(x 2)) .4由 tan∠BAO=B HA H=121,得AH=2BH.所以(x 2) 2x(x 2) .4解得x=2,或x=-2(B、A 重合,舍去).所以B(2, 2).若四边形AOBC 为等腰梯形且AO//BC,那么B、C 关于抛物线的对称轴x=-1 对称.所以点C 的坐标为(-4, 2).图 2 图 314(3)作DE⊥x 轴于E.在 Rt△ADE 中,已知 tan∠A=12,所以DE=55A D,AE=2 55 A D.由于△ADP 与△ABO 有公共角∠A,分两种情况讨论相似:①当AD AB 时,AD 2 5 .所以AD=5 .A P A O1 2此时DE=1,AE=2.所以点D 的坐标为(0, 1).②当A D A O时,A D 2.所以A D= 5 A P A B125 5.此时DE=15,AE=25.所以OE=OA-AE=858 1(,).5 5.所以点D的坐标为图 4 图 5考点伸展如果第(2)题改为以A、O、B、C 为顶点的四边形是等腰梯形,那么就要分三种情况:△AOB 的三边的垂直平分线都可以是等腰梯形的对称轴.第二种情况:如果OC//AB,那么点C 与点O 关于直线AB 的垂直平分线对称.点C 在直线1y x 上,设C(2m, m).2由CB=OA=2,得CB2=4.所以(2m-2)2+(m-2)2=4.解得m=254 2 ,或m=2(此时四边形AOCB 是平行四边形).所以C( , ).5 5第三种情况:如果AC//OB,那么点C 与点A 关于直线OB 的垂直平分线对称.点C 在直线y=x+2 上,设C(n, n+2).由CB=AO=2,得CB2=4.所以(n-2)2+n2=4.解得n=2,或n=0(舍去).所以C(2, 4).图 6 图 715例2017年上海市虹口区中考模拟第25题如图 1,在△ABC 中,AB=AC=5,cos B=45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D,∠BPD=∠BAC.以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E,联结CE,设BD=x,CE=y.(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域;(3)如果⊙O 与⊙P 相交于点C、E,且⊙O 经过点B,当O P=54时,求AD 的长.图 1动感体验请打开几何画板文件名“17 虹口 25”,拖动点P 运动,可以体验到,△BPD 与△BAC 保持相似,PN 与BD 保持平行.观察度量值,可以体验到,OP=1.25 存在两种情况.思路点拨1.作圆P 的弦CE 对应的弦心距PN,把图形中与∠B 相等的角都标记出来.2.第(3)题的圆O 经过B、C、E 三点,事实上OP 与BD 是平行的.图文解析(1)如图 2,作AM⊥BC 于M,那么BM=CM.在 Rt△ABM 中,AB=5,cos B=B MA B=45,所以BM=4,sin B=35.如图 3,设⊙P 与AB 切于点H,那么 sin B=PHBP=35.所以r8 r 35=.解得r=3.图 2 图 3 图 4 (2)如图 4,由于∠B=∠B,∠BPD=∠BAC,所以△BPD∽△BAC.因为AB=AC,所以PB=PD.如图 5,设圆P 与BC 的另一个交点为F,因此所以F E//B D.所以∠E F C=∠B.P F P E.P B P D在△PBD 中,B P B A 5,所以5 5BP BD x .B D B C888在△EFC 中,由PC=PE=PF,可知∠FEC=90°,所以 sin∠EFC=C EC F3.516所以CF5 CE 5 y .所以 PC = 13 3 2 CF = 5 6y .由 BC =BP +PC =8,得5 x 5 y .整理,得 48 3 y x .定义域是 5<x < 64886545.(3)因为⊙O 经过 B 、C 、E 三点,所以圆心 O 是 BC 和 CE 的垂直平分线的交点. 如图 6,设 CE 的中点为 N ,那么 OP ⊥CE 于 N . 所以 OP //FE //BA .所以 cos ∠OPM =cos B = 4 5 .当 OP = 5 4时,MP =1.①如图 6,当 P 在 M 右侧时,BP =4+1=5.此时 BD = 所以 A D =B D -B A =8-5=3.8 5BP =8.②如图 7,当 P 在 M 左侧时,BP =4-1=3.此时 BD = 8 5 B P = 24 5.2 4 所以 AD =BA -BD = 5 = 51 5.图 5 图 6 图 7考点伸展第(2)题不证明 FE //BA 的话,可以证明∠CPN =∠B .如图 8,由于∠CPE =∠B +∠D =2∠B ,∠CPE =2∠CPN ,所以∠CPN =∠B .在 Rt △CPE 中, 1 2 3 5 C E =PC .所以 PC =5 6 C E = 5 6 5 y .所以 BP =8 y .6 在△BPD 中, 1 2 B D = 4 5 BP .所以 1 x 4 5 y .整理,得 48 3 (8 ) y x .2 5 6 5 4定义域中 x = 64 5的几何意义如图 9 所示.图 8 图 917例 2017年上海市黄浦区中考模拟第 24题如图 1,点 A 在函数 y4(x >0)的图像上,过点 A 作 x 轴和 y 轴的平行线分别交函 x数 y 1的图像于点 B 、C ,直线 BC 与坐标轴的交点为 D 、E . x(1)当点 C 的横坐标为 1 时,求点 B 的坐标;(2)试问:当点 A 在函数 y4(x >0)的图像上运动时,△ABC 的面积是否发生变 x 化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点 A 在函数 y4(x >0)的图像上运动时,线段 BD 与 CE 的长始终 x相等.图 1动感体验请打开几何画板文件名“17 黄浦 24”,拖动点 A 运动,可以体验到,△DBM 与△CEN 保持全等,MN 与 BC 保持平行.思路点拨1.设点 A 的横坐标为 m ,A 、C 两点的横坐标相等,A 、B 两点的纵坐标相等,用 m 表 示 A 、B 、C 三点的坐标和 AB 、AC 的长.2.证明 BD =CE ,因为四点共线,只要证明 B 、D 两点间的竖直距离等于 C 、E 两点间 的竖直距离就可以了.图文解析(1)当点 C 的横坐标为 1 时,C (1, 1),A (1, 4).由 1 x4 ,得x 1 .所以点 B 的坐标为(1 ,4) 4 4 . (2)△ABC 的面积为定值.计算如下:4 如图 2,设点 A 的坐标为(m , ) m 1 ,那么 C (m , ) mm 4 ,B ( , ). 4 m3m 所以 A B = 4 ,AC = 3 m .所以 S △ABC = 1 2 A B A C = 1 3 3 = m2 4 m9 8 . (3)如图 3,延长 AB 交 y 轴于 M ,延长 AC 交 x 轴于 N .在 Rt △DBM 中,tan ∠DBM =tan ∠ABC = A C A B = 3 3m = m 44 m 2 ,BM = m 4,所以DM=BM tan∠DBM=m44=m21m.所以DM=CN.18又因为 sin∠DBM=sin∠CEN,所以DB=CE.图 2 图 3考点伸展如图 4,第(2)题中,面积为定值的有:矩形AMON、△ABC、△BOM、△CON,所以△BOC 的面积也为定值.如图 5,联结MN,那么MN 与BC 保持平行,这是因为M B N C 1.M A N A 4还有一个有趣的结论,随着点A 的运动,直线MN 与双曲线y 1(x>0)保持相切.x直线MN 的解析式为44,与y1y x 联立方程组,消去y,得m m x214 4x.x m m2整理,得(2x-m)2=0.所以直线MN 与双曲线有一个交点,保持相切.感谢网友上海交大昂立教育张春莹老师提供的第(3)题的简练解法:如图 4,因为B D B M 1,C E C N 1,所以B D=C E.B C B A3C B C A 3图 4 图 519例2017年上海市黄浦区中考模拟第25题已知 Rt△ABC 斜边AB 上的D、E 两点满足∠DCE=45°.(1)如图 1,当AC=1,BC= 3 ,且点D 与点A 重合时,求线段BE 的长;(2)如图 2,当△ABC 是等腰直角三角形时,求证:AD2+BE2=DE2;(3)如图 3,当AC=3,BC=4 时,设AD=x,BE=y,求y 关于x 的函数关系式,并写出定义域.图 1 图 2 图 3动感体验请打开几何画板文件名“17 黄浦 25”,可以体验到,四边形CMEN 是正方形.点击屏幕左下方的按钮“第(2)题”,可以体验到,直角三角形DEF 的边FD=AD,FE=BE.点击按钮“第(3)题”,可以体验到,△CDP∽△ECQ.思路点拨1.第(1)题过点E 向两条直角边作垂线段,围成一个正方形,然后根据对应线段成比例求正方形的边长,再得到BE 的长等于正方形边长的 2 倍.2.第(2)题的目标是把AD、BE 和DE 围成一个直角三角形.经典的解法有翻折和旋转两种.图文解析(1)当AC=1,BC= 3 时,AB=2,∠B=30°.如图 4,作EM⊥BC 于M,作EN⊥AC 于N,那么四边形CMEN 是正方形.设正方形的边长为a.由EM BM,得a 3 a .AC BC 1 3解得 3 3a .2所以BE=2EM=3 3 .图 4【解法二】如图 4,因为1C B E MS C B△C B E21S C A E N C A△C B E2S B E,△C B ES E A△C B E,所以C B B E.C A E A.解得BE=3 3 .所以3B E12B E20(2)如图5,以CE 为对称轴,构造△CFE≌△CBE,那么FE=BE,∠CFE=∠B=45°.联结DF.由“边角边”证明△CFD≌△CAD,所以FD=AD,∠CFD=∠A=45°.所以△DEF 是直角三角形,FD2+FE2=DE2.所以AD2+BE2=DE2.【解法二】如图 6,绕点C 将△CBE 逆时针旋转 90°得到△CAG,那么AG=BE,CE =CG,∠CAG=∠B=45°.由“边角边”证明△CDG≌△CDE,所以DG=DE.在 Rt△GDA 中,AD2+AG2=DG2.所以AD2+BE2=DE2.图 5 图 6(3)如图 7,作CH⊥AB 于H.在 Rt△ABC 中,AC=3,BC=4,所以AB=5.于是可得CH 12 ,BH 16 ,9AH .5 5 5所以DH 9 x,16EH y .5 5如图 8,以H 为旋转中心,将点D 逆时针旋转 90°得到点P,将点E 顺时针旋转 90°得到点Q.于是可得△CDP∽△ECQ.由PD QC,得PD QE PC QC .PC QE所以2(9 x) 2(16 y ) 12 (9 x )12 (16 y )5 5 5 5 5 5.整理,得2860xy5x 21.157 定义域是0≤x≤15 7.当B、E 重合时x=.图 7 图 821考点伸展第(3)题解法多样,再介绍三种解法:如图 9,过点C 作AB 的平行线KL.构造等腰直角三角形KDD′和LEE′.由△CDE∽△KCD,△CDE∽△LEC,得△KCD∽△LEC.所以KC DK,即KC CL=LE DK .LE CL所以12 (9 )12 (16 ) 12 2 12 2x y55555 5.整理即可.如图 10,分别以CD、CE 为对称轴,作CH 的对应线段CK、CL,再围成正方形CKRL.在 Rt△DER 中,由DR2+ER2=DE2,得2 2129121 6(x)(y)(5x y)25555.整理即可.如图 11,类似第(2)题的第一种解法,在 Rt△A′B′T 中,A′B′=CB-CA=1,所以A′T=35 ,B′T= 4 5.在 Rt△DET 中,DE=5-x-y,TE=y 4,T D= 3x ,由勾股定理,得5 52 4 23 2(5x y ) (y ) (x ) .整理即可.5 5图 9 图 10 图 1122例2017年上海市嘉定区中考模拟第24题如图 1,在平面直角坐标系中,已知点A 的坐标为(3, 1),点B 的坐标为(6, 5),点C 的坐标为(0, 5),某二次函数的图像经过A、B、C 三点.(1)求这个二次函数的解析式;(2)假如点Q 在该二次函数图像的对称轴上,且△ACQ 是等腰三角形,请直接写出点Q 的坐标;(3)如果点P 在(1)中求出的二次函数的图像上,且 tan∠PCA=12,求∠PCB 的正弦值.图 1动感体验请打开几何画板文件名“17 嘉定 24”,可以体验到,当AD⊥AC,且AC=2AD 时,点D 的位置是确定的,射线CD 与抛物线的交点就是点P.思路点拨1.由B、C 两点的坐标可知抛物线的对称轴是直线x=3,再由点A 的坐标可知点A 就是抛物线的顶点,因此设顶点式比较简便.2.分三种情况讨论等腰三角形ACQ:AQ=AC,CQ=CA,QA=QC.3.第(3)题的解题策略是:根据 tan∠PCA=12,过点A 作AC 的垂线,在垂线上截取AD=12AC,那么点P 就是射线CD 与抛物线的交点,∠DCB 就是∠PCB.不用求点P的坐标,求点D 的坐标就好了.图文解析(1)由B(6, 5)、C(0, 5),可知抛物线的对称轴是直线x=3.由A(3, 1),可知点A 是抛物线的顶点.设二次函数的解析式为y=a(x-3)2+1,代入点B(6, 5),得 9a+1=5.4 4 4 8解得a .所以y (x 3)2 1x 2 x 5.9 9 9 33 3(2)点Q 的坐标为(3, 6),(3,-4),(3, 9)或(3, )8.(3)如图 2,绕着点A 将线段AC 的中点旋转 90°得到点D,那么射线CD 与抛物线的交点就是要求的点P.当点D 在CA 左侧时,射线CD 与抛物线没有交点.如图 3,当点D 在CA 右侧时,作DE⊥x 轴于E,那么∠DCE 就是∠PCB.过点A 作x 轴的平行线交y 轴于M,过点D 作DN⊥AM 于N.CM MA AC由△CMA∽△AND,得 2 .AN ND DA所以A N 1C M ,1 32N D M A .22 223在 Rt△CDE 中,CE=MA+AN=3+2=5,ED=CM-ND=3 5 4,2 2所以 tan∠DCE=E DC E=12.所以 sin∠DCE=55,即 sin∠PCB=55.图 2 图 3考点伸展第(2)题分三种情况讨论等腰三角形ACQ:①如图 4,当AQ=AC=5 时,以A 为圆心、以AC 为半径的圆与对称轴有两个交点,所以点Q 的坐标为(3, 6) 或(3,-4).②如图 5,当CQ=CA 时,点C 在AQ 的垂直平分线上,此时点Q 的坐标为(3, 9).③如图 6,当QA=QC 时,点Q 在AC 的垂直平分线上,此时1 4A C A Q.2 5所以AQ=58AC =2583 3.此时点Q 的坐标为(3, )8.图 4 图 5 图 6 24例2017年上海市嘉定区中考模拟第25题已知AB=8,⊙O 经过点A、B,以AB 为一边画平行四边形ABCD,另一边CD 经过点O(如图 1).以点B 为圆心,BC 长为半径画弧,交线段OC 于点E(点E 不与点O、点C 重合).(1)求证:OD=OE;(2)如果⊙O 的半径长为 5(如图 2),设OD=x,BC=y,求y 与x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为 5,联结AC,当BE⊥AC 时,求OD 的长.图 1 图 2 备用图动感体验请打开几何画板文件名“17 嘉定 25”,拖动点D 运动,可以体验到,四边形ABED 保持等腰梯形的形状,△BCE 保持等腰三角形的形状,垂足H 的位置保持不变,MH 的位置保持不变.双击按钮“AC⊥BE”,可以体验到,点C 恰好落在圆上,MH 等于EC 与AB 和的一半.思路点拨1.根据等腰梯形是轴对称图形,很容易知道点O 是DE 的中点.2.第(2)题中,等腰三角形BCE 的高BH 为定值,先用x 表示EC,再用勾股定理就可以表示BC 了.3.第(3)题如何利用BE⊥AC,常规的方法是过点C 作BE 的平行线得到直角三角形.图文解析(1)如图 3,因为四边形ABCD 是平行四边形,所以AD=BC.又因为BE=BC,所以AD=BE.所以四边形ABED 是等腰梯形.因为圆心O 在弦AB 的垂直平分线上,所以点O 是上底DE 的中点,即OD=OE.图 3 图 425例2017年上海市静安区中考模拟第24题如图 1,已知二次函数 1 2y x bx c 的图像与x 轴的正半轴交于点A(2, 0)和点B,2与y 轴交于点C,它的顶点为M,对称轴与x 轴相交于点N.(1)用b 的代数式表示点M 的坐标;(2)当 tan∠MAN=2 时,求此二次函数的解析式及∠ACB 的正切值.图 1动感体验请打开几何画板文件名“17 静安 24”,拖动点N 运动,观察∠MAN 的正切值的度量值,可以体验到,当 tan∠MAN=2 时,△OBC 是等腰直角三角形.思路点拨1.第(1)题分三步:根据抛物线的解析式写出对称轴x=b;代入点A 的坐标,用b表示c;求x=b 时y 的值,得到顶点的纵坐标.2.第(2)题先根据 tan∠MAN=2 求b 的值,确定点B、C 的坐标,再作BC 边上的高AH,解直角三角形ABH 和直角三角形ACH.图文解析(1)由 1 2y x bx c ,得抛物线的对称轴为直线x=b.2将点A(2, 0)代入 1 2y x bx c ,得-2+2b+c=0.所以c=2-2b.2当x=b 时, 1 2 2 2 1 2 2 2 1 ( 2)2y x bx b b b b .2 2 2所以抛物线的顶点M 的坐标可以表示为( , 1 ( 2)2 )b b .2MN(2)当 tan∠MAN=2 时, 2 ,即MN=2AN.AN解方程1 ( 2)2 2( 2)b b ,得b=6,或b=2(与A 重合,舍去).2此时抛物线的解析式为 1 2 6 10y x x ,A(2, 0),B(6, 0),C(0,-10).2所以AB=8,OB=OC=10.所以BC=10 2 ,∠B=45°.27作AH⊥BC 于H,那么AH=BH=4 2 .在 Rt△ACH 中,CH=BC-BH=6 2 ,所以 tan∠ACB=A HC H=23 .图 2考点伸展第(2)题上面的解法是利用“边角边”,作高先求高.也可以利用“边边边”,作高不设高.由A(2, 0),B(6, 0),C(0,-10),得AB=8,BC=10 2 ,AC=104 .设CH=m,那么BH=10 2 m.由AH2=AC2-CH2,AH2=AB2-BH2,得AC2-CH2=AB2-BH2.解方程( 104)2 m2 82 (10 2 m)2 ,得m CH 6 2 .所以AH2=AC2-CH2=( 104)2 (6 2)2 =32.所以AH=4 2 .28例2017年上海市静安区中考模拟第25题如图 1,已知⊙O 的半径OA 的长为 2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C,AC 的延长线与⊙O 相交于点D.设线段AB 的长为x,线段OC 的长为y.(1)求y 关于x 的函数解析式,并写出定义域;(2)当四边形ABDO 是梯形时,求线段OC 的长.图 1图文解析(1)如图 1,因为OA=OB,所以∠OAB=∠B.因为AC=AB,所以∠ACB=∠B.所以∠OAB=∠ACB.所以△OAB∽△ACB.所以B O B A,即2xB A B Cx 2 y.整理,得 2 1 2y x .定义域是 0≤x≤2.x=2 的几何意义如图 2 所示.2图 1 图 2(2)梯形ABDO 存在两种情况:①如图 3,当AB//OD 时,A B C B,即x2y.整理,得(x+2)y=4.D O C O2y代入y 2 1 x2 ,得( 2)(2 1 2 ) 4x x .整理,得x2+2x-4=0.2 2解得x= 5 1,或x= 5 1(舍去).所以CO=y=2 1 2 =2 1 ( 5 1)2x= 5 1.事实上,此时点C 是线段OB 的黄2 2金分割点.。

(2018上海市嘉定区初三数学二模)2017学年宝山嘉定九年级第二次质量调研-数学试卷及评分标准

(2018上海市嘉定区初三数学二模)2017学年宝山嘉定九年级第二次质量调研-数学试卷及评分标准

(2018上海市嘉定区初三数学二模)2017学年宝山嘉定九年级第二次质量调研-数学试卷及评分标准2017学年宝山嘉定九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】一、选择题:(本大题共6题,每题4分,满分24分)1.下列说法中,正确的是(▲)(A )0是正整数; (B )1是素数; (C )22是分数; (D )722是有理数. 2.关于x 的方程022=--mx x根的情况是(▲)(A )有两个不相等的实数根; (B )有两个相等的实数根;(C )没有实数根; (D )无法确定.3. 将直线x y 2=向下平移2个单位,平移后的新直线一定不经过的象限是(▲)(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限. 4. 下列说法正确的是(▲)(A )一组数据的中位数一定等于该组数据中的某个数据;(B )一组数据的平均数和中位数一定不相等; (C )一组数据的众数可以有几个;(D )一组数据的方差一定大于这组数据的标准差. 5.对角线互相平分且相等的四边形一定是(▲) (A )等腰梯形; (B )矩形; (C )菱形; (D )正方形.6.已知圆1O 的半径长为cm 6,圆2O 的半径长为cm 4,圆心距cmOO 321=,那么圆1O 与圆2O 的位置关系是(▲)(A )外离; (B )外切; (C )相交; (D )内切.二、填空题(本大题共12题,每题4分,满分48分) 7.计算:=4 ▲ .8.一种细菌的半径是00000419.0米,用科学记数法把它表示为 ▲ 米. 9. 因式分解:=-x x42▲ .10.不等式组⎩⎨⎧>+≤-063,01x x 的解集是 ▲ . 11.在一个不透明的布袋中装有2个白球、8个红球和5个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是 ▲ . 12.方程23=+x 的根是 ▲ .13.近视眼镜的度数y (度)与镜片焦距x (米)呈反比例,其函数关系式为x y 120=.如果近似眼镜镜片的焦距3.0=x 米,那么近视眼镜的度数y 为 ▲ . 14.数据1、2、3、3、6的方差是 ▲ . 15.在△ABC 中,点D 是边BC 的中点,a AB =,b AC =,那么= ▲ (用、表示).16.如图1,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,5:2:=DE DF ,BD EF ⊥,那么=∠ADB tan▲ .17.如图2,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么AOC ∠度数为 ▲ 度.18.如图3,在△ABC 中,5==AC AB ,6=BC ,点D 在边AB上,且︒=∠90BDC .如果△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点1D ,那么线段1DD的长为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:xx x x x --+++-2321422,其中32+=x .OAC图ABCD图BACDF图20.(本题满分10分)解方程组:⎩⎨⎧=+-=+.144,3222y xy x y x21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数;(2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.22.(本题满分10分,第(1)小题5分,第(2)小题5分)有一座抛物线拱型桥,在正常水位时,水面BC 的宽为10米,拱桥的最高点D 到水面BC 的距离DO 为4米,点O 是BC 的中点,如图5,以点O 为原点,直线BC 为x 轴,建立直角坐标系xOy . (1)求该抛物线的表达式;(2)如果水面BC 上升3米(即3=OA )至水面EF ,点E 在点F 的左侧,图DC B A求水面宽度EF 的长.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在边CD 的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E .(1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AEAC AM ⋅=2.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)CANDM E图6xy 图5DE C OBFA已知平面直角坐标系xOy (如图7),直线m x y +=的经过点)0,4(-A 和点)3,(n B . (1)求m 、n 的值; (2)如果抛物线cbx xy ++=2经过点A 、B ,该抛物线的顶点为点P ,求ABP ∠sin 的值;(3)设点Q 在直线m x y +=上,且在第一象限内,直线mx y +=与y 轴的交点为点D ,如果DOBAQO ∠=∠,求点Q 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB 上,图7Oxy10=OA ,12=AC ,AC ∥OB ,联结AB .(1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出 点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD与弦AB 交于点E ,设点D 与点C 的距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.AC图OACB图OAC图O DE2017学年宝山嘉定九年级第二次质量调研数学试卷参考答案与评分标准一、1. D ;2. A ;3.B ;4. C ;5. B ;6. C . 二、7.2;8.61019.4-⨯;9.)4(-x x ;10.12≤<-x ;11.31;12.1=x ;13.400;14.514;15.b a 2121+;16.2;17.︒120;18.2542. 三、19.解:原式2321)2)(2(2-+++++-=x x x x x x …………2分)2)(2()2(3)2)(1(2+-++-++=x x x x x x ………………………1分)2)(2(442+-++=x x x x …………………………………………2分)2)(2()2(2+-+=x x x ………………………2分22-+=x x …………………………………………1分 把32+=x 代入22-+x x 得: 原式232232-+++=………………1分1334+=………………………………1分20. ⎩⎨⎧=+-=+.144,3222yxy x y x ②① 解:由②得:1)2(2=-y x ……………………2分即:12=-y x 或12-=-y x …………………2分 所以原方程组可化为两个二元一次方程组:⎩⎨⎧=-=+;12,32y x y x ⎩⎨⎧-=-=+;12,32y x y x ………………2分 分别解这两个方程组,得原方程组的解是⎩⎨⎧==;1,111y x ⎪⎪⎩⎪⎪⎨⎧==.57,5122y x …………4分.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分∵AD AC =∴D ACD ∠=∠ …………………1分∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CH AH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分图 D CB A H∴梯形ABCD的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 22.解:(1)根据题意:该抛物线的表达式为:b ax y +=2………………1分∵该抛物线最高点D 在y 轴上,4=DO ,∴点D 的坐标为)4,0(………1分∵10=BC ,点O 是BC 的中点 ∴点B 的坐标为)0,5(-∴254-=a ,4=b …2分∴抛物线的表达式为:42542+-=xy …………………1分(2)根据题意可知点E 、点F 在抛物线42542+-=xy 上,EF ∥BC ……1分∵3=OA ∴点E 、点F 的横坐标都是3,…1分∴点E 坐标为)3,25(-……………1分 , 点F 坐标为)3,25(……1分 ∴5=EF (米)……………1分 答水面宽度EF 的长为5米. 23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD (1)分∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分 ∴△ABM≌△ADN………………………1分∴AN AM = (1)分 (2)∵四边形ABCD 是正方形 ∴AC 平分BCD∠和BAD ∠∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE ∴ANE ACM ∠=∠…………………1分∴△ACM ∽△ANE …………1分 ∴AN ACAE AM =……1分 ∵AN AM = ∴AE AC AM ⋅=2…………1分24.解:(1) ∵直线m x y +=的经过点)0,4(-A∴04=+-m ……………………1分∴4=m ………………………………1分 ∵直线m x y +=的经过点)3,(n B ∴34=+n ……………………1分∴1-=n …………………………………………1分CA N D ME 图6(2)由可知点B 的坐标为)3,1(-∵抛物线c bx x y ++=2经过点A 、B∴⎩⎨⎧=+-=+-310416c b c b ∴6=b , 8=c∴抛物线c bx x y ++=2的表达式为862++=x x y …………………1分∴抛物线862++=x x y 的顶点坐标为)1,3(--P ……………1分∴23=AB ,2=AP ,52=PB ∴222PB BP AB =+ ∴︒=∠90PAB ……………………………………1分∴PB APABP =∠sin∴1010sin =∠ABP …………………………………………1分(3)过点Q 作x QH ⊥轴,垂足为点H ,则QH ∥y轴∵DOB AQO ∠=∠,QBO OBD ∠=∠∴△OBD ∽△QBO∴OBDB QB OB =……………1分 ∵直线4+=x y 与y 轴的交点为点D ∴点D 的坐标为)4,0(,4=OD 又10=OB ,2=DB∴25=QB ,24=DQ ……………1分 ∵23=AB∴28=AQ ,24=DQ ∵QH ∥y 轴 ∴AQADQH OD = ∴28244=QH ∴8=QH ……………………………………1分即点Q 的纵坐标是8 又点Q 在直线4+=x y 上点Q 的坐标为)8,4(……………1分25.(1)证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分∴B OAB ∠=∠…………1分 ∵AC ∥OB ∴B BAC ∠=∠…………1分∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分(2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况: ︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H ∵OH 经过圆心 ∴AC HC AH 21==∵12=AC ∴6==HC AH在Rt △AHO 中,222OA HO AH =+∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMBA C图O A C B图O M H∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB∴20=AM8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分.(3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin由(2)可得:55sin =∠CAB∵10=OA ∴52=OG ……………1分 ∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB∴xBEBE -=-121058 ∴x BE -=22580 ……………1分 ∴52225802121⨯-⨯=⨯⨯=xOG BE y ∴xy -=22400……………1分 自变量x 的取值范围为120<≤x ……………1分ACB图OMA C图O D E G。

上海市嘉定区2017届高三数学第二次(4月)质量调研试题(含解析)

上海市嘉定区2017届高三数学第二次(4月)质量调研试题(含解析)

2016-2017年上海市嘉定区高三第二次(4月)质量调研数学一、填空题:共12题1.函数的最小正周期是________________.【答案】【解析】本题考查二倍角公式,三角函数的性质.由题意得,其周期.即函数的最小正周期是.2.设i为虚数单位,复数,则____________.【答案】【解析】本题考查复数的概念与运算.==;所以.3.设为的反函数,则_____________.【答案】【解析】本题考查反函数.令,解得,所以.4._______________.【解析】本题考查极限..5.若圆锥的侧面积是底面积的倍,则其母线与轴所成角的大小是______________. 【答案】【解析】本题考查圆锥.由题意得,即,所以,即.即母线与轴所成角的大小是.6.设等差数列的前项和为,若,则___________.【答案】【解析】本题考查等差数列.因为,解得;所以. 【备注】等差数列:,7.直线(为参数)与曲线(为参数)的公共点的个数是______________.【解析】本题考查直线、曲线的参数方程.削参得直线的普通方程:;削参得曲线的普通方程:;圆心到直线的距离,即直线与圆相切,所以直线与曲线的公共点的个数是1.8.已知双曲线与双曲线的焦点重合,的方程为,若的一条渐近线的倾斜角是的一条渐近线的倾斜角的倍,则的方程为__________________.【答案】【解析】本题考查双曲线的标准方程与几何性质.由题意得的焦点为,所以双曲线的焦点为,即;而的一条渐近线为,其斜率,即的一条渐近线的倾斜角;而的一条渐近线的倾斜角是的一条渐近线的倾斜角的倍,所以的一条渐近线的倾斜角为,其斜率,即的一条渐近线为,即;而,解得,,所以的方程为.【备注】双曲线,离心率,,渐近线为.9.若,则满足的的取值范围是_______________.【答案】【解析】本题考查幂函数.由题意得,若,则,即,即;所以满足的的取值范围是.10.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品,乙组研发新产品,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为______________.【答案】【解析】本题考查互斥事件的概率.由题意得至少有一种新产品研发成功的概率.11.设等差数列的各项都是正数,前项和为,公差为.若数列也是公差为的等差数列,则的通项公式_____________.【答案】【解析】本题考查等差数列,数列求和.因为数列是公差为的等差数列,所以;即,,解得,;所以.即的通项公式.【备注】等差数列:,.12.设,用表示不超过的最大整数(如),对于给定的,定义,其中,则当时,函数的值域是____________________.【答案】【解析】本题考查函数的值域,新定义问题.当时,函数,此时单减,可得;当时,函数,此时单减,可得;所以当时,函数的值域是.二、选择题:共4题每题5分共20分13.命题“若,则”的逆否命题是A.若,则B.若,则C.若,则D.若,则【答案】D【解析】本题考查命题及其关系.命题“若,则”的逆否命题是“若,则”.选D.14.如图,在正方体中,、是的三等分点,、是的三等分点,、分别是、的中点,则四棱锥的左视图是A. B.C. D.【答案】C【解析】本题考查三视图.由题意得四棱锥的左视图是C.选C.15.已知△是边长为的等边三角形,、是△内部两点,且满足,则△的面积为A. B. C. D.【答案】A【解析】本题考查平面向量的线性运算.取的中点,连接,则,;因为,所以,即;而,所以,且;所以.选A.16.已知是偶函数,且在上是增函数,若在上恒成立,则实数的取值范围是A. B. C. D.【答案】B【解析】本题考查函数的性质,不等式恒成立问题.由题意得在上恒成立,即在上恒成立,即在上恒成立,即在上恒成立,所以,而,所以.即实数的取值范围是.选B.三、解答题:共5题17.在△中,内角、、所对的边分别为、、,已知(1)求△的面积;(2)求的值.【答案】(1)因为,所以由正弦定理得;又,故,所以;因为,所以.所以.(2)因为,所以,,因为,所以为锐角;所以(或由得到).所以.【解析】本题考查差角公式,二倍角公式,正余弦定理,三角形的面积公式.(1)由正弦定理得,而,故,由余弦定理得,所以,由三角形的面积公式得.(2)由二倍角公式得,,,由差角公式得.18.如图,在长方体中,,平面截长方体得到一个矩形,且.(1)求截面把该长方体分成的两部分体积之比;(2)求直线与平面所成角的正弦值.【答案】(1)由题意,平面把长方体分成两个高为的直四棱柱,,,所以,.(2)解法一:作,垂足为,由题意,平面,故,所以平面.因为,所以,)因为,所以.又,设直线与平面所成角为,则.所以,直线与平面所成角的正弦值为.解法二:以、、所在直线分别为轴、轴、轴建立空间直角坐标系,则,故,设平面一个法向量为,则,即,即.设直线与平面所成角为,则.所以,直线与平面所成角的正弦值为.【解析】本题考查空间几何体的体积,线面垂直,空间向量的应用.(1)求得,,所以.(2)建立恰当的空间直角坐标系,求得平面的法向量,求得.所以直线与平面所成角的正弦值为.19.如图,已知椭圆)过点,两个焦点为和.圆的方程为.(1)求椭圆的标准方程;(2)过且斜率为)的动直线与椭圆交于、两点,与圆交于、两点(点、在轴上方),当成等差数列时,求弦的长.【答案】(1)由题意得;设椭圆的方程为,将点代入,解得舍去),所以,椭圆的方程为.(2)由椭圆定义,,两式相加,得;因为成等差数列,所以;于是,即.设,由,解得,所以,直线的方程为,即,圆的方程为,圆心到直线的距离,此时,弦的长.【解析】本题考查椭圆的标准方程,直线与圆的位置关系,等差数列.(1)由题意求得,,所以椭圆的方程为.(2)由椭圆的定义得;因为成等差数列,求得.联立方程求得,所以,为,求得圆心到直线的距离,.20.如果函数的定义域为,且存在实常数,使得对于定义域内任意,都有成立,则称此函数具有“性质”.(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值的集合;若不具有“性质”,请说明理由;(2)已知函数具有“性质”,且当时,,求函数在区间上的值域;(3)已知函数既具有“性质”,又具有“性质”,且当时,,若函数的图像与直线有个公共点,求实数的值.【答案】(1)由题意,,即对于任意实数成立,由诱导公式,函数具有“性质”,且所有的值的集合为.(2)因为函数具有“性质”,所以,即是偶函数.所以当时,.当时,函数在上递增,值域为.当时,函数在上递减,在上递增,,值域为.同理,当时,,值域为.当时,函数在上递减,值域为.(3)由题意,函数偶函数,又,所以函数是以为周期的函数.因为当时,,所以当时,,一般地,当)时,.作出函数的图像,可知,当时,函数与直线交于点(),即有无数个交点,不合题意.当时,在区间上,函数有个周期,要使函数的图像与直线有个交点,则直线在每个周期内都有个交点,且第个交点恰好为,所以.同理,当时,.综上,.【解析】本题考查函数的图像、性质与最值.(1)经验证具有“性质”,且所有的值的集合为.(2)具有“性质”,所以是偶函数.对m 分情况讨论,可得的值域.(3)由题意为偶函数,以为周期的函数.求得当)时,.作出函数的图像,数形结合求得.21.给定数列,若满足且),对于任意的,都有,则称数列为指数数列.(1)已知数列的通项公式分别为,试判断是不是指数数列(需说明理由);(2)若数列满足:,证明:是指数数列;(3)若数列是指数数列,),证明:数列中任意三项都不能构成等差数列.【答案】(1)对于数列,,,;因为,所以不是指数数列.对于数列,对任意,因为,所以是指数数列.(2)由题意,,所以数列是首项为,公比为的等比数列.所以.所以=,即的通项公式为).所以,故是指数数列.(3)因为数列是指数数列,故对于任意的,有;令,则,所以是首项为,公比为的等比数列; 所以.假设数列中存在三项构成等差数列,不妨设,则由,得,所以,当为偶数时,是偶数,而是偶数,是奇数,故不能成立;当为奇数时,是偶数,而是奇数,是偶数,故也不能成立.所以,对任意不能成立,即数列的任意三项都不成构成等差数列.(另证:因为对任意一定是偶数,而与为一奇一偶,故与也为一奇一偶,故等式右边一定是奇数,等式不能成立.)【解析】本题考查新定义问题,等差、等比数列,数列求和.(1)因为,所以不是指数数列.因为,所以是指数数列.(2)证得数列是等比数列,所以.累加求得.满足,故是指数数列.(3)因为数列是指数数列,有;令得.反证法,推出矛盾,所以数列的任意三项都不成构成等差数列.。

中考数学 二模 25题

中考数学 二模 25题

1.(2017年嘉定宝山)已知:8=AB ,⊙O 经过点A 、B .以AB 为一边画平行四边形ABCD ,另一边CD 经过点O (如图8).以点B 为圆心,BC 为半径画弧,交线段OC 于点E (点E 不与点O 、点C 重合).(1)求证:OE OD =;(2)如果⊙O 的半径长为5(如图9),设x OD =,y BC =,求y 关于x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为5,联结AC ,当AC BE ⊥时,求OD 的长.2.(2017年普陀)如图10,半圆O 的直径AB =10,有一条定长为6的动弦CD 在弧AB 上滑动(点C 、点D 分别不与点A 、点B 重合),点E 、F 在AB 上,EC ⊥CD ,FD ⊥CD . (1)求证:EO OF =;(2)联结OC ,如果△ECO 中有一个内角等于45 ,求线段EF 的长; (3)当动弦CD 在弧AB 上滑动时,设变量CE x =,四边形CDFE 面积为S ,周长为l ,问:S 与l 是否分别随着x 的变化而变化?试用所学的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.图9 B O A 备用图 B OA 图8 E CB A O D 图103.(2017年崇明)如图,梯形ABCD 中,AB CD ∥,90ABC ∠=︒,6AB =,8BC =,tan 2D =,点E 是射线CD 上一动点(不与点C 重合),将BCE ∆沿着BE 进行翻折,点C 的对应点记为点F . (1)如图1,当点F 落在梯形ABCD 的中位线MN 上时,求CE 的长;(2)如图2,当点E 在线段CD 上时,设CE x =,BFC EFCS y S ∆∆=,求y 与x 之间的函数关系式,并写出定义域;(3)如图3,联结AC ,线段BF 与射线CA 交于点G ,当CBG ∆是等腰三角形时,求CE 的长.ABCDEFM NEDCFABEDC FAB GD CAB(第25题图1)(第25题图2)(第25题图3)(第25题备用图)4.(2017年杨浦)已知:以O 为圆心的扇形AOB 中,∠AOB =90°,点C 为»AB 上一动点,射线AC 交射线OB 于点D ,过点D 作OD 的垂线交射线OC 于点E ,联结AE . (1) 如图1,当四边形AODE 为矩形时,求∠ADO 的度数; (2) 当扇形的半径长为5,且AC =6时,求线段DE 的长;(3) 联结BC ,试问:在点C 运动的过程中,∠BCD 的大小是否确定?若是,请求出它 的度数;若不是,请说明理由.5.(2017年奉贤)已知:如图9,线段AB =4,以AB 为直径作半圆O ,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC ,过点C 作CD //AB ,且CD =PC ,过点D 作DE//PC ,交射线PB 于点E ,PD 与CE 相交于点Q . (1)若点P 与点A 重合,求BE 的长; (2)设PC = x ,y CEPD,当点P 在线段AO 上时,求y 与x 的函数关系式及定义域; (3)当点Q 在半圆O 上时,求PC 的长.图9ACPOBD E Q备用图AO BCA OBCD E(备用图) A O B CD E (图1)6.(2017年闵行)如图,在梯形ABCD 中,AD // BC ,∠B = 90°,AB = 4,BC = 9,AD = 6.点E 、F 分别在边AD 、BC 上,且BF = 2DE ,联结FE .FE 的延长线与CD 的延长线相交于点P .设DE = x ,PEy EF . (1)求y 关于x 的函数解析式,并写出函数的定义域;(2)当以ED 为半径的⊙E 与以FB 为半径的⊙F 外切时,求x 的值;(3)当△AEF ∽△PED 时,求x 的值.7.(2017年长宁金山)如图,△ABC 的边AB 是⊙O 的直径,点C 在⊙O 上,已知AC =6 cm ,BC =8 cm ,点P 、Q 分别在边AB 、BC 上,且点P 不与点A 、B 重合,BQ =k ·AP (k >0),连接PC 、PQ . (1)求⊙O 的半径长; (2)当k =2时,设AP =x ,△CPQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△CPQ ∽△ABC ,且∠ACB =∠CPQ ,求k 的值.第25题图A B CDE F P (第25题图)A B C D (备用图)EP 第25题图 C AB D8.(2017年虹口)如图,在△ABC 中,AB=AC =5,cos B =45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D ,∠BPD=∠BAC .以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E ,联结CE ,设BD=x ,CE=y . (1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域; (3)如果⊙O 与⊙P 相交于点C 、E ,且⊙O 经过点B ,当OP=54时,求AD 的长.9.(2017年浦东新区)如图所示,︒=∠45MON ,点P 是MON ∠内一点,过点P 作OM PA ⊥于点A 、ON PB ⊥于点B ,且22=PB .取OP 的中点C ,联结AC 并延长,交OB 于点D .(1)求证:OPB ADB ∠=∠;(2)设x PA =,y OD =,求y 关于x 的函数解析式;(3)分别联结AB 、BC ,当ABD △与CPB △相似时,求PA 的长.(第25题图)(备用图)10.(2016年崇明)如图,已知BC 是半圆O 的直径,8BC =,过线段BO 上一动点D ,作AD BC ⊥交半圆O 于点A ,联结AO ,过点B 作BH AO ⊥,垂足为点H ,BH 的延长线交半圆O 于点F . (1)求证:AH BD =;(2)设BD x =,BE BF y ⋅=,求y 关于x 的函数关系式;(3)如图2,若联结FA 并延长交CB 的延长线于点G ,当FAE ∆与FBG ∆相似时,求BD 的长度.11.(2016年宝山嘉定)如图8,⊙O 与过点O 的⊙P 相交于AB ,D 是⊙P 的劣弧OB 上一点,射线OD 交⊙O 于点E ,交AB 的延长线于点C .如果AB =24,32tan =∠AOP . (1) 求⊙P 的半径长;(2) 当△AOC 为直角三角形时,求线段OD 的长; (3) 设线段OD 的长度为x ,线段CE 的长度为y ,求y 与x 之间的函数关系式及其定义域.(第25题图1)ABDOE HFC(第25题图2) CO D B G A F H E 图8_C _ E _B _O_P_A_ D12.(2016年长宁金山)如图, 已知在Rt △ABC 中, ∠ACB =90°, AB =5, 4sin 5A, P 是边BC 上的一点, PE ⊥AB , 垂足为E , 以点P 为圆心, PC 为半径的圆与射线PE 相交于点Q , 线段CQ 与边AB 交于点D . (1)求AD 的长;(2)设CP =x , △PCQ 的面积为y , 求y 关于x 的函数解析式, 并写出定义域;(3)过点C 作CF ⊥AB , 垂足为F , 联结PF 、QF , 如果△PQF 是以PF 为腰的等腰三角形, 求CP 的长.13.(2016年闸北)如图,在△ABC 中,AB=AC=6,BC=4,⊙B 与边AB 相交于点D ,与边BC 相交于点E ,设⊙B 的半径为x . (1)当⊙B 与直线AC 相切时,求x 的值;(2)设DC 的长为y ,求y 关于x 的函数解析式,并写出定义域; (3)若以AC 为直径的⊙P 经过点E ,求⊙P 与⊙B 公共弦的长.BCAP EQDBCACB ADE (第25题图)14.(2016年闵行)如图,已知在△ABC 中,AB = AC = 6,AH ⊥BC ,垂足为点H .点D 在边AB 上,且AD = 2,联结CD 交AH 于点E .(1)如图1,如果AE = AD ,求AH 的长;(2)如图2,⊙A 是以点A 为圆心,AD 为半径的圆,交线段AH 于点F .设点P 为边BC 上一点,如果以点P 为圆心,BP 为半径的圆与⊙A 外切,以点P 为圆心,CP 为半径的圆与⊙A 内切,求边BC 的长;(3)如图3,联结DF .设DF = x ,△ABC 的面积为y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围.15.(2016年松江)已知:如图1,在梯形ABCD 中,AD //BC ,∠BCD =90º, BC=11,CD=6,tan ∠ABC =2,点E 在AD 边上,且AE=3ED ,EF //AB 交BC 于点F ,点M 、N 分别在射线FE 和线段CD 上.(1)求线段CF 的长; (2)如图2,当点M 在线段FE 上,且AM ⊥MN ,设FM ·cos ∠EFC =x ,CN =y ,求y 关于x 的函数解析式,并写出它的定义域;(3)如果△AMN 为等腰直角三角形,求线段FM 的长.AB C H D (第25题图1) E AB C H D E(第25题图3) F P AB C H D E(第25题图2) F (第25题图1)AC B DE F(第25题图2)AC B DE FNM (备用图)A CBDE F16.(2016年黄埔)如图7,在Rt △ABC 中,90ACB ∠=︒,1AC =,BC =7,点D 是边CA 延长线上的一点,AE ⊥BD ,垂足为点E ,AE 的延长线交CA 的平行线BF 于点F ,联结CE 交AB 于点G .(1)当点E 是BD 的中点时,求tan AFB ∠的值;(2)CE AF 的值是否随线段AD 长度的改变而变化,如果不变,求出CE AF 的值;如果变化,请说明理由;(3)当BGE ∆与BAF ∆相似时,求线段AF 的长.19.(2016年杨浦)已知:半圆O 的直径AB =6,点C 在半圆O 上,且tan 22ABC ∠=,点D 为AC 上一点,联结DC (如图).(1)求BC 的长;(2)若射线DC 交射线AB 于点M ,且△MBC 与△MOC 相似,求CD 的长; (3)联结OD ,当OD//BC 时,作∠DOB 的平分线交线段DC 于点N ,求ON 的长.图7AB C DEF G (第25题备用图) A B O C A B O C D(第25题图)20.(2016年奉贤) 已知:如图,在边长为5的菱形ABCD 中,cos A =35,点P 为边AB 上一点,以A 为圆心、AP 为半径的⊙A 与边AD 交于点E ,射线CE 与⊙A 另一个交点为点F . (1)当点E 与点D 重合时,求EF 的长;(2)设AP =x ,CE =y ,求y 关于x 的函数关系式及定义域;(3)是否存在一点P ,使得 2EF PE =⋅,若存在,求AP 的长,若不存在,请说明理由.21.(2016年普陀)如图9,在Rt △ABC 中,90C ∠= ,14AC =,3tan 4A =,点D 是边AC 上的一点,8AD =.点E 是边AB 上一点,以点E 为圆心,EA 为半径作圆,经过点D .点F 是边AC 上一动点(点F 不与A 、C 重合),作FG EF ⊥,交射线BC 于点G . (1)用直尺圆规作出圆心E ,并求圆E 的半径长(保留作图痕迹);(2)当点G 在边BC 上时,设AF x =,CG y =,求y 关于x 的函数解析式,并写出它的定义域;(3)联结EG ,当△EFG 与△FCG 相似时,推理判断以点G 为圆心、CG 为半径的圆G 与圆E 可能产生的各种位置关系.DCBA E F第25题图P DCBA备用图DCBA图9DCBA图9备用图22.(2016年浦东)如图,Rt △ABC 中,90ACB ∠= ,6BC =,点D 为斜边AB 的中点,点E 为边AC 上的一个动点.联结DE ,过点E 作DE 的垂线与边BC 交于点F ,以,DE EF 为邻边作矩形DEFG .(1)如图1,当8AC =,点G 在边AB 上时,求DE 和EF 的长; (2)如图2,若12DE EF =,设AC x =,矩形DEFG 的面积为y ,求y 关于x 的函数解析式; (3)若23DE EF =,且点G 恰好落在Rt △ABC 的边上,求AC 的长.23.(2015年黄埔)如图8,Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.GFED C BA 第25题 图2A BC D EFG 第25题 图1 ABCD备用图DCBA(备用图)图8GFDCB A E23.(2015年奉贤)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .23.(2015年松江区)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,AB =4,AD=3,552sin =∠BCD ,点P 是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H . (1)求证:∠BCD =∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长;(3)如图2,点E 在BC 延长线上,且满足DP =CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.DCB (第25题图)AB(备用图)AABCHPD (第25题图1)ABCHPD EF(第25题图2)23.(2015年闵行区)如图,已知在梯形ABCD 中,AD // BC ,AB = DC = 5,AD = 4.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且ME // DN ,MF // AN ,联结EF .(1)如图1,如果EF // BC ,求EF 的长;(2)如果四边形MENF 的面积是△ADN 的面积的38,求AM 的长;(3)如果BC = 10,试探索△ABN 、△AND 、△DNC 能否两两相似?如果能,求AN 的长;如果不能,请说明理由.23.(2015年嘉定)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.A B C D M N E F(图1)A B C D M NE F (第25题图)A CB (M )ED 图10ACBMED图11。

【2017年整理】宝山、嘉定区初三数学中考二模卷及答案

【2017年整理】宝山、嘉定区初三数学中考二模卷及答案

2012年宝山区(嘉定)区中考数学质量抽查试卷(满分150分,考试时间100分钟) 2012.4一、选择题:(本大题共6题,每题4分,满分24分) 1.下列计算正确的是 ( ).(A )422a a a =+; (B )236a a a =÷; (C )32a a a =⋅; (D )532)(a a =. 2.如果b a <,0<c ,那么下列不等式成立的是( ).(A) c b c a +<+; (B) c b c a +-<+-; (C) bc ac <; (D) cbc a <. 3.一次函数1-=x y 的图像不经过( ).(A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限. 4.在研究反比例函数图像与性质时,由于计算粗心,小明误认为(2-,3)、(2,3-)、(2-,3-)、(3,2-)、(23-,4)五个点在同一个反比例函数的图像上,后来经检查发现其中有一个点不在,这个点是( ).(A)(2,3-); (B) (2-,3); (C)(2-,3-); (D) (23-,4). 5.如图1,在编号为①、②、③、④的四个三角形中,关于x 轴对称的两个三角形是( ).(A )①和②; (B )②和③; (C )①和③; (D )②和④. 6.下列命题中,假命题是( ).(A )如果一个点到圆心的距离大于这个圆的半径那么这个点在圆外; (B )如果一个圆的圆心到一条直线的距离小于它的半径,那么这条直线与这个圆有两个交点(C )边数相同的正多边形都是相似图形;(D )正多边形既是轴对称图形,又是中心对称图形.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:=+-))(2(b a b a . 8.计算:111x x -=+ . 9.如果关于x 的方程290x kx ++=(k 为常数)有两个相等的实数根,则k = .10.已知函数6)(+=x x f ,若a a f =)(,则a = .11.已知一个二次函数的图像在y 轴左侧部分是上升的,在y 轴右侧部分是下降的,又经过点A (1,1).那么这个二次函数的解析式可以是 (写出符合要求的一个解析式即可).12.在一个不透明的袋子中装有2个白球,n 个红球,它们除了颜色不同外,其余均相同.若从中随机摸出一个球,摸到红球的概率是54,则n 的值等于 . (图1)13.半径为2的圆中,60°的圆心角所对的弦长为 .14.在△ABC 中,点D 、E 分别在边AB 和AC 上,且DE ∥BC ,如果AD =5,DB =10,那么ADE S ∆:ABC S ∆的值为 .15.已知△AB C 中,∠A =90°,∠B =θ,AC =b ,则AB = (用b 和θ的三角比表示).16.已知G 是△AB C 的重心,设a AB =,b AC =,那么AG = (用a 、b 表示). 17.已知⊙O 1与⊙O 2相切,⊙O 1的半径比⊙O 2的2倍还大1,又O 1O 2=7,那么⊙O 2的半径长为 .18.如图2,在平面直角坐标系中,点A 在x 轴上,点B 的坐标为(4,2),若四边形OABC 为菱形,则点C 的坐标为 . 三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:13123622127)3(-++⨯+-+--)(.20.(本题满分10分)解方程组:22229024x y x xy y ⎧-=⎪⎨-+=⎪⎩ ②①21.(本题满分10分,每小题满分各5分)如图3,已知梯形ABCD 中,AB ∥CD ,AB =13,CD =4点E 在边AB 上,DE ∥BC .(1)若CB CE =,且3tan =∠B ,求ADE ∆的面积;(2)若∠DEC =∠A ,求边BC 的长度.22.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知⊙1O 、⊙2O 外切于点T ,经过点T 的任一直线分别与⊙1O 、⊙2O 交于点A 、B , (1)若⊙1O 、⊙2O 是等圆(如图4),求证AT =BT ;(2)若⊙1O 、⊙2O 的半径分别为R 、r (如图5),试写出线段AT 、BT 与R 、r 之间始终存(图3)(图2)23.(本题满分12分,每小题满分各3分)结合“两纲教育”,某中学600名学生参加了“让青春飞扬”知识竞赛.竞赛组委会从中随机抽取了部分学生的成绩(得分都是整数,最高分98分)作为样本进行统计分析,并绘制成抽样分析分类统计表和频率分布直方图(如表1和图6,部分数据缺失).试根据所提供的信息解答下列问题:(1) 本次随机抽样调查的样本容量是 ;(2) 试估计全校所有参赛学生中成绩等第为优良的学生人数;(3) 若本次随机抽样的样本平均数为76.5,又表1中b 比a 大15,试求出a 、b 的值; (4) 如果把满足q x p ≤≤的x 的取值范围记为[p ,q ],表1中a 的取值范围是 . (A )[69.5,79.5] (B )[65,74] (C )[66.5,75.5] (D )[66,75]24.(本题满分12分,每小题满分各4分)如图7,平面直角坐标系xOy 中,已知点A (2,3),线段AB 垂直于y 轴,垂足为B ,将线段AB 绕点A逆时针方向旋转90°,点B 落在点C 处,直线BC 与x 轴的交于点D . (1)试求出点D 的坐标;(2)试求经过A 、B 、D 三点的抛物线的表达式,并写出其顶点E 的坐标;(3)在(2)中所求抛物线的对称轴上找点F 以点A 、E 、F 为顶点的三角形与△ACD表1:抽样分析分类统计表抽样分析频率分布直方图(图6) ) (图7)25.(本题满分14分,第(1) 、(2)小题满分各5分,第(3)小题满分4分)已知△ABC 中,︒=∠90ACB (如图8),点P 到ACB ∠两边的距离相等,且PA =PB . (1)先用尺规作出符合要求的点P (保留作图痕迹,不需要写作法),然后判断△ABP 的形状,并说明理由;(2)设m PA =,n PC =,试用m 、n 的代数式表示ABC ∆的周长和面积;(3)设CP 与AB 交于点D ,试探索当边AC 、BC 的长度变化时,BC CDAC CD +的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.(图 )8 B(备用图)2011学年第二学期期中考试九年级数学参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1、C ; 2、A ; 3、B ; 4、C ; 5、B ; 6、D. 二、填空题:(本大题共12题,每题4分,满分48分) 7、222b ab a --; 8、)1(1+x x ; 9、6±=k ; 10、3=a ;11、22+-=x y 【答案不唯一,如322+-=x y 等】; 12、8; 13、2; 14、91; 15、θcot ⋅=b AB 【答案不唯一,θtan b AB =等等价形式均可】;16、)(31b a+; 17、2或6; 18、(2,23,).三、解答题:(本大题共7题,满分78分)19.解:13123622127)3(-++⨯+-+--)( 231321231+++-+-= ………………………………5分23321231-++-+-=………………………………2分333-= ………………………………3分20.解:方程①可变形为 0)3)(3(=-+y x y x .得03=+y x 或03=-y x . ………………………1分方程②可变形为 4)(2=-y x . 两边开平方,得2=-y x 或 2-=-y x . ……………………1分因此,原方程组可化为四个二元一次方程组:⎩⎨⎧=-=+;2,03y x y x ⎩⎨⎧-=-=+;2,03y x y x ⎩⎨⎧=-=-;2,03y x y x ⎩⎨⎧-=-=-.2,03y x y x …………………4分 分别解这四个方程组,得原方程组的解是3,21;2x y ⎧=⎪⎪⎨⎪=-⎪⎩ ⎪⎪⎩⎪⎪⎨⎧=-=;21,23y x ⎩⎨⎧==;1,3y x ⎩⎨⎧-=-=.1,3y x ………………4分21.解:(1)分别过点C 、D 作AB CF ⊥、AB DG ⊥,交AB 于点F 、G (如图3).∵AB ∥CD∴CF DG =. ………1分 ∵AB ∥CD ,DE ∥BC , ∴CD BE =. ∵AB =13,CD =4,∴9413=-=-=BE AB AE . ………1分 ∵CB CE =,BE CF ⊥,∴242121=⨯==BE BF . ………1分 在Rt △BCF 中,由3tan =∠B ,2=BF 得=∠B tan =BFCF 3,即32=CF,6=CF . ………1分∴6==CF DG .∴27692121=⨯⨯=⋅=∆DG AE S ADE . ………1分(2)∵AB ∥CD ,∴DEA CDE ∠=∠. ………1分又∵∠DEC =∠A ,∴△CDE ∽△DEA . ………1分∴ EADE DE CD =. ………1分 ∵9=AE ,CD =4,∴94DEDE =. ∴362=DE ,6=DE (负值已舍). ………1分 ∵AB ∥CD ,DE ∥BC ,∴6==DE BC . ………1分22.(1)证明:联结1O 2O .∵⊙1O 、⊙2O 外切于点T ,∴点T 在1O 2O 上. …1分过1O 、2O 分别作AT C O ⊥1、BT D O ⊥2,垂足为C 、D (如图4), ∴ C O 1∥D O 2. …1分∴ TO T O DT CT21=. …1分∵⊙1O 、⊙2O 是等圆,∴T O T O 21=. …1分 ∴121==TO T O DT CT ,∴DT CT =. …1分 在⊙1O 中,∵AB C O ⊥1,∴AT CT AC 21==. 同理 BT DT BD 21==. … 1分B(图3)∴BT AT 2121=,即BT AT =. … 1分(2)解:线段AT 、BT 与R 、r 之间始终存在的数量关系是=BTATr R . … 3分 23.解:(1) 80 ; … 3分 (2) 成绩位于79.5~89.5的频率为25.015.03.02.01.01=+++-)(. … 1分所以全校所有参赛学生中成绩等第为优良的学生人数为24015.025.0600=+⨯)((人) … 2分(3) 本次随机抽样分析成绩不合格的人数为81.080=⨯(人),成绩优良的人数为324.080=⨯(人), … 1分依据题意,可得方程组⎪⎩⎪⎨⎧=+-=++⨯.15,5.76803240857b a ba ……1分 解得 ⎩⎨⎧==.87,72b a ……1分(4) D . ……3分 24.(本题满分12分,每小题满分各4分) 解:(1)点C 的坐标为(2,1). ……1分 设直线BC 的表达式为y mx n =+.易得3,2 1.n m n =⎧⎨+=⎩ 解得 3,1.m n =⎧⎨=-⎩……2分所以直线BC 的表达式为3+-=x y . 当0=y 时,30+-=x ,3=x .所以点D 的坐标为(3,0). ……1分 (2)设经过A 、B 、D 三点的抛物线的表达式为c bx ax y ++=2(0≠a ) ……1分易得 ⎪⎩⎪⎨⎧=++==++.039,3,324c b a c c b a ……1分解得 ⎪⎩⎪⎨⎧==-=.3,2,1c b a ……1分因此,所求的抛物线的表达式为322++-=x x y . 其顶点E 坐标为 (1,4). ……1分(图7)(3)点F 在322++-=x x y 的对称轴(即直线1=x )上,所以设点F 的坐标为(1,m ). 由题意可得 AC AB =,︒=∠90BAC ,∴ ︒=∠45ACB , ︒=∠-︒=∠135180ACB ACD .所以若以A 、E 、F 为顶点的三角形与△ACD 相似,AEF ∆必有一个角的度数为︒135,由此可得点F 必定在点E 的上方,︒=∠=∠135ACD AEF , 4-=m EF ……1分所以当CD EA CA EF =或EACD CA EF =时,以A 、E 、F 为顶点的三角形与△ACD 相似. ……1分 由点D (3,0)、C (2,1)、A (2,3)、E (1,4)易得213=-=AC ,2=CD ,2=AE .∴2224=-m 或2224=-m . 解得 6=m 或5=m . 故符合题意的点F 有两个,其坐标为(1,5)或(1,6). ……2分 25.(本题满分14分,第(1) 、(2)小题满分各5分,第(3)小题满分4分) 解:(1)依题意,点P 既在ACB ∠的平分线上,又在线段AB 的垂直平分线上.如图8—1,作ACB ∠的平分线CP ,作线段AB 的垂直平分线PM ,CP 与PM 的 交点即为所求的P 点。

2017年嘉定区高考数学二模试卷含答案

2017年嘉定区高考数学二模试卷含答案

的前
n
项和为
Sn
,若
a5 a3
5 ,则 S5
3
S3
___________.
7.直线
x
y
2 4
t t
,

t
为参数)与曲线
x y
3 5
2 cos , ( 为参数)的公共点的个数 2 sin
是______________.
8
.已知双曲线 C1 与双曲线 C2 的焦点重合, C1 的方程为
x2 3
(C)若 x2 3x 2 0 ,则 x 1
(D)若 x2 3x 2 0 ,则 x 1
14.如图,在正方体 ABCD A1B1C1D1 中, M 、 E 是
A1
AB 的三等分点, G 、 N 是 CD 的三等分点, F 、 B1 H 分别是 BC 、 MN 的中点,则四棱锥 A1 EFGH
y
PQ 的长.
P A
B ·F1 O ·F2
x
Q
20.(本题满分 16 分,第 1 小题满分 4 分,第 2 小题满分 6 分,第 3 小题满分 6 分)
如果函数 y f (x) 的定义域为 R ,且存在实常数 a ,使得对于定义域内任意 x ,都有 f (x a) f (x) 成立,则称此函数 f (x) 具有“ P(a) 性质”.
35 组研发新产品 A ,乙组研发新产品 B ,设甲、乙两组的研发相互独立 ,则至少有一

新产品研发成功的概率为______________.
11.设等差数列{an}的各项都是正数,前 n 项和为 Sn ,公差为 d .若数列 Sn 也是公差
为 d 的等差数列,则{an}的通项公式为 an _____________.

(word完整版)2017年上海市数学中考真题(含答案),推荐文档

(word完整版)2017年上海市数学中考真题(含答案),推荐文档

2017年上海市初中毕业统一学业考试数学试卷考生注意: 1.本试卷共25题;2 .试卷满分150分,考试时间100分钟3•答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 4.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的, 选择正确项的代号并填涂在答题纸的相应位置上】1.下列实数中,无理数是2.下列方程中,没有实数根的是A .k 0,且 b 0 ; B . k 0,且 b 0 ;C .k 0,且 b 0 ;D . k 0, 且b 04.数据 2、5、6、0、6、1、8的中位数和众数分别是()A.0和6; B . 0 和 8; C . 5和6; D . 5和 8.5.下列图形中,既是轴对称又是中心对称图形的是、填空题:(本大题共12题,每题4分,满分48分)B .C .D .2小A . x 2x 0;B .2x 2x 1C .2x 1 0 ;D .2x 23.如果一次函数 y kx b (k 、b 是常数,k 0)的图像经过第二、四象限,那么 k 、b 应满足的条件是A .菱形;B . 等边三角形;C . 平行四边形;D . 等腰梯形.6.已知平行四边形 ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是A . BAC DCA ;B .BAC DAC ;C . BAC ABD ;D .BAC ADB .【请将结果直接填入答题纸的相应位置上】7.计算:2a a2 __ ▲___2x 6&不等式组的解集是▲.x 2 09.方程J2x 3 1的根是____ ▲ ___k10 .如果反比例函数y —(k是常数,k 0)的图像经过点2,3,那么在这个函数图像所在的每个象限内,y的x值随x的值增大而__▲―(填增大”或减小”)11•某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10% •如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是 _▲ _微克/立方米.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一个球恰好为红球的概率是_▲ __.13•已知一个二次函数的图像开口向上,顶点坐标为0, 1,那么这个二次函数的解析式可以是 _▲_.(只需写一个)14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图1所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是__▲ ___万元.urn r uur r uuu r 15•如图2,已知AB // CD , CD 2AB , AD、BC相交于点E •设AE a , CE b,那么向量CD用向量a、rb表示为▲.16. 一副三角尺按图3的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0 n 180),如果EF//AB,那么n的值是_▲ _.17.如图4,已知RtVABC , C 90 , AC 3, BC 4 .分别以点A、B为圆心画圆,如果点C在e A内,点B在e A外,且e B 与e A内切,那么e B的半径长r的取值范围是 _▲ _.18.我们规定:一个正n边形(n为整数,n 4 )的最短对角线与最长对角线长度的比值叫做这个正n边形的特征值”记为n,那么6 —▲解答题:(本大题共7题,满分78分)19 .(本题满分10分)I 2 1 1 计算:.18 21 92-220 .(本题满分10 分)解方程: 3 1 1 2 1 x 3x x 321.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,一座钢结构桥梁的框架是VABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD BC . (1)求sin B的值;(2)现需要加装支架DE、EF,其中点E在AB上BE 2AE,且EF BC,垂足为点F •求支架DE的长.22.(本题满分10分,每小题满分各5分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案•甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图6所示•乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求图6所示的y与x的函数解析式;(不要求写出定义域)(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)已知:如图乙四边形ABCD中,AD//BC , AD CD , E是对角线BD上一点,且EA EC .(1)求证:四边形ABCD是菱形;(2)如果BE BC,且CBE: BCE 2:3,求证:四边形ABCD是正方形.24.(本题满分12分,每小题满分各4分)已知在平面直角坐标系xOy中(如图8),已知抛物线yB.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为(3)将该抛物线向上或向下平移,使得新抛物线的顶点OP OQ,求点Q的坐标.2x bx c经过点A 2,2,对称轴是直线x 1,顶点为m,联结AM,用含m的代数式表示AMB的余切值;C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3 )小题满分5分)如图9,已知eO的半径长为1, AB、AC是eO的两条弦,且AB AC , BO的延长线交AC于点D ,联结OA、OC .(1)求证:VOAD: VABD ;(2)当VOCD是直角三角形时,求B、C两点的距离;(3)记VAOB、VAOD、VCOD的面积分别为S、S?、S3,如果S?是S和S3的比例中项,求0D的长.2017年上海市初中毕业统一学业考试数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分)1、B;考察方向:基础概念。

2017年上海市各区数学二模压轴题图文解析

2017年上海市各区数学二模压轴题图文解析

本解析由华东师范大学出版社《挑战压轴题》作者马学斌老师独家提供。

可作学习材料,切勿做其他用途。

更多信息,欢迎关注“挑战压轴题”微信公众号(ti ao z han y azho u ti).《2017年上海市各区中考数学二模压轴题图文解析》目录2017 年上海市宝山区中考模拟第 24、25 题/ 22017 年上海市崇明区中考模拟第 24、25 题/ 62017 年上海市奉贤区中考模拟第 24、25 题/ 102017 年上海市虹口区中考模拟第 24、25 题/ 142017 年上海市黄浦区中考模拟第 24、25 题/ 182017 年上海市嘉定区中考模拟第 24、25 题/ 232017 年上海市静安区中考模拟第 24、25 题/ 272017 年上海市闵行区中考模拟第 24、25 题/ 312017 年上海市浦东新区中考模拟第 24、25 题/ 342017 年上海市普陀区中考模拟第 24、25 题/ 382017 年上海市松江区中考模拟第 24、25 题/ 422017 年上海市徐汇区中考模拟第 24、25 题/ 472017 年上海市杨浦区中考模拟第 24、25 题/ 522017 年上海市长宁区青浦区金山区中考模拟第 24、25 题/ 552017 年上海市宝山区中考模拟第 18 题/ 592017 年上海市崇明区中考模拟第 18 题/ 602017 年上海市奉贤区中考模拟第 18 题/ 612017 年上海市虹口区中考模拟第 18 题/ 622017 年上海市黄浦区中考模拟第 18 题/ 632017 年上海市嘉定区中考模拟第 18 题/ 642017 年上海市静安区中考模拟第 18 题/ 652017 年上海市闵行区中考模拟第 18 题/ 662017 年上海市浦东新区中考模拟第 18 题/ 672017 年上海市普陀区中考模拟第 18 题/ 682017 年上海市松江区中考模拟第 18 题/ 692017 年上海市徐汇区中考模拟第 18 题/ 702017 年上海市杨浦区中考模拟第 18 题/ 712017 年上海市长宁区青浦区金山区中考模拟第 18 题/ 722015 年上海市中考第 24、25 题/ 732016 年上海市中考第 24、25 题/ 77例2017年上海市宝山区中考模拟第24题如图 1,已知直线y x与x轴交于点B,与y轴交于点C,抛物线1 22 12y x b x2 2与x 轴交于A、B 两点(A 在B 的左侧),与y 轴交于点C.(1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△ABM 和△ABC 相似,求点M 的坐标;(3)联结AC,求顶点D、E、F、G 在△ABC 各边上的矩形DEFG 面积最大时,写出该矩形在AB 边上的顶点的坐标.图 1动感体验请打开几何画板文件名“17 宝山 24”,拖动点D 在BC 上运动,可以体验到,当点D是BC 的中点时,矩形DEFG 的面积最大,最大值是△ABC 面积的一半.思路点拨1.第(2)题△ABM 和△ABC 相似,只存在这两个三角形全等的情形,此时M、C 关于抛物线的对称轴对称.2.第(3)题的矩形DEFG 存在两种情况.用二次函数表示矩形的面积,求二次函数的最大值,然后看看最大值时矩形顶点的位置具有什么特殊性.图文解析(1)由1y x 2 ,得B(4, 0),C(0,-2).2将点B(4, 0)代入y 1 x2 bx 2 ,得 8+4b-2=0.解得 3b .2 2所以抛物线的解析式为 1 2 3 2 1 ( 1)( 4)y x x x x .所以A(-1, 0).2 2 2(2)如图 2,由A(-1, 0)、B(4, 0)、C(0,-2),可得 tan∠CAO=tan∠BCO=2.又因为∠CAO 与∠ACO 互余,所以∠BCO 与∠ACO 互余.所以△ABC 是直角三角形.过点A、B 分别作x 轴的垂线,不可能存在点M.所以只存在∠AMB=90°的情况,此时点M 在x 轴的下方(如图 3 所示).图 2 图 32如图 3,如果△ABM 和△ABC 相似,那么△ABM ≌△BAC .所以点 M 与点 C 关于抛物线的对称轴对称,点 M 的坐标为(3,-2).(3)矩形 DEFG 有两种情况:1①如图 4,在 AB 边上的顶点有两个,坐标分别为(2, 0)和( ,0) .23②如图 5,在 AB 边上的顶点有一个,坐标为( ,0).2考点伸展第(3)题的解题思路是这样的:在 Rt △ABC 中,AB =5,高 CO =2.情形一,如图 4,F 、G 两点在 AB 上.设 DE =m ,DG =n .根据相似三角形对应高的比等于对应边的比,得 2 .所以 5(2 )n m nm . 2 52 所以 S =mn = 5 2 n n = 5 ( 1)2 5 (2 )n . 2 2所以当 n =1 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面积 最大,最大值是△ABC 面积的一半.情形二,如图 5,点 G 在 AB 上.同样的,设 DE =m ,DG =n .由 BD DG ,得 2 5.所以 2 5 n . m n m BE EA 22 55 所以 S =m n = (2 5 ) m m 2 = 1 ( 5)2 5 m .2 2所以当 m 5 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面 积最大,最大值也是△ABC 面积的一半.此时点 G 为 AB 的中点.图 4 图 53例2017年上海市宝山区中考模拟第25题如图 1,在△ABC 中,∠ACB 为直角,AB=10,∠A=30°,半径为 1 的动圆Q 的圆心从点C 出发,沿着CB 方向以 1 个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5),以P 为圆心、PB 为半径的⊙P 与AB、BC 的另一个交点分别为E、D,联结ED、EQ.(1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值;(2)当⊙P 和AC 相交时,设CQ 为x,⊙P 被AC 解得的弦长为y,求y 关于x 的函数解析式,并求当⊙Q 过点B 时⊙P 被AC 截得的弦长;(3)若⊙P 与⊙Q 相交,写出t 的取值范围.图 1动感体验请打开几何画板文件名“17 宝山 25”,拖动Q 由C 向B 运动,可以体验到,⊙P 与⊙Q 的位置关系依次为外离、外切和相交.思路点拨1.第(1)题Q、D 重合时,根据CQ+BD=BC 列关于t 的方程.2.第(2)题⊙Q 过点B 时,CQ=5-1=4.3.第(3)题求⊙P 与⊙Q 相交,先求临界位置外切时t 的值.图文解析(1)如图 2,根据直径所对的圆周角是直角,可以知道ED⊥BC.在 Rt△ABC 中,AB=10,∠A=30°,所以BC=5.在 Rt△BDE 中,BE=2BP=2t,∠BED=30°,所以BD=t,DE= 3 t.如图 3,当点Q 与点D 重合时,BD+CQ=BC=5.所以 2t=5.解得t=2.5.图 2 图 3(2)如图 4,设⊙P 和AC 相交于M、N 两点.作PH⊥MN 于H,那么MH=NH.在 Rt△PAH 中,PA=10-t,∠A=30°,所以PH=12(10t)t.=5 12在 Rt△PMH 中,PM=PB=t,由勾股定理,得MH2=PM2-PH2= 2 (5 1 )2t t .2 于是得到y=MN=2MH=3t2 20t 100 .4如图 5,当⊙Q 过点B 时,CQ=x=4,此时MN=y=316 20 4 100 =2 7 .图 4 图 5<t≤5.(3)当⊙P与⊙Q相交时,t的取值范围是17974考点伸展第(3)题的解题过程分三步:第一步,罗列三要素.对于圆P,r P=t;对于圆Q,r Q=1;圆心距PQ 需要求一下.如图 6,作PF⊥BC 于F.在Rt△PFQ 中,由勾股定理,得PQ=( 3 )2 (5 3 )2t t .2 2第二步,列方程.如图 7,当⊙P 与⊙Q 外切时,r P+r Q=PQ.所以t 1( 3 t)2 (5 3t)2 .整理,得 2t2-17t+24=0.解得17 97t .2 2 4第三步,写结论.图 6 图 75例2017年上海市崇明区中考模拟第 24题 如图 1,已知抛物线 y =ax 2-2x +c 经过△ABC 的三个顶点,其中点 A (0, 1),点 B (9, 10),AC //x 轴. (1)求这条抛物线的解析式;(2)求 tan ∠ABC 的值;(3)若点 D 为抛物线的顶点,点 E 是直线 AC 上一点,当△CDE 与△ABC 相似时,求 点 E 的坐标.图 1动感体验请打开几何画板文件名“17 崇明 24”,拖动点 E 在点 C 左侧运动,可以体验到,△CDE 与△ABC 相似存在两种情况.思路点拨1.求 tan ∠ABC 的值,首先要将∠ABC 放在某个直角三角形中.作 AB 边上的高 CH 以 后,有两种解法:一种解法是∠BAC =45°为特殊值;另一种解法是一般性的,已知三角形 的三边,作高不设高,设 AH =m .2.探究△CDE 与△ABC 相似,首选的方法是寻找一组等角,然后按照对应边成比例分 两种情况列方程.图文解析 c1,(1)将 A (0, 1)、B (9, 10)两点分别代入 y =ax 2-2x +c ,得81a 18 c 10.1 3 解得 a = ,c =1.所以这条抛物线的解析式为 12 2 1y x x . 3(2)由于 AC //x 轴,抛物线的对称轴为 x =3,所以 C (6, 1).如图 2,作 BM ⊥AC ,垂足为 M .作 CH ⊥AB 于 H .由 A (0, 1)、B (9, 10),可知 AM =BM =9,所以∠BAC =45°,AB =9 2 .在 Rt △ACH 中,AC =6,所以 AH =CH =3 2 .在 Rt △BCH 中,BH =AB -AH =6 2 ,所以 tan ∠ABC = C H B H= 3 2 6 2 = 1 2 . 6(3)由 1 2 2 1 1 ( 3)2 2y x x x ,得顶点D 的坐标为(3,-2).3 3由C(6, 1)、D(3,-2),可知∠ACD=45°,CD=3 2 .当点E 在点C 左侧时,∠DCE=∠BAC.分两种情况讨论△CDE 与△ABC 相似:①当C E A B时,CE 9 2 .解得CE=9.此时E(-3, 1)(如图 3 所示).C D A C32 6②CE AC 时,CE 6 .解得CE=2.此时E(4, 1)(如图 4 所示).C D A B329 2图 2 图 3 图 4考点伸展第(2)题还有一般的解法:如图 2,△ABC 的三边长是确定的,那么作AB 边上的高CH,设AH=m,就可以求得AH,进而求得CH、BH 的长.由A(0, 1)、B(9, 10)、C(6, 1),可得AB=9 2 ,BC=3 10 ,AC=6.由CH2=CA2-AH2,CH2=CB2-BH2,得CA2-AH2=CB2-BH2.解方程62 m2 (3 10)2 (9 2 m)2 ,得m 3 2 .于是得到BH=6 2 ,CH=3 2 .7例 2017年上海市崇明区中考模拟第 25题如图,梯形 ABCD 中,AB //CD ,∠ABC =90°,AB =6,BC =8,tan D =2,点 E 是射线 CD 上一动点(不与点 C 重合),将△BCE 沿着 BE 进行翻折,点 C 的对应点记为点 F .(1)如图 1,当点 F 落在梯形 ABCD 的中位线 MN 上时,求 CE 的长;S (2)如图 2,当点 E 在线段 CD 上时,设 CE =x , △BFCS△E F C=y ,求 y 与 x 之间的函数关系式,并写出定义域;(3)如图 3,联结 AC ,线段 BF 与射线 CA 交于点 G ,当△CBG 是等腰三角形时,求 CE 的长.图 1 图 2 图 3动感体验请打开几何画板文件名“17 崇明 25”,拖动点 E 运动,可以体验到,等腰三角形 BCG 存在三种情况,每种情况的点 G 的位置都具有特殊性.思路点拨1.第(1)题点 F 到 AB 的距离等于 BF 的一半,得到∠FBA =30°.2.第(2)题△BFC 与△EFC 的面积比等于 BH 与 EH 的比,通过 Rt △BCH ∽Rt △CEH 得到 BH 与 EH 的比.3.第(3)题先求 CG 的长,再求 CE 的长.延长 BF 交 CD 的延长线于 K ,得到△KEF ∽△KBC .图文解析(1)如图 4,在 Rt △FNB 中,BN = 所以∠B F N =30°. 1 2 B C = 1 2B F ,所以∠FBA =30°.所以∠FBC =60°. 所以∠FBE =∠CBE =30°.= 8 3 3所以 C E =B C t a n 30°=83 3. 图 4(2)如图 5,设 BE 垂直平分 FC 于点 H ,那么∠CBH =∠ECH . 所以△CBH ∽△ECH .S 所以CBH△S△ECHBH = ( )2EH= 64 x 2 S .所以 y = BFC △S△EFC= 2S △CBHC2S △ECH = 64 x2. 定义域是 0<x ≤10.8图 5图 6(3)①如图 6,当 CG =CB =8 时,AG =2.CK CG 延长 BF 交 CD 的延长线于 K .由 4 ,得 CK =4AB =24.AB AG1 3在 Rt △KBC 中,BC =8,CK =24,所以 tan ∠K =.所以 sin ∠K = 10 10. 在 Rt △KEF 中,FE =CE =x ,EK =CK -CE =24-x .由 sin ∠K =F E E K = 10 10,得10 x 24 x 10.解得 x =CE = 8 10 83.②如图 7,当 GC =GB 时,点 G 在 BC 的垂直平分线上,此时四边形 ABCK 为矩形. 在 Rt △EKF 中,sin ∠EKF =B C B K = 8 10 = 4 5,FE =CE =x ,KE =CK -CE =6-x .所以 4 x6 x 5.解得 x =CE = 8 3.③如图 8,当 BG =BC =8 时,由于 BC =BF ,所以 F 、G 重合.此时 BE ⊥AC .由 tan ∠CEB =tan ∠ACB = 3 4 ,得B C C E 3 .所以 CE = 432 3.图 7 图 8考点伸展第(3)题的①、②两种情况,解 Rt △KEF ,可以用勾股定理列方程.9例 2017年上海市奉贤区中考模拟第 24题如图 1,在平面直角坐标系中,抛物线 y =-x 2+bx +c 经过点 A (3, 0)和点 B (2, 3),过点1 3A 的直线与 y 轴的负半轴相交于点 C ,且 tan ∠CAO =(1)求这条抛物线的表达式及对称轴;. (2)联结 AB 、BC ,求∠ABC 的正切值;(3)若点 D 在 x 轴下方的对称轴上,当 S △ABC =S △ADC 时,求点 D 的坐标.图 1动感体验请打开几何画板文件名“17 奉贤 24”,可以体验到,△ABC 是等腰直角三角形,B 、D 两点到直线 AC 的距离相等.思路点拨1.直觉告诉我们,△ABC 是直角三角形.2.第(3)题的意思可以表达为:B 、D 在直线 AC 的两侧,到直线 AC 的距离相等.于 是我们容易想到,平行线间的距离处处相等.图文解析(1)将 A (3, 0)、B (2, 3)两点分别代入 y =-x 2+bx +c ,得93b c 0,4 2b c 3.解得 b =2,c =3.所以 y =-x 2+2x +3.对称轴是直线 x =1.O C OA (2)由 t a n ∠C A O == 1 3,OA =3,得 OC =1.所以 C (0,-1). 由两点间的距离公式,得 AB 2=12+32=10,AC 2=32+12=10,BC 2=22+42=20. 所以∠BAC =90°,且 AB =AC .所以△ABC 是等腰直角三角形,tan ∠ABC =1.(3)因为△ABC 与△ADC 有公共底边 AC ,当 S △ABC =S △ADC 时,B 、D 到直线 AC 的距离相等.如图 2,因为点 B (2, 3)关于点 A (3, 0)的对称点为 E (4,-3),那么过点 E 作 AC 的平行线 与抛物线的对称轴的交点即为所求的点 D .由 A (3, 0)、C (0,-1)可得直线 AC 的解析式为1y x 1.3设直线 DE 的解析式为y x b ,代入点 E (4,-3),得 13 1b .3 3 10所以直线DE 的解析式为11 3 y x .当x=1 时,y=-4.3 3所以点D 的坐标为(1,-4).考点伸展第(2)题也可以构造 Rt△ABM 和 Rt△CAN(如图 3),用“边角边”证明△ABM≌△CAN,从而得到等腰直角三角形ABC.图 2 图 3第(3)题也可以这样思考:如图 4,过点B 与直线AC 平行的直线为y 1 x 7 ,与y 轴交于点F(0, 7)33 3.F、C 两点间的距离为710(1) .3 3把直线AC:y 1 x 向下平移1013 3个单位,得到直线113y x .3 3感谢网友上海交大昂立教育张春莹老师第(3)题的解法:如图 5,如果把BL、KD 分别看作△ABC 和△ADC 的底边,那么它们的高都是A、C 两点间的水平距离,当△ABC 与△ADC 的面积相等时,BL=KD.1 ),K(1,2 ).所以3 ( 1) ( 2) 由直线AC 的解析式可以求得L (y .2,D3 3 3 3解得y D=-4.所以D(1,-4).图 4 图 511例2017年上海市奉贤区中考模拟第25题如图 1,线段AB=4,以AB 为直径作半圆O,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC,过点C 作CD//AB,且CD=PC,过点D 作DE//PC,交射线PB 于点E,PD 与CE 相交于点Q.(1)若点P 与点A 重合,求BE 的长;PD=y,当点P 在线段AO 上时,求y 关于x 的函数关系式及定义域;C E(2)设P C=x,(3)当点Q 在半圆O 上时,求PC 的长.图 1 备用图动感体验请打开几何画板文件名“17 奉贤 25”,拖动点P 在AO 上运动,可以体验到,PD 与CE的比就是菱形的对角线的比,可以转化为PQ 与EQ 的比,进而转化为∠PEQ 的正切值.拖动点P 在OB 上运动,可以体验到,当点Q 落在圆上时,点Q 到AB 的距离等于圆的半径的一半.思路点拨1.四边形PCDE 是菱形,对角线互相垂直平分.2.第(2)题根据∠PEQ 和∠CEO 是同一个角,用正切值得到关系式.3.第(3)题画图的步骤是:点Q 在OC 的中垂线与圆的交点处,延长CQ 交AB 的延长线于点E,过点Q 作CE 的垂线得到点P、D.图文解析(1)如图 2,由CD//AB,DE//PC,得四边形PCDE 是平行四边形.又因为CD=PC,所以四边形PCDE 是菱形.在等腰直角三角形AOC 中,AC= 2 OA=2 2 .当点P 与点A 重合,PE=AC=2 2 .所以BE=AB-PE=4-2 2 .图 2 图 3(2)如图 3,在 Rt△CPO 中,PC=x,CO=2,所以PO=x 2 4 .所以EO=PE-PO=PC-PO=x x 2 4 .12因为PD 与CE 互相垂直平分于Q,所以y=P DC E=PQE Q =tan∠PEQ=tan∠CEO=C OE O.所以y2x x 42x x2 442.定义域是2≤x≤22 .(3)如图 4,作QH⊥AB 于H.因为菱形PCDE 的对边CD 与PE 间的距离保持不变,等于圆的半径CO=2,当点Q在半圆O 上时,QH=12OQ=1.所以∠QOH=30°.此时∠COQ=60°,△COQ 是等边三角形.所以∠DCE=30°.所以∠PCE=30°.在 Rt△COP 中,∠OCP=30°,CO=2,所以PC=C O= 2c o s3032=4 33.图 4 图 5考点伸展在本题情境下,当点P 从A 运动到B 的过程中,求点Q 运动过的路径长.因为点Q 是CE 的中点,所以点Q 的运动轨迹与点E 的运动轨迹平行,点Q 的路径长等于点E 路径长的一半.如图 2,当点P 与点A 重合时,AE=AC=2 2 .如图 5,当点P 与点B 重合时,BE=BC=2 2 .所以点E 运动的路径长为 4,点Q 运动的路径长为 2.13例2017年上海市虹口区中考模拟第24题如图 1,在平面直角坐标系中,抛物线1y x bx c 经过点A(-2, 0)和原点,点B 在4抛物线上且 tan∠BAO=12,抛物线的对称轴与x 轴相交于点P.(1)求抛物线的解析式,并直接写出点P 的坐标;(2)点C 为抛物线上一点,若四边形AOBC为等腰梯形且AO//BC,求点C 的坐标;(3)点D 在AB 上,若△ADP 与△ABO 相似,求点D 的坐标.图 1动感体验请打开几何画板文件名“17 虹口 24”,拖动点D 在AB 上运动,可以体验到,△ADP与△ABO 相似存在两种情况.点击屏幕左下角的按钮“第(2)题”,可以体验到,以A、O、B、C 为顶点的等腰梯形存在三种情况,其中AO//BC 时,点C 与点B 关于抛物线的对称轴对称.思路点拨1.已知二次函数的二次项系数和抛物线与x 轴的两个交点,可以直接写出交点式.2.等腰梯形AOBC 当AO//BC 时,C、B 两点关于抛物线的对称轴对称.3.分两种情况讨论△ADP 与△ABO 相似.由于∠A 是公共角,根据夹∠A 的两边对应成比例,分两种情况列方程,先求AD 的长,再求点D 的坐标.图文解析(1)因为抛物线1y x bx c 与x 轴交于点A(-2, 0)和原点,所以411 1y x(x2)x x.244 2抛物线的对称轴是直线x=-1,点P 的坐标为(-1, 0).1(2)作BH⊥x 轴于H.设点B 的坐标为(x, x(x 2)) .4由 tan∠BAO=B HA H=121,得AH=2BH.所以(x 2) 2x(x 2) .4解得x=2,或x=-2(B、A 重合,舍去).所以B(2, 2).若四边形AOBC 为等腰梯形且AO//BC,那么B、C 关于抛物线的对称轴x=-1 对称.所以点C 的坐标为(-4, 2).图 2 图 314(3)作DE⊥x 轴于E.在 Rt△ADE 中,已知 tan∠A=12,所以DE=55A D,AE=2 55 A D.由于△ADP 与△ABO 有公共角∠A,分两种情况讨论相似:①当AD AB 时,AD 2 5 .所以AD=5 .A P A O1 2此时DE=1,AE=2.所以点D 的坐标为(0, 1).②当A D A O时,A D 2.所以A D= 5 A P A B125 5.此时DE=15,AE=25.所以OE=OA-AE=858 1(,).5 5.所以点D的坐标为图 4 图 5考点伸展如果第(2)题改为以A、O、B、C 为顶点的四边形是等腰梯形,那么就要分三种情况:△AOB 的三边的垂直平分线都可以是等腰梯形的对称轴.第二种情况:如果OC//AB,那么点C 与点O 关于直线AB 的垂直平分线对称.点C 在直线1y x 上,设C(2m, m).2由CB=OA=2,得CB2=4.所以(2m-2)2+(m-2)2=4.解得m=254 2 ,或m=2(此时四边形AOCB 是平行四边形).所以C( , ).5 5第三种情况:如果AC//OB,那么点C 与点A 关于直线OB 的垂直平分线对称.点C 在直线y=x+2 上,设C(n, n+2).由CB=AO=2,得CB2=4.所以(n-2)2+n2=4.解得n=2,或n=0(舍去).所以C(2, 4).图 6 图 715例2017年上海市虹口区中考模拟第25题如图 1,在△ABC 中,AB=AC=5,cos B=45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D,∠BPD=∠BAC.以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E,联结CE,设BD=x,CE=y.(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域;(3)如果⊙O 与⊙P 相交于点C、E,且⊙O 经过点B,当O P=54时,求AD 的长.图 1动感体验请打开几何画板文件名“17 虹口 25”,拖动点P 运动,可以体验到,△BPD 与△BAC 保持相似,PN 与BD 保持平行.观察度量值,可以体验到,OP=1.25 存在两种情况.思路点拨1.作圆P 的弦CE 对应的弦心距PN,把图形中与∠B 相等的角都标记出来.2.第(3)题的圆O 经过B、C、E 三点,事实上OP 与BD 是平行的.图文解析(1)如图 2,作AM⊥BC 于M,那么BM=CM.在 Rt△ABM 中,AB=5,cos B=B MA B=45,所以BM=4,sin B=35.如图 3,设⊙P 与AB 切于点H,那么 sin B=PHBP=35.所以r8 r 35=.解得r=3.图 2 图 3 图 4 (2)如图 4,由于∠B=∠B,∠BPD=∠BAC,所以△BPD∽△BAC.因为AB=AC,所以PB=PD.如图 5,设圆P 与BC 的另一个交点为F,因此所以F E//B D.所以∠E F C=∠B.P F P E.P B P D在△PBD 中,B P B A 5,所以5 5BP BD x .B D B C888在△EFC 中,由PC=PE=PF,可知∠FEC=90°,所以 sin∠EFC=C EC F3.516所以CF5 CE 5 y .所以 PC = 13 3 2 CF = 5 6y .由 BC =BP +PC =8,得5 x 5 y .整理,得 48 3 y x .定义域是 5<x < 64886545.(3)因为⊙O 经过 B 、C 、E 三点,所以圆心 O 是 BC 和 CE 的垂直平分线的交点. 如图 6,设 CE 的中点为 N ,那么 OP ⊥CE 于 N . 所以 OP //FE //BA .所以 cos ∠OPM =cos B = 4 5 .当 OP = 5 4时,MP =1.①如图 6,当 P 在 M 右侧时,BP =4+1=5.此时 BD = 所以 A D =B D -B A =8-5=3.8 5BP =8.②如图 7,当 P 在 M 左侧时,BP =4-1=3.此时 BD = 8 5 B P = 24 5.2 4 所以 AD =BA -BD = 5 = 51 5.图 5 图 6 图 7考点伸展第(2)题不证明 FE //BA 的话,可以证明∠CPN =∠B .如图 8,由于∠CPE =∠B +∠D =2∠B ,∠CPE =2∠CPN ,所以∠CPN =∠B .在 Rt △CPE 中, 1 2 3 5 C E =PC .所以 PC =5 6 C E = 5 6 5 y .所以 BP =8 y .6 在△BPD 中, 1 2 B D = 4 5 BP .所以 1 x 4 5 y .整理,得 48 3 (8 ) y x .2 5 6 5 4定义域中 x = 64 5的几何意义如图 9 所示.图 8 图 917例 2017年上海市黄浦区中考模拟第 24题如图 1,点 A 在函数 y4(x >0)的图像上,过点 A 作 x 轴和 y 轴的平行线分别交函 x数 y 1的图像于点 B 、C ,直线 BC 与坐标轴的交点为 D 、E . x(1)当点 C 的横坐标为 1 时,求点 B 的坐标;(2)试问:当点 A 在函数 y4(x >0)的图像上运动时,△ABC 的面积是否发生变 x 化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点 A 在函数 y4(x >0)的图像上运动时,线段 BD 与 CE 的长始终 x相等.图 1动感体验请打开几何画板文件名“17 黄浦 24”,拖动点 A 运动,可以体验到,△DBM 与△CEN 保持全等,MN 与 BC 保持平行.思路点拨1.设点 A 的横坐标为 m ,A 、C 两点的横坐标相等,A 、B 两点的纵坐标相等,用 m 表 示 A 、B 、C 三点的坐标和 AB 、AC 的长.2.证明 BD =CE ,因为四点共线,只要证明 B 、D 两点间的竖直距离等于 C 、E 两点间 的竖直距离就可以了.图文解析(1)当点 C 的横坐标为 1 时,C (1, 1),A (1, 4).由 1 x4 ,得x 1 .所以点 B 的坐标为(1 ,4) 4 4 . (2)△ABC 的面积为定值.计算如下:4 如图 2,设点 A 的坐标为(m , ) m 1 ,那么 C (m , ) mm 4 ,B ( , ). 4 m3m 所以 A B = 4 ,AC = 3 m .所以 S △ABC = 1 2 A B A C = 1 3 3 = m2 4 m9 8 . (3)如图 3,延长 AB 交 y 轴于 M ,延长 AC 交 x 轴于 N .在 Rt △DBM 中,tan ∠DBM =tan ∠ABC = A C A B = 3 3m = m 44 m 2 ,BM = m 4,所以DM=BM tan∠DBM=m44=m21m.所以DM=CN.18又因为 sin∠DBM=sin∠CEN,所以DB=CE.图 2 图 3考点伸展如图 4,第(2)题中,面积为定值的有:矩形AMON、△ABC、△BOM、△CON,所以△BOC 的面积也为定值.如图 5,联结MN,那么MN 与BC 保持平行,这是因为M B N C 1.M A N A 4还有一个有趣的结论,随着点A 的运动,直线MN 与双曲线y 1(x>0)保持相切.x直线MN 的解析式为44,与y1y x 联立方程组,消去y,得m m x214 4x.x m m2整理,得(2x-m)2=0.所以直线MN 与双曲线有一个交点,保持相切.感谢网友上海交大昂立教育张春莹老师提供的第(3)题的简练解法:如图 4,因为B D B M 1,C E C N 1,所以B D=C E.B C B A3C B C A 3图 4 图 519例2017年上海市黄浦区中考模拟第25题已知 Rt△ABC 斜边AB 上的D、E 两点满足∠DCE=45°.(1)如图 1,当AC=1,BC= 3 ,且点D 与点A 重合时,求线段BE 的长;(2)如图 2,当△ABC 是等腰直角三角形时,求证:AD2+BE2=DE2;(3)如图 3,当AC=3,BC=4 时,设AD=x,BE=y,求y 关于x 的函数关系式,并写出定义域.图 1 图 2 图 3动感体验请打开几何画板文件名“17 黄浦 25”,可以体验到,四边形CMEN 是正方形.点击屏幕左下方的按钮“第(2)题”,可以体验到,直角三角形DEF 的边FD=AD,FE=BE.点击按钮“第(3)题”,可以体验到,△CDP∽△ECQ.思路点拨1.第(1)题过点E 向两条直角边作垂线段,围成一个正方形,然后根据对应线段成比例求正方形的边长,再得到BE 的长等于正方形边长的 2 倍.2.第(2)题的目标是把AD、BE 和DE 围成一个直角三角形.经典的解法有翻折和旋转两种.图文解析(1)当AC=1,BC= 3 时,AB=2,∠B=30°.如图 4,作EM⊥BC 于M,作EN⊥AC 于N,那么四边形CMEN 是正方形.设正方形的边长为a.由EM BM,得a 3 a .AC BC 1 3解得 3 3a .2所以BE=2EM=3 3 .图 4【解法二】如图 4,因为1C B E MS C B△C B E21S C A E N C A△C B E2S B E,△C B ES E A△C B E,所以C B B E.C A E A.解得BE=3 3 .所以3B E12B E20(2)如图5,以CE 为对称轴,构造△CFE≌△CBE,那么FE=BE,∠CFE=∠B=45°.联结DF.由“边角边”证明△CFD≌△CAD,所以FD=AD,∠CFD=∠A=45°.所以△DEF 是直角三角形,FD2+FE2=DE2.所以AD2+BE2=DE2.【解法二】如图 6,绕点C 将△CBE 逆时针旋转 90°得到△CAG,那么AG=BE,CE =CG,∠CAG=∠B=45°.由“边角边”证明△CDG≌△CDE,所以DG=DE.在 Rt△GDA 中,AD2+AG2=DG2.所以AD2+BE2=DE2.图 5 图 6(3)如图 7,作CH⊥AB 于H.在 Rt△ABC 中,AC=3,BC=4,所以AB=5.于是可得CH 12 ,BH 16 ,9AH .5 5 5所以DH 9 x,16EH y .5 5如图 8,以H 为旋转中心,将点D 逆时针旋转 90°得到点P,将点E 顺时针旋转 90°得到点Q.于是可得△CDP∽△ECQ.由PD QC,得PD QE PC QC .PC QE所以2(9 x) 2(16 y ) 12 (9 x )12 (16 y )5 5 5 5 5 5.整理,得2860xy5x 21.157 定义域是0≤x≤15 7.当B、E 重合时x=.图 7 图 821考点伸展第(3)题解法多样,再介绍三种解法:如图 9,过点C 作AB 的平行线KL.构造等腰直角三角形KDD′和LEE′.由△CDE∽△KCD,△CDE∽△LEC,得△KCD∽△LEC.所以KC DK,即KC CL=LE DK .LE CL所以12 (9 )12 (16 ) 12 2 12 2x y55555 5.整理即可.如图 10,分别以CD、CE 为对称轴,作CH 的对应线段CK、CL,再围成正方形CKRL.在 Rt△DER 中,由DR2+ER2=DE2,得2 2129121 6(x)(y)(5x y)25555.整理即可.如图 11,类似第(2)题的第一种解法,在 Rt△A′B′T 中,A′B′=CB-CA=1,所以A′T=35 ,B′T= 4 5.在 Rt△DET 中,DE=5-x-y,TE=y 4,T D= 3x ,由勾股定理,得5 52 4 23 2(5x y ) (y ) (x ) .整理即可.5 5图 9 图 10 图 1122例2017年上海市嘉定区中考模拟第24题如图 1,在平面直角坐标系中,已知点A 的坐标为(3, 1),点B 的坐标为(6, 5),点C 的坐标为(0, 5),某二次函数的图像经过A、B、C 三点.(1)求这个二次函数的解析式;(2)假如点Q 在该二次函数图像的对称轴上,且△ACQ 是等腰三角形,请直接写出点Q 的坐标;(3)如果点P 在(1)中求出的二次函数的图像上,且 tan∠PCA=12,求∠PCB 的正弦值.图 1动感体验请打开几何画板文件名“17 嘉定 24”,可以体验到,当AD⊥AC,且AC=2AD 时,点D 的位置是确定的,射线CD 与抛物线的交点就是点P.思路点拨1.由B、C 两点的坐标可知抛物线的对称轴是直线x=3,再由点A 的坐标可知点A 就是抛物线的顶点,因此设顶点式比较简便.2.分三种情况讨论等腰三角形ACQ:AQ=AC,CQ=CA,QA=QC.3.第(3)题的解题策略是:根据 tan∠PCA=12,过点A 作AC 的垂线,在垂线上截取AD=12AC,那么点P 就是射线CD 与抛物线的交点,∠DCB 就是∠PCB.不用求点P的坐标,求点D 的坐标就好了.图文解析(1)由B(6, 5)、C(0, 5),可知抛物线的对称轴是直线x=3.由A(3, 1),可知点A 是抛物线的顶点.设二次函数的解析式为y=a(x-3)2+1,代入点B(6, 5),得 9a+1=5.4 4 4 8解得a .所以y (x 3)2 1x 2 x 5.9 9 9 33 3(2)点Q 的坐标为(3, 6),(3,-4),(3, 9)或(3, )8.(3)如图 2,绕着点A 将线段AC 的中点旋转 90°得到点D,那么射线CD 与抛物线的交点就是要求的点P.当点D 在CA 左侧时,射线CD 与抛物线没有交点.如图 3,当点D 在CA 右侧时,作DE⊥x 轴于E,那么∠DCE 就是∠PCB.过点A 作x 轴的平行线交y 轴于M,过点D 作DN⊥AM 于N.CM MA AC由△CMA∽△AND,得 2 .AN ND DA所以A N 1C M ,1 32N D M A .22 223在 Rt△CDE 中,CE=MA+AN=3+2=5,ED=CM-ND=3 5 4,2 2所以 tan∠DCE=E DC E=12.所以 sin∠DCE=55,即 sin∠PCB=55.图 2 图 3考点伸展第(2)题分三种情况讨论等腰三角形ACQ:①如图 4,当AQ=AC=5 时,以A 为圆心、以AC 为半径的圆与对称轴有两个交点,所以点Q 的坐标为(3, 6) 或(3,-4).②如图 5,当CQ=CA 时,点C 在AQ 的垂直平分线上,此时点Q 的坐标为(3, 9).③如图 6,当QA=QC 时,点Q 在AC 的垂直平分线上,此时1 4A C A Q.2 5所以AQ=58AC =2583 3.此时点Q 的坐标为(3, )8.图 4 图 5 图 6 24例2017年上海市嘉定区中考模拟第25题已知AB=8,⊙O 经过点A、B,以AB 为一边画平行四边形ABCD,另一边CD 经过点O(如图 1).以点B 为圆心,BC 长为半径画弧,交线段OC 于点E(点E 不与点O、点C 重合).(1)求证:OD=OE;(2)如果⊙O 的半径长为 5(如图 2),设OD=x,BC=y,求y 与x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为 5,联结AC,当BE⊥AC 时,求OD 的长.图 1 图 2 备用图动感体验请打开几何画板文件名“17 嘉定 25”,拖动点D 运动,可以体验到,四边形ABED 保持等腰梯形的形状,△BCE 保持等腰三角形的形状,垂足H 的位置保持不变,MH 的位置保持不变.双击按钮“AC⊥BE”,可以体验到,点C 恰好落在圆上,MH 等于EC 与AB 和的一半.思路点拨1.根据等腰梯形是轴对称图形,很容易知道点O 是DE 的中点.2.第(2)题中,等腰三角形BCE 的高BH 为定值,先用x 表示EC,再用勾股定理就可以表示BC 了.3.第(3)题如何利用BE⊥AC,常规的方法是过点C 作BE 的平行线得到直角三角形.图文解析(1)如图 3,因为四边形ABCD 是平行四边形,所以AD=BC.又因为BE=BC,所以AD=BE.所以四边形ABED 是等腰梯形.因为圆心O 在弦AB 的垂直平分线上,所以点O 是上底DE 的中点,即OD=OE.图 3 图 425例2017年上海市静安区中考模拟第24题如图 1,已知二次函数 1 2y x bx c 的图像与x 轴的正半轴交于点A(2, 0)和点B,2与y 轴交于点C,它的顶点为M,对称轴与x 轴相交于点N.(1)用b 的代数式表示点M 的坐标;(2)当 tan∠MAN=2 时,求此二次函数的解析式及∠ACB 的正切值.图 1动感体验请打开几何画板文件名“17 静安 24”,拖动点N 运动,观察∠MAN 的正切值的度量值,可以体验到,当 tan∠MAN=2 时,△OBC 是等腰直角三角形.思路点拨1.第(1)题分三步:根据抛物线的解析式写出对称轴x=b;代入点A 的坐标,用b表示c;求x=b 时y 的值,得到顶点的纵坐标.2.第(2)题先根据 tan∠MAN=2 求b 的值,确定点B、C 的坐标,再作BC 边上的高AH,解直角三角形ABH 和直角三角形ACH.图文解析(1)由 1 2y x bx c ,得抛物线的对称轴为直线x=b.2将点A(2, 0)代入 1 2y x bx c ,得-2+2b+c=0.所以c=2-2b.2当x=b 时, 1 2 2 2 1 2 2 2 1 ( 2)2y x bx b b b b .2 2 2所以抛物线的顶点M 的坐标可以表示为( , 1 ( 2)2 )b b .2MN(2)当 tan∠MAN=2 时, 2 ,即MN=2AN.AN解方程1 ( 2)2 2( 2)b b ,得b=6,或b=2(与A 重合,舍去).2此时抛物线的解析式为 1 2 6 10y x x ,A(2, 0),B(6, 0),C(0,-10).2所以AB=8,OB=OC=10.所以BC=10 2 ,∠B=45°.27作AH⊥BC 于H,那么AH=BH=4 2 .在 Rt△ACH 中,CH=BC-BH=6 2 ,所以 tan∠ACB=A HC H=23 .图 2考点伸展第(2)题上面的解法是利用“边角边”,作高先求高.也可以利用“边边边”,作高不设高.由A(2, 0),B(6, 0),C(0,-10),得AB=8,BC=10 2 ,AC=104 .设CH=m,那么BH=10 2 m.由AH2=AC2-CH2,AH2=AB2-BH2,得AC2-CH2=AB2-BH2.解方程( 104)2 m2 82 (10 2 m)2 ,得m CH 6 2 .所以AH2=AC2-CH2=( 104)2 (6 2)2 =32.所以AH=4 2 .28例2017年上海市静安区中考模拟第25题如图 1,已知⊙O 的半径OA 的长为 2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C,AC 的延长线与⊙O 相交于点D.设线段AB 的长为x,线段OC 的长为y.(1)求y 关于x 的函数解析式,并写出定义域;(2)当四边形ABDO 是梯形时,求线段OC 的长.图 1图文解析(1)如图 1,因为OA=OB,所以∠OAB=∠B.因为AC=AB,所以∠ACB=∠B.所以∠OAB=∠ACB.所以△OAB∽△ACB.所以B O B A,即2xB A B Cx 2 y.整理,得 2 1 2y x .定义域是 0≤x≤2.x=2 的几何意义如图 2 所示.2图 1 图 2(2)梯形ABDO 存在两种情况:①如图 3,当AB//OD 时,A B C B,即x2y.整理,得(x+2)y=4.D O C O2y代入y 2 1 x2 ,得( 2)(2 1 2 ) 4x x .整理,得x2+2x-4=0.2 2解得x= 5 1,或x= 5 1(舍去).所以CO=y=2 1 2 =2 1 ( 5 1)2x= 5 1.事实上,此时点C 是线段OB 的黄2 2金分割点.。

上海市嘉定区中考数学二模试卷.doc

上海市嘉定区中考数学二模试卷.doc

2016学年嘉定区九年级第二次质量调研数学试卷(满分150分,考试时间100分钟)(2017.4)同学们注意:1.本试卷含三个大题,共25题;2.答题时,同学们务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.如果a 表示不为0的任意一个实数,那么下列四个算式中,正确的是 ···················( )(A )a a a =-2323; (B )a a a =⋅313;(C )a a a =÷23;(D )a a =212)(. 2.在解答“一元二次方程021212=+-a x x 的根的判别式为 ”的过程中,某班同学的作业中出现了下面几种答案,其中正确的答案是 ··············································( ) (A )0241≥-a ; (B )a 241-; (C )081≥-a ; (D )a 81-.3.如果函数122++=x ax y 的图像不经过第四象限,那么实数a 的取值范围为 ·········( ) (A )0<a ;(B )0=a ;(C )0>a ;(D )0≥a .4.从概率统计的角度解读下列诗词所描述的事件,其中属于确定事件的是 ·············· ( ) (A )黄梅时节家家雨,青草池塘处处蛙; (B )人间四月芳菲尽,山寺桃花始盛开; (C )水面上秤锤浮,直待黄河彻底枯;(D )一夜北风紧,开门雪尚飘.5.已知⊙A 的半径长为2,⊙B 的半径长为5,如果⊙A 与⊙B 内含,那么圆心距AB 的长度可以为 ·············································· ······························ ·························· ( ) (A )0;(B )3;(C )6;(D )9.6.将两个底边相等的等腰三角形按照图1所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是 ······················································································ ( )(A )有两组邻边相等的四边形称为“筝形”; (B )有两组对角分别相等的四边形称为“筝形”;1(C )两条对角线互相垂直的四边形称为“筝形”;(D )以一条对角线所在直线为对称轴的四边形称为“筝形”. 二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】 7.计算:=-1)21( .8.已知73.13≈,那么≈31(保留两个有效数字........)9.不等式组⎩⎨⎧>+<01,32x x 的解集是 .10.方程2+x =x 的实数解是 .11.已知点),(11y x A 、点),(22y x B 在反比例函数xy 2-=的图像上.如果210x x <<,那么1y 与2y 的大小关系为:1y 2y (从“<”、“=”、“>”中选择).12.某校学生综合素质评价方案中有这样一段话:“学生自评、同学互评与班级评定小组评价在学生综合素质评价中所占的权重分别为%10、%30、%60”.如果甄聪明同学的自评分数、同学互评分数、班级评定小组给出的分数分别为96分、95分、95分,那么甄聪明同学的综合素质评价分数为 分.13.一名射击运动员连续打靶9次,假如他打靶命中环数的情况如图2所示,那么该射击运动员本次打靶命中环数的中位数为 环.14.如果非零向量a r 与向量b r 的方向相反,且b a ρρ32=,那么向量a r 为 (用向量b r 表示).15.从山底A 点测得位于山顶B 点的仰角为︒30,那么从B 点测得A 点的俯角为 度. 16.已知扇形的弧长为8,如果该扇形的半径长为2,那么这个扇形的面积为 . 17.命题“相等的角不一定是对顶角”是 命题(从“真”或“假”中选择). 18.已知在△ABC 中,︒=∠90ACB ,10=AB ,53cos =A (如图3),将△ABC 绕着点C 旋转,点A 、B 的对应点分别记为A '、B ',B A ''与边AB 相交于点E .如果B A ''⊥AC ,那么线段E B '的长为 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:2122442--++-x x x ,其中2=x .20.(本题满分10分)ABC图3解方程组:⎩⎨⎧=--=-.,032222y xy x y x21.(本题满分10分,每小题5分)将大小相同,形状也相同的三个菱形按照图4的方式拼接在一起(其中,点B 、C 、F 、G 在同一条直线上),3=AB .联结AG ,AG 与EF 相交于点P . (1)求线段EP 的长;(2)如果︒=∠60B ,求△APE 的面积.22.(本题满分10分,第(1)小题6分;第(2)小题4分)某种型号的家用车在高速公路上匀速行驶时,测得部分数据如下表:行驶路程x (千米) … 100 150 … 油箱内剩余油量y (升)…5248…(1)如果该车的油箱内剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,求y 关于x 的函数解析式(不需要写出它的定义域);(2)张老师租赁该型号的家用车也在该高速公路的相同路段以相同的速度匀速行驶300千米(不考虑小轿车载客的人数以及堵车等因素).假如不在高速公路上的服务区加油,那么在上高速公路之前,张老师这辆车的油箱内至少..需要有多少升汽油?请根据题目中提供的相关信息简要说明理由. 23.(本题满分12分,每小题6分)已知:正方形ABCD ,点E 在边CD 上,点F 在线段BE 的延长线上,且CBE FCE ∠=∠.(1)如图5,当点E 为CD 边的中点时,求证:EF CF 2=; (2)如图6,当点F 位于线段AD 的延长线上,求证:DFDEBE EF =.ABCDEF图5ABCD 图6FEABCD图4FEGHP24.(本题满分12分,每小题4分)在平面直角坐标系xOy (如图7)中,已知点A 的坐标为(3,1),点B 的坐标为(6,5),点C 的坐标为(0,5);某二次函数的图像经过点A 、点B 与点C . (1)求这个二次函数的解析式;(2)假如点Q 在该函数图像的对称轴上,且△ACQ 是等腰三角形,直接..写出点Q 的坐标; (3)如果第一象限内的点P 在(1)中求出的二次函数 的图像上,且21tan =∠PCA ,求PCB ∠的正弦值.25.(满分14分,第(1)小题5分,第(2)小题5分、第(3)小题4分)已知:8=AB ,⊙O 经过点A 、B .以AB 为一边画平行四边形ABCD ,另一边CD 经过点O (如图8).以点B 为圆心,BC 为半径画弧,交线段OC 于点E (点E 不与点O 、点C 重合).(1)求证:OE OD =;(2)如果⊙O 的半径长为5(如图9),设x OD =,y BC =,求y 关于x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为5,联结AC ,当AC BE ⊥时,求OD 的长.图7图9备用图图82016学年嘉定区九年级第二次质量调研数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分) 1、C ;2、B ;3、D ;4、C ;5、A ;6、D.二、填空题:(本大题共12题,每题4分,满分48分)7、2;8、58.0;9、231<<-x ;10、2=x ;11、>;12、1.95;13、9环;14、b a ρρ23-=;15、︒30;16、8;17、真命题;18、524.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 解:2122442--++-x x x )2)(2(2)2)(2()2(2)2)(2(4-++--+-+-+=x x x x x x x x ······ 3分 21)2)(2()2()2)(2(2424+=-+-=-+---+=x x x x x x x x . ··································· 2+2+1分当2=x 时,原式=221221-=+. ···················································· 2分20.(本题满分10分)解:03222=--y xy x 可以化为:0))(3(=+-y x y x ,所以:03=-y x 或0=+y x . ·································································· 2分原方程组可以化为:⎩⎨⎧=-=-032y x y x ,(Ⅰ)与⎩⎨⎧=+=-02y x y x ,(Ⅱ) ·························· 2分 解(Ⅰ)得⎩⎨⎧==1,3y x ; 解(Ⅱ)得⎩⎨⎧-==1,1y x ················································· 2+2分 所以,原方程组的解为:⎩⎨⎧==;1,311y x 与⎩⎨⎧-==.1,122y x ················································· 2分21.(本题满分10分,每小题5分)解:(1)由题意得四边形ABGH 、ABFE 是平行四边形. ·································· 1分 ∴ AE ∥FG . ····················································································· 1分∴FGAEFP EP =. ······················································································· 1分ABCD图4FEGHPH 将6=AE ,3=FG 代入,得 2=FP EP ,即32=EF EP ································· 1分 又∵四边形ABFE 是平行四边形,3=AB ,∴3==AB EF .∴2=EP . ··········· 1分 (2)过点P 作AE PH ⊥,垂足为H (如图4). ········································· 1分 ∵四边形ABFE 是平行四边形,︒=∠60B ,∴︒=∠=∠60B PEH . ············ 1分 在Rt △PEH 中,︒=∠90PHE ,︒=∠60PEH ,2=EP ,∴323260sin =⨯=︒⋅=EP PH . ······················································· 2分 ∴△APE 的面积为33362121=⨯⨯=⋅PH AE . ··································· 1分22.(本题满分10分)解:(1)设油箱内剩余油量y (升) 与行驶路程x (千米)之间的函数关系式为b kx y +=. ······················································································· 1分分别将100=x ,52=y ;150=x ,48=y 代入上式,得⎩⎨⎧=+=+.48150,52100b k b k ······· 2分解得:⎪⎩⎪⎨⎧=-=.60,252b k ···················································································· 2分 ∴所求的函数关系式为60252+-=x y ························································· 1分 (2)方法1:由题意可得,该型号的汽车在该路段行驶时,每行驶100耗油8升. ·· 2分 设行驶300公里时需要耗油x 升,可得8:100:300x =,解得24=x 升. ············· 1分方法2:将300=x 代入60252+-=x y ,得36=y . ······································ 2分 243660=-. ··············································································· 1分 答:张老师的这辆车的油箱内至少..需要有24升汽油. ········································ 1分 备注:学生若是在得到24升油的基础上又考虑了其它因素(如离开高速公路之后还需要再行驶一段路程才可以抵达目的地(或寻找到加油站),因此给出了大于24升油的其它数据,只要能够自圆其说,且符合生活实际情况,那么可以酌情评分. 23.(本题满分12分,每小题6分)(1)证明:∵四边形ABCD 是正方形,∴BC CD =. ··········································· 1分∵点E 为CD 边的中点,∴CD CE 21=BC 21=. ··································· 1分 ∵CBE FCD ∠=∠,F F ∠=∠,∴△FCE ∽△FBC . ··························· 2分 ∴BCCECF EF =. ·················································································· 1分又∵BC CE 21=,∴21=CF EF .即EF CF 2=. ············································· 1分 (2)∵四边形ABCD 是正方形,∴DE ∥AB ,AD ∥BC ,AD =CD . ················ 1分∵点F 位于线段AD 的延长线上,DE ∥AB ,∴ADDFBE EF =. ························ 1分 又∵AD =CD ,∴CDDFBE EF =.(1) ··························································· 1分 ∵AF ∥BC ,∴CBE DFE ∠=∠.又∵CBE DCF ∠=∠,∴DCF DFE ∠=∠. ················································ 1分 又∵CDF FDE ∠=∠,∴△FDE ∽△CDF . ················································ 1分∴CD DF DF DE =(2).由(1)、(2)得 DFDE BE EF =. ········································ 1分24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为c bx ax y ++=2,将A (3,1)、B (6,5)、C (0,5)代入,得 ⎪⎩⎪⎨⎧==++=++.5,5636,139c c b a c b a 解得 94=a ,38-=b ,5=c . ································· 3分所以,这个二次函数的解析式为538942+-=x x y . ·········································· 1分 (2))6,3(1Q ,)4,3(2-Q ,)9,3(3Q ,)825,3(4Q . ············································ 4分(3)由题意得,该二次函数图像的对称轴为直线3=x . ····································· 1分 联结PC 交直线3=x 于点M ,过点M 作AC MN ⊥,垂足为N (图7-1) . 将直线3=x 与BC 的交点记为H ,易得3=CH ,4=AH ,5=AC .∴53sin ==∠CA CH CAH ········································································ 1分 故可设k MN 3=,则k AM 5=,k AM 4=.又∵21tan =∠PCA ,则k CN 6=.由题意得方程:564=+k k .解得21=k ,25=AM ,23254=-=MH ·········· 1分A B CDEF图5ABCD 图6FE∴523)23(322=+=CM .∴55sin ==∠CM MH PCB . ···························· 1分25.(满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)解:(1)联结OA 、OB (如图8-1),易得OB OA =,OBA OAB ∠=∠. ···················· 1分∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC AD =.∵BC BE =,BC AD =,∴BE AD =. ······················································ 1分 又 ∵AB ∥CD ,∴四边形ABED 是等腰梯形.∴EBA DAB ∠=∠. ····················· 1分 又 ∵OBA OAB ∠=∠,∴OBA EBA OAB DAB ∠-∠=∠-∠.即 OBE OAD ∠=∠. ·················································································· 1分在△AOD 和△BOE 中,∵OB OA =,OBE OAD ∠=∠,BE AD =,∴△AOD ≌△BOE. ∴OE OD =. ························· 1分方法2:∵BED ADE ∠=∠,EBO DAO ∠=∠,BE AD =,∴△AOD ≌△BOE.…… 方法3:∵BED ADE ∠=∠,EBO DAO ∠=∠,OB OA =,∴△AOD ≌△BOE.…… 方法4:如图8-2,过点O 作AB OH ⊥,过点D 作AB DG ⊥,过点E 作AB EI ⊥.…… 方法5:如图8-3,过点O 作AB OH ⊥,垂足为H ,联结DH 、EH .……(2)方法1:如图9-1,过点O 作AB OH ⊥,垂足为H ,过点D 作AB DG ⊥,垂足为G .联结OB ,3=OH ,4==BH AH ,得1分;得到3==OH DG ,得2分;在Rt △ADG 中,写出x AG -=4,y BC AD ==,得1分;利用222AG DG AD +=得到2582+-=x x y ,得1分,函数定义域40<<x ,得1分.方法2、方法3见评分细则.(3)如图10-1,过点O 作AC OM ⊥,交AC 于点M ,交AB 于点N .证明四边形ONBE 是平行四边形,得1分;利用OD OE BN ==,CD AB =得到AN OC =,得1分;利用△AMN ≌△CMO 或COANCM AM =得到CN AM =,进而得到OM 是AC 的垂直平分线,5==OA OC ,得1分;利用8==AB CD ,5=OC 得到3=OD ,得1分.方法2.如图10-,2;方法3:如图10-3;方法4(利用圆周角,略).图8-1图8-3图8-2像平时有价值的升学文章,像自招、校园开放日消息、历年中考分数线,那些文章我都放在公众号菜单栏那个按钮上的专题那里了,还有什么细化的升学问题,你们可以关注公众号给我留言,我看到会第一时间回复你们的——小编编GHEBAOD 图9-1 P NME CBAO D图10-1 LK PE B AO D图10-2 P NME BAO D 图10-3。

2017年上海市初三二模数学汇编之18题(十六区全)

2017年上海市初三二模数学汇编之18题(十六区全)

2017年上海市初三二模数学汇编之18题(十六区全)1. (2017徐汇二模)如图,在ABC 中,(90180)ACB αα∠=<<,将ABC 绕点A 逆时针旋转2β后得AED ,其中点E 、D 分别和点B 、C 对应,联结CD ,如果⊥CD ED ,请写出一个关于α与β的等量关系式 :________________.【考点】图形的旋转、等腰三角形 【解析】根据题意:ACB ADE α∠=∠=,90CDE ∠=︒,90ADC α∴∠=-︒,2,BAE DAC AC BC β∠=∠==, 90ACD ADC β∴∠=∠=︒-,180αβ∴+=︒.2. (2017黄埔二模)如图,矩形ABCD ,将它分别沿AE 和AF 折叠,恰好使点B 、C 落到对角线AC 上点M 、N 处.已知2MN =,1NC =,则矩形ABCD 的面积是 .【考点】图形的翻折、勾股定理【解析】设AB x =,由题意可得:2,3.AN AD x AC x ==+=+在Rt ADC 中,222AD DC AC +=,即222(2)(3)x x x ++=+.解得:1x =((319ABCDSAD DC ∴=⨯==+3. (2017静安二模)如图,A 和B 的半径分别为5和1,3AB =,点O 在直线AB上.O 与A 、B 都内切,那么O 半径是 .【考点】圆与圆的位置关系【解析】根据题意:,A O O B OA R R OB R R =-=-,|||62|3O AB OA OB R ∴=-=-=32RO ∴=,924. (2017闵行二模)如图,在Rt ABC 中,90,8,6,C AC BC ∠=︒==点D E 、分别在边AB AC 、上,将ADE 沿直线DE 翻折,点A 的对应点在边AB 上,联结'A C .如果''A C A A =,那么BD = .【考点】勾股定理、图形的翻折 【解析】根据题意: 115'''5,''222A A AB AC AB AD DB A B ======= 15''2BD BA A D ∴=+=图(1)图(2)5. (2017普陀二模)将ABC 绕点B 按逆时针方向旋转得到EBD ,点E 、点D 分别与点A 、点C 对应,且点D 在边AC 上,边DE 交边AB 于点F ,BDC ABC ,已知BC =5AC =,那么DBF 的面积等于 .【考点】图形的旋转、相似、八字形【解析】22235BDC ABC BC CD CA CD AD AC CD ∴=⋅∴==∴=-=333=588BDF BDF BDF BDEABCBDESSS AD DF DF ADFBEF EB EF SDE SS∴=∴==∴==6. (2017杨浦二模)如图,在Rt ABC 中,90, 4.C CA CB ∠=︒==将ABC 翻折,是得点B 与点AC 的中点M重合,如果折痕与边AB 的交点为E ,那么BE 的长为 .【考点】图形的翻折、勾股定理、等腰直角三角【解析】过点M 作MH AB ⊥,设BE x =,根据题意得:,AB ME BE x AH MH HE x ======,在Rt MHE 中,222222+)MH HE ME x x x +=∴=∴=(B BA33154588216BDFABCSS ∴==⨯=HBA7. (2017嘉定二模)如图,在ABC 中,390,10,cos 5ACB AB A ∠=︒==,将ABC 绕着点C 旋转,点A 、B 的对应点分别记为'A 、'B ,''A B 与边AB 相交于点E ,如果''A B AC ⊥那么线段'B E 的长为 .【考点】图形的旋转、母子三角形、锐角三角比 【解析】根据题意:3'''cos '1065A C A B A =⋅=⨯=,318''cos '655A F A C A =⋅=⨯= 32''''5B F A B A F ∴=-=,246,55CF A AF AC CF ==∴=-= 42424''3155AEFABC EF AF B E B F EF ∴==∴=-= 8. (2017长宁、金山、青浦二模)如图,在Rt ABC 中,,AB AC D E =、是斜边BC上两点,45DAE ∠=︒,将ADC 绕点A 顺时针旋转90︒后,得到AFB .设,=BD a EC b =.那么AB = .【考点】图形的翻折、勾股定理【解析】将ABD 沿AD 翻折得到ADF ,联结EF .根据题意得:,ABD AFD AEF AEC ≅≅ ,,DF BD a EF EC b ∴====.45B C DFA AFE ∠=∠=∠=∠=︒90DFE ∴∠=︒DE ∴=+BC BD DE EC a b AB ∴=+=++=BB9. (2017崇明二模)如图,已知ABC 中,3,4,BC AC BD ==平分ABC ∠,将ABC 绕着点A 旋转后,点B 、C 的对应点分别记为11B C 、,如果点1B 落在射线BD 上.那么1CC 的长度为 .【考点】图形的旋转、八字形、旋转相似 【解析】1111111,//ABB CBB ABB AB B CBB AB B AB BC ∠=∠∠=∠∴∠=∠∴1111111AB B DBB AD AB BB ABB ACC BC DC DBAC CC ∴==∴=∴=,即154=1CC ∴=10. (2017虹口二模)如图,在Rt ABC 中,490,10,sin ,5C AB B ∠=︒==点D 在斜边AB 上,把ACD 沿直线CD 翻折,使得点A 落在同一平面内的'A 处,当'A D 平行Rt ABC 的直角边时,AD 的长为 .【考点】图形的翻折、八字形【解析】图(2)根据题意12,1332AC AB ∠=∠∠=∠∴∠=∠∴⊥2416''''//'4455AC BC A D A ECE A E A D BC A D AD AB BC CE⋅∴==∴=∴=∴=∴= 图(3)根据题意1238AD AC ∠=∠=∠∴==.综上:4AD =或8.BA'B11. (2017松江二模)如图,已知在矩形ABCD 中,4,=8AB AD =,将ABC 沿对角线AC 翻折,点B 落在点E 处,联结DE ,则DE 的长为 .【考点】图形的翻折、八字形、勾股定理【解析】根据题意:123AF CF ∠=∠=∠∴=,设AF x =,在Rt AFC 中2222216(8)5AE EF AF x x x +=∴+-=∴=,//EF DF AF CF ED AC ==∴355DE EF DE AC FC ∴==∴=12. (2017宝山二模)如图,E F 、分别在正方形ABCD 的边AB 、AD 上的点,且AE AF =,联结EF ,将AEF 绕点A 逆时针旋转45︒,使E 落在1E ,F 落在1F ,联结1BE 并延长交1DF 于点G,如果1AB AE ==,则DG = .【考点】图形的旋转、勾股定理、全等、八字型、A 字型 【解析】根据题意:11ABE AF D ABF ADGAQB DQG AQB DQG ≅∴∠=∠∠=∠∴34DG DQ DG AB BQ ∴===E13.14. (2017奉贤二模)如图,在矩形ABCD 中,点E 是边AD 上的一点,过点E 作EF BC ⊥.垂足为点F ,将BEF 绕点E 逆时针旋转,使点B 落在边BC 上的点N处,点F 落在边DC 上的点M 处,如果点M 恰好使边DC 的中点,那么ADAB的值是 .【考点】图形的旋转、一线三等角【解析】根据题意:,EBF EFN ENM NMC DEM ENM ≅≅设CM x =,则2,DM CM CD AB EN x ED CN x ED ⋅===∴=∴==2AD MN BN MN x AB ∴=∴==∴=14. (2017 浦东二模)如图,矩形ABCD 中,4,7AB AD ==,点E F 、分别在边AD BC 、上,且点B F 、关于过点E 的直线对称,如果以CD 为直径的圆与EF 相切,那么AE = .M2x7-2x4【考点】图形的翻折、勾股定理【解析】根据题意:设AE x = ,则7DE x =-,2,72BF x FC x ==-,,7,142DEG HEG HFG CFG DE HE x CF HF x ≅≅∴==-==-143,BE FE x ∴==-在Rt ABE 中,222AB AE BE +=,即2216(143x x +=-)解得:12153,()2x x ==舍去,故 3.AE =。

2017年上海市各区数学二模压轴题——图文解析

2017年上海市各区数学二模压轴题——图文解析

2017 年上海市浦东新区中考模拟第 24、25 题 / 34 2017 年上海市普陀区中考模拟第 24、25 题 / 38 2017 年上海市松江区中考模拟第 24、25 题 / 42 2017 年上海市徐汇区中考模拟第 24、25 题 / 47 2017 年上海市杨浦区中考模拟第 24、25 题 / 52 2017 年上海市长宁区青浦区金山区中考模拟第 24、25 题 / 55 2017 年上海市宝山区中考模拟第 18 题 / 59 2017 年上海市崇明区中考模拟第 18 题 / 60 2017 年上海市奉贤区中考模拟第 18 题 / 61 2017 年上海市虹口区中考模拟第 18 题 / 62 2017 年上海市黄浦区中考模拟第 18 题 / 63 2017 年上海市嘉定区中考模拟第 18 题 / 64 2017 年上海市静安区中考模拟第 18 题 / 65 2017 年上海市闵行区中考模拟第 18 题 / 66 2017 年上海市浦东新区中考模拟第 18 题 / 67 2017 年上海市普陀区中考模拟第 18 题 / 68 2017 年上海市松江区中考模拟第 18 题 / 69 2017 年上海市徐汇区中考模拟第 18 题 / 70 2017 年上海市杨浦区中考模拟第 18 题 / 71 2017 年上海市长宁区青浦区金山区中考模拟第 18 题 / 72 2015 年上海市中考第 24、25 题 / 73 2016 年上海市中考第 24、25 题 / 77
心从点 C 出发,沿着 CB 方向以 1 个单位长度/秒的速度匀速运动,同时动点 P 从点 B 出发, 沿着 BA 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为 t 秒(0<t≤5) ,以 P 为 圆心、PB 为半径的⊙P 与 AB、BC 的另一个交点分别为 E、D,联结 ED、EQ. (1)判断并证明 ED 与 BC 的位置关系,并求当 点 Q 与点 D 重合时 t 的值; (2)当⊙P 和 AC 相交时,设 CQ 为 x,⊙P 被 AC 解得的弦长为 y,求 y 关于 x 的函数解析式,并求 当⊙Q 过点 B 时⊙P 被 AC 截得的弦长; (3)若⊙P 与⊙Q 相交,写出 t 的取值范围. 图1

2024届上海市嘉定区初三二模数学试题及答案

2024届上海市嘉定区初三二模数学试题及答案

上海市嘉定区2024届初三二模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列实数中,属于有理数的是().A ;.B 2 ;.C 227;.D sin 60 .2.关于x 的方程260x x k (k 为常数)有两个不相等的实数根,那么k 的取值范围是().A 9k 且0k ;.B 9k ;.C 9k 且0k ;.D 9k .3.2).A 4..A .C 5..A .C 6.在 的是(.A 点A C 内;.C 点A 二、7.48.计算:9.记数法表示为.10.不等式31x 的最小整数解是是.11.用换元法解方程121x x x x 时,如果设1xy x ,那么原方程可化为关于y 的整式方程是.12.如果反比例函数ky x(0k )的图像经过点 2,3A ,那么k 的值是.13.某校田径运动队共有20名男运动员,小杰收集了这些运动员的鞋号信息(见表1),表1那么这20名男运动员鞋号的中位数是.图314.在不透明的盒子中装有六张形状相同的卡片,这六张卡片分别印有正方形、平行四边形、等边三角形、直角梯形、正六边形、圆这六种图形,如果从这不透明的盒子里随机抽出一张卡片,那么所抽到的这张卡片上的图形恰好为中心对称图形的概率是.15.如图1,在ABC中,线段AD 是边BC 上的中线,点E 是AD 的中点,设向量AB a ,BC b,那么向量AE .(结果用a 、b表示)16.AED 等于17.45 ,点M的中点,联结OM ,并延长OM 18.定义:如果三角形有两个内角的差为ACB 中,90 ,4AC ,12AB ,如图,那么CD.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)1228 .图5图620.(本题满分10分)解方程组:2228120x y x xy y.21.(本题满分10分,第(1)小题5分,第(2)小题5分)某东西方向的海岸线上有A 、B 两个码头,这两个码头相距60千米(60AB ),有一艘船C 在这两个码头附近航行.(1)当船C 航行了某一刻时,由码头A 测得船C 在北偏东55 ,由码头B 测得船C 在北偏西35 ,如图5,求码头A 与C 船的距离(AC 的长),其结果保留3位有效数字;(参考数据:sin 350.5736 ,cos350.8192 ,tan 350.7002 ,cot 35 1.428 )(2)当船C 继续航行了一段时间时,由码头A 测得船C 在北偏东30 ,由码头B 测得船C 在北偏西15 ,船C 到海岸线AB 的距离是CH (即CH AB ),如图6,求CH 的长,其结果保留根号.图722.(本题满分10分,第(1)小题4分,第(2)小题6分)某企业在2022年1至3月的利润情况见表2.表2(1)如果这个企业在2022年1至3月的利润数y 是月份数x 的一次函数,求2月份的利润;(2)这个企业从3月份起,通过技术改革,经过两个月后的5月份获得利润为121万元,如果这个企业3月至5月中每月利润数的增长率相等,求这个企业3月至5月中利润数的月平均增长率.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图7,在梯形ABCD 中,//AD BC ,AB DC ,点P 在四边形ABCD 内部,PB PC ,联结PA 、PD .(1)求证:APD 是等腰三角形;(2)已知点Q 在AB 上,联结PQ ,如果//AP CD ,AQ AP ,求证:四边形AQPD 是平行四边形.图8在平面直角坐标系xOy (如图8)中,已知抛物线23y ax bx 经过点 1,0A 、 2,3B 两点,与y轴的交点为C 点,对称轴为直线l .(1)求此抛物线的表达式;(2)已知以点C 为圆心,半径为CB 的圆记作圆C ,以点A 为圆心的圆记作圆A ,如果圆A 与圆C 外切,试判断对称轴直线l 与圆A 的位置关系,请说明理由;(3)已知点D 在y 轴的正半轴上,且在点C 的上方,如果BDC BAC ,请求出点D 的坐标.图9图10备用图在菱形ABCD 中,60DAB ,点E 在射线AB 上,联结CE 、BD .(1)如图9,当点E 是边AB 的中点,求ECD 的正切值;(2)如图10,当点E 在线段AB 的延长线上,联结DE 与边BC 交于点F ,如果6AD ,EFC的面积等于EF 的长;(3)当点E 在边AB 上,CE 与BD 交于点H ,联结DE 并延长DE 与CB 的延长线交于点G ,如果6AD ,BCH 与以点E 、G 、B 所组成的三角形相似,求AE 的长.上海市嘉定区2024届初三二模数学试卷-简答嘉定区2023学年第二次质量调研测试数学试卷参考答案一、1.C ;2.B ;3.B ;4.A ;5.D ;6.C.二、7.2 ;8.22a a ;9.9102.5 ;10.5;11.0122y y ;12.6;13.5.24;14.32;15.b a 4121 ;16. 25;17.225 ;18.2或22.三、19.解:21832122122232)12(232 223222232 ………………………………8分3………………………………2分20.)(.)(,201218222y xy x y x 解:由(2)得:0)3)(4( y x y x ……………………2分则:04 y x 或03 y x ……………………2分所以原方程组可化为两个二元一次方程组:;04,82y x y x;03,82y x y x ……………………2分分别解这两个方程组,得原方程组的解是,3431611y x;,82422y x ……………………4分21.解:(1)根据题意得:60 AB 由 55PAC ,得 35CAB 由 35QBC ,得 55CBA 又 180C CBA CAB ……1分∴ 90ACB ……1分在Rt △ACB 中,ABACCABcos ,……1分又8192.035cos ∴0.819260cos3560cos CAB AB AC 152.49 ……1分∴2.49 AC 千米……1分答:码头A 与C 船的距离为2.49千米.(2)根据题意得:60 AB 由 30PAC ,得60CAB 由 15QBC ,得 75CBA 又180C CBA CAB ∴45ACB ……1分过点B 作AC BG ,垂足为G 在Rt △AGB 中,AB GB GABsin ,ABAG GAB cos ∴33060sin 60 GB ,3060cos 60 AG (1)在Rt △CGB 中,GBGCGABcot ∴330cot GCB GB GC ……1分∴33030 AC ……1分在Rt △AHC 中,ACCH CAHsin ∴45315sin CAH AC CH (千米)……1分答:船C 到海岸线AB 的距离CH 为)(45315 千米.22.解(1)根据题意设利润数y 与月份数x 一次函数关系式为b kx y 得:100396b k b k 解此方程组得: 942b k ……2分∴利润数y 与月份数x 一次函数关系式为942 x y ……1分当2 x 时,98 y (万元)……1分答:2月份的利润为98万元(2)设这个企业利润数的月平均增长率为x .……1分根据题意,得方程121)1(1002x ……3分解得1.01 x ,1.22 x (不合题意,舍去)……1分所以%10 x .答:这个企业利润数的月平均增长率为%10.……1分ABC 图55535P Q23.证明(1)∵BC AD //,DCAB ∴梯形ABCD 是等腰梯形……1分∴DCB ABC ……1分∵PCPB ∴PCB PBC ……1分∴DCP ABP ……1分∴△ABP ≌△DCP ……1分∴PDAP 即△APD 是等腰三角形……1分(2)由(1)得PD PA ∴PDA PAD ……1分∵CDAP //∴ 180CAD PAD ……1分∵四边形ABCD 是等腰梯形∴CDABAD ∴ 180BAD PDA ……1分∴AQ PD //……1分∵AP AQ 又PD AP ∴AQ PD ……1分∴四边形AQPD 是平行四边形.……1分24.解:(1)∵抛物线32bx ax y 经过点)0,1(A 、)3,2-(B 两点∴332403b a b a ,………1分解得21b a ……2分∴此抛物线的表达式是322x x y ………1分(2)答:对称轴直线l 与圆A 的位置是相离……1分根据(1)得,抛物线322 x x y 的对称轴l 是直线1 x ,……1分抛物线322 x x y 与y 轴的交点C 点坐标为)3,0(,所以2 CB ,所以圆C 的半径是2设圆A 的半径为r ,又圆A 与圆C 外切,所以ACr 2又10 AC ,所以2-10 r ……1分对称轴l 与x 轴垂直,设垂足为M ,那么AM 的长就是圆A 到对称轴l 的距离又对称轴l 是直线1 x ,所以点M 的坐标为)(0,1-,所以2 AM 因为2102 ,即r AM ,……1分所以对称轴直线l 与圆A 的位置是相离.(3)过点C 作AB CH ,垂足为H ,过点B 作x BG 轴,垂足为G易得3 AG BG 23 AB , 45GAB GBA ,又C 点坐标为)3,0(,B 点坐标为)3,2-(,所以y BC 轴,……1分所以 45BCH CBH ,2 CB ,由勾股定理得2CH BH 所以22 AH ,在Rt △AHC 中,21tan AH CH BAC ……1分在Rt △BCD 中,CDBCBDC tan ,因为BAC BDC 所以21tanCD CB BDC ,2 CB ,所以4 CD ……1分所以点D 的坐标为)7,0(………1分DA QPB C图7425.(1)解:联结DE∵四边形ABCD 是菱形∴AB DC //,ABDA ∵ 60DAB ∴△ABD 是等边三角形……1分∵点E 是边AB 的中点∴AB EB AE 21,AB DE ∴ 90AED ……1分又AB DC //∴ 90CDE AED ……1分设x AE ,易知x CD AD 2 ,x DE 3 在Rt △CDE 中,2323tanx x CD DE ECD ……1分∴ECD 的正切值是23(2)解:过点D 作AB DM ,垂足为M由(1)可知:AB DM ,AB MB AM 21 ∵6 AD ∴6 AB CD ∴3BM AM 由勾股定理得:33 DM ……1分∴3921 DM CD S DEC ∵△EFC 的面积等于33∴3: EFC DEC S S ……1分∵△DEC 与△EFC 是同高的,设这个高为h ∴3:)21:)21(: EF DE h EF h DE S S EFC DEC ∴EF DF 2 ……1分∵AE ∥CD ∴21 DF EF CD BE ∴3 BE ∴6 ME ……1分在Rt △DME 中,222ME DM DE ∴73 DM ∴7 EF ……1分(3)E 过作CG DN 点,垂足为N由(1)得:△ABD 是等边三角形∴ 60ABD ADB ∵CB AD //∴ 60A ABG , 60ADB DBC ∴ 60HBC EBG ……1分∵ 60ABD BDE GEB ,HCB ∴HCB GEB ∵△BCH 与以点E 、G 、B 组成的三角形相似∴点C 只能与点G 对应……1分∴ECG G ∴EC EG ∴CNGN 设x AE ,则x BE 6在Rt △BEN 中,BE BN EBN cos ∴26x BN ∵6 AD BC ∴x BG 12……1分∵CB AD //∴BE AE BG AD ∴xx x 6126……1分解得:5391 x ,5391 x (舍去)539 AE ……1分D 图9D 图10D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F 、 G 在同一条直线上),AB 3 .联结 AG , AG 与 EF 相交于点 P .
1 求线段 EP 的长;
A
D
E
H
2 如果B 60 ,求△APE 的面积.
P
B
C
F
G
图4
22.(本题满分 10 分,第(1)小题 6 分;第(2)小题 4 分)
某种型号的家用车在高速公路上匀速行驶时,测得部分数据如下表:
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题 纸的相应位置上】
1.如果 a 表示不为0 的任意一个实数,那么下列四个算式中,正确的是∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(▲)
1
1
(A)3a3 2a2 a ; (B) a3 a3 a ;
7.计算: ( 1 )1 ▲ .
2
次数
8. 已知 3 1.73 ,那么 1 ▲ (保留两个有效数字). 3
3
2
2x 3, 9. 不等式组x 1 0 的解集是 ▲ .
1
O
7 8 9 10 环数
10. 方程 x 2 =x 的实数解是 ▲ .
图2
11. 已知点 A(x , y ) 、点 B(x , y ) 在反比例函数 y 2 的图像上.如果 x 0 x ,那么
么甄聪明同学的综合素质评价分数为 ▲ 分.
13.一名射击运动员连续打靶9次,假如他打靶命中环数的情况如图2 所示,那么该射击运
动员本次打靶命 中环数的 中位数为 ▲ 环 .
14.如果非零向量 a 与向量b 的方向相反,且2 a 3b ,那么向量 a 为 ▲ (用向量b 表
示).
15. 从ft底 A 点测得位于ft顶 B 点的仰角为30 ,那么从 B 点测得 A 点的俯角为 ▲ 度. 16. 已知扇形的弧长为8 ,如果该扇形的半径长为2 ,那么这个扇形的面积为 ▲ .
17. 命题“相等的角不一定是对顶角”是 ▲ 命题(从“真”或“假”中选择).
18. 已知在△ABC 中, ACB 90 , AB 10 , cos A 3 (如图3 ),将△ABC 绕着 5
点C 旋转,点 A 、 B 的对应点分别记为 A、 B, AB 与边 AB 相交于点 E .如果
AB AC ,那么线段 BE 的长为 ▲ .
11
22
x
1
2
y1 与 y2 的大小关系为: y1 ▲ y2 (从“ ”、“ ”、“ ”中选择).
12. 某校学生综合素质评价方案中有这样一段话:“学生自评、同学互评与班级评定小组评
价在学生综合素质评价中所占的权重分别为10% 、 30% 、 60% ”.如果甄聪明同学的
自评分数、同学互评分数、班级评定小组给出的分数分别为96 分、95 分、95 分,那
B
三、解答题:(本大题共 7 题,满分 78 分)
19.(本题满分 10 分)
4
2
1
先化简,再求值:
,其中 x
x2 4 x 2 x 2
图3
2.
C
A
20.(本题满分 10 分)
—2—
x y
2xy
3y
2
0

21.(本题满分 10 分,每小题 5 分)
将大小相同,形状也相同的三个菱形按照图4 的方式拼接在一起(其中,点 B 、C 、
长度可以为∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(▲)
(A) 0 ;
(B) 3 ;
行驶路程 x (千米)
A (A) 有两组邻边相等的四边形称为“筝形”;
(B) 有两组对角分别相等的四边形称为“筝形”;
B
D
(C) 两条对角线互相垂直的四边形称为“筝形”;
图1
—1—
C
(D) 以一条对角线所在直线为对称轴的四边形称为“筝形”.
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
【请直接将结果填入答题纸的相应位置】
(A) 1 2a 0 ; (B) 1 2a ;
4
4
(C)1 8a 0 ; (D)1 8a .
3. 如果函数 y ax2 2x 1 的图像不经过第四象限,那么实数 a 的取值范围为∙∙∙∙∙∙∙∙∙∙(▲)
(A)a 0 ;
(B) a 0 ;
(C) a 0 ;
(D) a 0 .
2016 学年嘉定区九年级第二次质量调研 数学试卷
(满分 150 分,考试时间 100 分钟)(2017.4)
同学们注意:1.本试卷含三个大题,共 25 题; 2.答题时,同学们务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题 一律无效;
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或 计算的主要步骤.
4. 从概率统计的角度解读下列诗词所描述的事件,其中属于确定事件的是∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(▲) (A)黄梅时节家家雨,青草池塘处处蛙; (B)人间四月芳菲尽,ft寺桃花始盛
开;
(C)水面上秤锤浮,直待黄河彻底枯;
(D)一夜北风紧,开门雪尚飘.
5. 已知⊙ A 的半径长为2 ,⊙ B 的半径长为5 ,如果⊙ A 与⊙ B 内含,那么圆心距 AB 的
(C) 6 ;
(D) 9 .
6. 将两个底边相等的等腰三角形按照图1 所示的方式拼接在一起(隐藏互相重合的底边)
的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描
述“筝形”特征的是∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(▲)
(C) a3 a2 a ; (D) (a2 )2 a .
11
2. 在解答“一元二次方程 x2 x a 0 的根的判别式为 ▲ ”的过程中,某班同学的
22
作业中出现了下面几种答案,其中正确的答案是∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(▲)
相关文档
最新文档