2017年勤学早中考数学模拟试题1-3卷(扫描版含答案)
036.勤学早测试卷目录(16-17) 数学 九年级(上、下)
勤学早测试卷(2016-2017)数学九年级(上、下)九年级数学(上册)1.九(上)第21章《一元一次方程》周测(一)2.九(上)第21章《一元二次方程》周测(二)3.九(上)第2l章《一元二次方程》单元检测题(月考一)4.九(上)第2l章《一元二次方程》专题一点通(一)(二)5.九(上)第22章《一次函数》周测(一)6.九(上)第22章《二次函数》周测(二)7.九(上)第22章《二次函数》单元检测题8.九(上)第22章《二次函数》专题一点通(一)(二)9.九(上)第22章《二次函数》专题一点通(三)10.九(上)月考(二)11.九(上)第23章《旋转》单元检测题12.九(上)第23章《旋转》专题一点通13.九(上)期中模拟题(月考三)14.九(上)第24章《圆》周测(一)15.九(上)第24章《圆》周测(二)16.九(上)第24章《圆》周测(三)17.九(上)第24章《圆》单元检测题18.九(上)第24章《圆》专题一点通19.九(上)月考(四)20.九(上)第25章《概率初步》单元检测题21.九(上)第25章《概率初步》专题一点通22.九(上)期末模拟题(月考五)九年级数学(下册)23.九(下)第26章《反比例函数》周测(一)24.九(下)第26章《反比例函数》周测(二)25.九(下)第26章《反比例函数》单元检测题(月考一)26.九(下)第26章《反比例函数》专题一点通27.九(下)第27章《相似》周测(一)28.九(下)第27章《相似》周测(二)29.九(下)第27章《相似》单元检测题30.九(下)第27章《相似》专题一点通31.九(下)月考(二)32.九(下)第28章《三角函数》周测(一)33.九(下)第28章《三角函数》单元检测题34.九(下)第28章《三角函数》专题一点通35.九(下)第29章《投影与视图》单元检测题36.九(下)月考(三)(中考模拟题)。
2017年中考数学模拟试卷 (含答案解析) (19)
武汉一初慧泉中学2017届数学中考模拟一一、选择题(共10小题,每小题3分,共30分) 1.计算4的结果为( ) A .2B .-4C .-2D .42.若代数式21-x 在实数范围内有意义,则实数x 的取值范围是( ) A .x =2B .x >2C .x ≠0D .x ≠2 3.下列计算的结果为x 8的是( )A .x 2·x 4B .x 16-x 2C .x 16÷x 2D .(x 4)24.事件A :随意翻看一本书的某页,这页的页码是奇数;事件B :任意画一个三角形,内角和是360°,则( ) A .事件A 和事件B 都是必然事件B .事件A 是随机事件,事件B 是不可能事件C .事件A 是必然事件,事件B 是不可能事件D .事件A 和事件B 都是随机事件 5.运用乘法公式计算(a -3)2的结果是( ) A .a 2-6a +9 B .a 2+9C .a 2-9D .a 2-6a -9 6.点A (-1,4)关于y 轴对称的点的坐标为( )A .(1,4)B .(-1,-4)C .(1,-4)D .(4,-1)7.由6个大小相同的小正方体组合成一个几何体,其左视图如图所示.若画出该几何体的俯视图,且在正方形中用数字表示该位置放置的小正方体的个数,则该几何体的俯视图可能是( )8.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( ) A .80分B .82分C .84分D .86分9.如图,M (0,1)、N (0,-1),点P 是x =m 上一点,直线PM 、PN 分别交x =2于A 、B 两点.若当x =m 时,将AB 的长度记作AB [m ],则AB [-1]+AB [1]+AB [3]=( ) A .8B .326C .9D .328 10.已知关于x 的二次函数y =-(x -h )2+3,当1≤x ≤3时,函数有最小值h ,则h 的值为( ) A .-1或3B .2C .2或3D .-1二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:5+(-8)的结果为___________ 12.计算1212---x x x 的结果为___________ 13.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为___________14.如图,在矩形ABCD中,E为边AB上一点,将△CBE沿CE翻折得到△CFE,连接DF,若点F恰好在CD的中垂线上,且∠FDC=70°,那么∠FEC=___________度15.有一个正八边形的边长为22,则它的内切圆的半径为___________16.已知点O是矩形ABCD的中点,AB=2,BC=3.若点G为矩形边上的一点,以OG为边作正方形OEFG,设正方形OEFG的中心为点P,则当点G绕矩形运动一周的过程中,点P的运动路径长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:2x-1=3(x-2)+118.(本题8分)如图,AC=DB,AB=DC,求证:EB=EC19.(本题8分)武汉中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1) 本次调查共抽取了多少名学生?(2) 求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图(3) 若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?20.(本题8分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元(1)A、B两种商品的单价分别是多少元?(2) 已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?21.(本题8分)如图,BE 是⊙O 的直径,C 点是半径OE 上一点,□ABCD 的顶点A 在⊙O 上,连AC (1) 如图1,若AD 与⊙O 相切,且□ABCD 是菱形,求tan ∠ACB 的值 (2) 如图2,连DO ,若AC ⊥BE ,且sin ∠ADC =55,求tan ∠ADO 的值22.(本题10分)如图,直线y =kx 与双曲线xy 3=在一三象限分别交于A 、B 两点,等边△ABC 的边AC 交x 轴于P 点(1) 如图1,若33=k ,求△ABC 的面积 (2) 已知当k 变化时,点C 在某一函数图象上运动,请直接写出该函数解析式,并指出自变量x 的取值范围 (3) 试比较AP 与PC 的大小,并证明你的结论23.(本题10分)已知直线l 上依次有三点A 、B 、C ,D 、E 是直线l 同侧的两点,其中DA =DB ,EB =EC ,BC =nAB ,作直线AE 、CD 交于点P(1) 当∠ADB =∠BEC 时,解答下列问题: ① 如图1,若n =1,求APEP的值 ② 如图2,若154=AP EP ,求n 的值 (2) 如图3,若∠ADB =∠EBC =30°,且n =3,直接写出APEP的值24.(本题12分)已知抛物线y=x2+(1-k)x-k(k>0)与x轴交于A、B两点,A点在B点左边(1)若AB=3,求k的值(2)设抛物线在x轴下方的部分为w,若直线y=x-1与w只有一个公共点,求k的取值范围(3)点P是抛物线上的一点,若满足∠APB=45°的P点恰有3个,求k的值。
武汉市2017年中考数学模拟试卷和答案
湖北省武汉市2017年中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.8的立方根为( ) A .2B .±2C .-2D .42.要使分式15-x 有意义,则x 的取值范围是( ) A .x ≠1B .x >1C .x <1D .x ≠-1 3.计算(a -2)2的结果是( )A .a 2-4B .a 2-2a +4C .a 2-4a +4D .a 2+44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.下列各式计算正确的是( ) A .a 2+2a 3=3a 5B .(a 2)3=a5C .a 6÷a 2=a 3D .a ·a 2=a 36.如图,A 、B 的坐标为(2,0)、(0,1).若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .57.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是( ) A .S 1>S 2>S 3 B .S 3>S 2>S 1C .S 2>S 3>S 1D .S 1>S 3>S 28.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是4,平均数是3.89.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22的圆,则⊙O 的“整点直线”共有( )条 A .7B .8C .9D .1010.Rt △ABC 中,∠ACB =90°,AC =20,BC =10,D 、E 分别为边AB 、CA 上两动点,则CD +DE 的最小值为( ) A .854+ B .16 C .58 D .20二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:5-(-6)=___________ 12.计算:111+++a aa =___________13.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、7、11、-2、5.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________14.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为___________15.如图,△ABC 中,AB =AC ,∠A =30°,点D 在AB 上,∠ACD =15°,则ADBC的值是_______ 16.如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:54212-=-x x18.(本题8分)如图,△ABC 的高AD 、BE 相交于点F ,且有BF =AC ,求证:△BDF ≌△ADC19.(本题8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题: (1) 课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为____________ (2) 请补全条形统计图(3) 该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元 (1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?(3) 请你求出学校在第二次购买活动中最多需要多少资金?21.(本题8分)如图,在正方形ABCD 中,以BC 为直径的正方形内,作半圆O ,AE 切半圆于点F 交CD 于E (1) 求证:AO ⊥EO(2) 连接DF ,求tan ∠FDE 的值22.(本题10分)如图,已知直线y =mx +n 与反比例函数xky =交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F (1) 若m =k ,n =0,求A 、B 两点的坐标(用m 表示)(2) 如图1,若A (x 1,y 1)、B (x 2,y 2),写出y 1+y 2与n 的大小关系,并证明(3) 如图2,M 、N 分别为反比例函数x b y =图象上的点,AM ∥BN ∥x 轴.若3511=+BN AM ,且AM 、BN 之间的距离为5,则k -b =_____________23.(本题10分)已知点I 为△ABC 的内心(1) 如图1,AI 交BC 于点D ,若AB =AC =6,BC =4,求AI 的长 (2) 如图2,过点I 作直线交AB 于点M ,交AC 于点N ① 若MN ⊥AI ,求证:MI 2=BM ·CN② 如图3,AI 交BC 于点D .若∠BAC =60°,AI =4,请直接写出ANAM 11的值24.(本题12分)如图1,在平面直角坐标系中,抛物线y =x 2-4x -5与x 轴分别交于A 、B (A 在B 的左边),与y 轴交于点C ,直线AP 与y 轴正半轴交于点M ,交抛物线于点P ,直线AQ 与y 轴负半轴交于点N ,交抛物线于点Q ,且OM =ON ,过P 、Q 作直线l (1) 探究与猜想:① 取点M (0,1),直接写出直线l 的解析式 取点M (0,2),直接写出直线l 的解析式 ② 猜想:我们猜想直线l 的解析式y =kx +b 中,k 总为定值,定值k 为__________,请取M 的纵坐标为n ,验证你的猜想(2) 如图2,连接BP 、BQ .若△ABP 的面积等于△ABQ 的面积的3倍,试求出直线l 的解析式参考答案10.提示:当CG ⊥AF 时,CD +DE 有最小值由角平分线定理,得AF ∶BF =AC ∶CB =2∶1 设BF =x ,则AF =2x在Rt △AFC 中,(10+x )2+202=(2x )2,解得x 1=350,x 2=-10(舍去) ∴sin ∠CAF =34210=+=x x AF CF ∵sin ∠CAF =ACCG∴CG =16二、填空题(共6小题,每小题3分,共18分) 11.11 12.1 13.5314.25°15.216.π338 15.提示:过点A 作AE ⊥BC 于F ,在AE 上截取EF =EC ,连接FC∴△CEF 为等腰直角三角形 ∵△ADC ≌△CFA (ASA ) ∴AD =CF =2CE =22BC ∴2=ADBC三、解答题(共8题,共72分) 17.解:23=x 18.解:略19.解:(1) 144°;(2) 如图;(3) 16020.解:(1) 设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元⎩⎨⎧+==+3045002550x y y x ,解得⎩⎨⎧==8050y x(2) 设第二次购买A 种足球m 个,则购买B 种足球(50-m )个 ⎩⎨⎧≥-⨯≤-⨯++2350%704500)50(9.080)450(m m m ,解得25≤m ≤27∵m 为整数 ∴m =25、26、27(3) ∵第二次购买足球时,A 种足球单价为50+4=54(元),B 种足球单价为80×0.9=72 ∴当购买B 种足球越多时,费用越高 此时25×54+25×72=3150(元) 21.证明:(1) ∵∠ABC =∠DCB =90°∴AD 、CD 均为半圆的切线 连接OF ∵AE 切半圆于E∴∠BAO =∠FAO ,∠CEO =∠FEO ∵∠BAE +∠CEA =180° ∴∠DAF +∠OEF =90° ∴∠AOE =90° ∴AO ⊥EO(2) 设OB =OC =2,则AB =4 ∵Rt △AOB ∽Rt △OEC ∴CE =EF =1,DE =3,AE =5 过点F 作FG ⊥DE 于G ∴FG ∥AD ∴EDEGAD FG EA EF == 即3451EGFG == ∴FG =54,EG =53,DG =512∴tan ∠FDE =31=DG FG 22.解:(1) A (-1,m )、B (1,m )(2) 联立⎪⎩⎪⎨⎧=+=x ky n mx y ,整理得mx 2+nx -k =0 ∴x 1+x 2=m n -,x 1x 2=mk - ∴y 1+y 2=m (x 1+x 2)+2n =-n +2n =n (3) 设N (m b ,m )、B (m k ,m ),则BN =mb k - 设A (n k ,n )、M (n b ,n ),则AM =nk b - ∵3511=+BN AM ∴35=-+--b k m b k n ∵AM 、BN 之间的距离为5 ∴m -n =5∴k -b =53(m -n )=323.解:(1) 23(2) ∵I 为△ABC 的内心 ∴MAINAI ∵AI ⊥MN∴△AMI ≌△ANI (ASA ) ∴∠AMN =∠ANM 连接BI 、CI ∴∠BMI =∠CNI设∠BAI =∠CAI =α,∠ACI =∠BCI =β ∴∠NIC =90°-α-β∵∠ABC =180°-2α-2β ∴∠MBI =90°-α-β ∴BMI ∽INC ∴NCNINI BM =∴NI 2=BM ·CN ∵NI =MI ∴MI 2=BM ·CN(3) 过点N 作NG ∥AD 交MA 的延长线于G ∴∠ANG =∠AGN =30° ∴AN =AG ,NG =AN 3 ∵AI ∥NG ∴NGAIMG AM =∴ANAN AM AM 34=+,得4311=+AN AM 24.解:(1) ① P (6,7)、Q (4,-5),PQ :y =6x -29P (7,16)、Q (3,-8),PQ :y =6x -26 ② 设M (0,n )AP 的解析式为y =nx +n AQ 的解析式为y =-nx -n联立⎪⎩⎪⎨⎧--=+=542x x y n nx y ,整理得x 2-(4+n )x -(5+n )=0 ∴x A +x P =-1+x P =4+n ,x P =5+n 同理:x Q =5-n设直线PQ 的解析式为y =kx +b联立⎪⎩⎪⎨⎧--=+=542x x y b kx y ,整理得x 2-(4+k )x -(5+b )=0 ∴x P +x Q =4+k∴5+n +5-n =4+k ,k =6 (3) ∵S △ABP =3S △ABQ∴y P=-3y Q∴kx P+b=-3(kx Q+b)∵k=6∴6x P+18x Q=-b∴6(5+n)+18(5-n)=4b,解得b=3n-30∵x P·x Q=-(5+b)=-5-3n+30=(5+n)(5-n),解得n=3 ∴P(8,27)∴直线PQ的解析式为y=6x-21。
2017年湖北省武汉市东西湖区常青一中中考数学模拟试卷
2017年湖北省武汉市东西湖区常青一中中考数学模拟试卷一、选择题:1.(3分)选择下列语句正确的是()A.﹣的算术平方根是﹣B.﹣的算术平方根是C.的算术平方根是D.的算术平方根是﹣2.(3分)若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=03.(3分)下列计算正确的是()A.2+a=2a B.2a﹣3a=﹣1 C.(﹣a)2•a3=a5D.8ab÷4ab=2ab4.(3分)某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.5.(3分)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.26.(3分)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图是某几何体的三视图,则该几何体的表面积为()A.24+12B.16+12C.24+6D.16+68.(3分)某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:那么这9名学生所得分数的众数和中位数分别是()A.90,90 B.90,85 C.90,87.5 D.85,859.(3分)如图,已知⊙O圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()A.﹣1≤x≤1 B.﹣≤x≤C.0≤x≤D.x>10.(3分)如图,正方形ABCD的边长AB=4,分别以点A、B为圆心,AB长为半径画弧,两弧交于点E,则CE弧的长是()A.B.πC.D.二、填空题:11.(3分)比较大小(用“>,<,=”表示):﹣|﹣2| ﹣(﹣2).12.(3分)据教育部统计,参加2016年全国统一高考的考生有940万人,940万人用科学记数法表示为人.13.(3分)小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为.14.(3分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C 落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为.15.(3分)如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y 轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为.16.(3分)如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为.三、解答题:17.(4分)解方程:3x2﹣6x﹣2=0.18.(4分)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.19.(5分)学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票.班长由王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动.你认为这个方法公平吗?请画树状图或列表,并说明理由.20.(5分)如图,在平面直角坐标系xOy中,直线y=﹣x+2分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,OE=2.(1)求反比例函数的解析式;(2)连接OD,求△OBD的面积.21.(6分)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=6,BD=3,求AE和BC的长.22.(6分)为绿化校园,某校计划购进A、B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.四、综合题:23.(8分)已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)24.(14分)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.2017年湖北省武汉市东西湖区常青一中中考数学模拟试卷参考答案与试题解析一、选择题:1.(3分)选择下列语句正确的是()A.﹣的算术平方根是﹣B.﹣的算术平方根是C.的算术平方根是D.的算术平方根是﹣【解答】解:的算术平方根是,故选C2.(3分)若分式的值为零,那么x的值为()A.x=1或x=﹣1 B.x=1 C.x=﹣1 D.x=0【解答】解:依题意,得x2﹣1=0,且x+1≠0,解得x=1.故选:B.3.(3分)下列计算正确的是()A.2+a=2a B.2a﹣3a=﹣1 C.(﹣a)2•a3=a5D.8ab÷4ab=2ab【解答】解:A、2+a无法计算,故此选项错误,不合题意;B、2a﹣3a=﹣a,故此选项错误,不合题意;C、(﹣a)2•a3=a5,正确,符合题意;D、8ab÷4ab=2,故此选项错误,不合题意;故选:C.4.(3分)某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为.故选A.5.(3分)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【解答】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.6.(3分)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.7.(3分)如图是某几何体的三视图,则该几何体的表面积为()A.24+12B.16+12C.24+6D.16+6【解答】解:观察该几何体的三视图发现该几何体为正六棱柱;该六棱柱的棱长为2,正六边形的半径为2,所以表面积为2×2×6+×2××6×2=24+12,故选:A.8.(3分)某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:那么这9名学生所得分数的众数和中位数分别是()A.90,90 B.90,85 C.90,87.5 D.85,85【解答】解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;故选:A.9.(3分)如图,已知⊙O圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是()A.﹣1≤x≤1 B.﹣≤x≤C.0≤x≤D.x>【解答】解:∵半径为1的圆,∠AOB=45°,过点P且与OA平行的直线与⊙O 有公共点,∴当P′C与圆相切时,切点为C,∴OC⊥P′C,CO=1,∠P′OC=45°,OP′=,∴过点P且与OA平行的直线与⊙O有公共点,即0≤x≤,同理点P在点O左侧时,0∴0≤x≤.故选C.10.(3分)如图,正方形ABCD的边长AB=4,分别以点A、B为圆心,AB长为半径画弧,两弧交于点E,则CE弧的长是()A.B.πC.D.【解答】解:连接AE、BE,∵AE=BE=AB,∴△ABE是等边三角形.∴∠EBA=60°,∴的长是=.∵的长是=2π,∴的长为:2π﹣π=π;故选A.二、填空题:11.(3分)比较大小(用“>,<,=”表示):﹣|﹣2| <﹣(﹣2).【解答】解:∵﹣|﹣2|=﹣2<0,﹣(﹣2)=2>0,∴﹣|﹣2|<﹣(﹣2).故答案为:<.12.(3分)据教育部统计,参加2016年全国统一高考的考生有940万人,940万人用科学记数法表示为9.4×106人.【解答】解:940万人用科学记数法表示为9.4×106人,故答案为:9.4×106.13.(3分)小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x,乙立方体朝上一面上分别标有数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为.【解答】解:∵点P在双曲线y=的图象上,∴xy=6.利用列表法找出所用点P的坐标,如下表所示.其中满足xy=6的点有:(1,6)、(2,3)、(3,2)、(6,1).∴点P落在双曲线y=上的概率为:=.故答案为:.14.(3分)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C 落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为75°.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75°.15.(3分)如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y 轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为.【解答】解:如图,∵直线l1:y=k1x+4,直线l2:y=k2x﹣5,∴B(0,4),C(0,﹣5),则BC=9.又∵点E,F分别为线段AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=.故答案是:.16.(3分)如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为18.【解答】解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=×12×3=18.故答案为:18.三、解答题:17.(4分)解方程:3x2﹣6x﹣2=0.【解答】解:∵a=3,b=﹣6,c=﹣2,∴b2﹣4ac=36+24=60>0,∴x=,∴x1=,x2=18.(4分)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.19.(5分)学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票.班长由王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动.你认为这个方法公平吗?请画树状图或列表,并说明理由.【解答】解:共有6种情况,指针所指的两个数字之和为偶数的情况有3种,因此王伟获胜的概率为=,李丽获胜的概率是,所以这个方法公平.20.(5分)如图,在平面直角坐标系xOy中,直线y=﹣x+2分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,OE=2.(1)求反比例函数的解析式;(2)连接OD,求△OBD的面积.【解答】解:(1)∵OE=2,CE⊥x轴于点E.∴C的横坐标为﹣2,把x=﹣2代入y=﹣x+2得,y=﹣×(﹣2)+2=3,∴点C的坐标为C(﹣2,3).设反比例函数的解析式为y=,(m≠0)将点C的坐标代入,得3=.∴m=﹣6.∴该反比例函数的解析式为y=﹣.(2)由直线线y=﹣x+2可知B(4,0),解得,,∴D(6,﹣1),∴S=×4×1=2.△OBD21.(6分)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=6,BD=3,求AE和BC的长.【解答】证明:(1)连接OC;∵AE⊥CD,CF⊥AB,又CE=CF,∴∠1=∠2.∵OA=OC,∴∠2=∠3,∠1=∠3.∴OC∥AE.∴OC⊥CD.∴DE是⊙O的切线.(2)∵AB=6,∴OB=OC=AB=3.在Rt△OCD中,OD=OB+BD=6,OC=3,∴∠D=30°,∠COD=60°.在Rt△ADE中,AD=AB+BD=9,∴AE=AD=.在△OBC中,∵∠COD=60°,OB=OC,∴BC=OB=3.22.(6分)为绿化校园,某校计划购进A、B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:y=﹣20x+1890;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【解答】解:(1)y=90(21﹣x)+70x=﹣20x+1890,故答案为:y=﹣20x+1890.(2)∵购买B种树苗的数量少于A种树苗的数量,∴x<21﹣x,解得:x<10.5,又∵x≥1,∴x的取值范围为:1≤x≤10,且x为整数,∵y=﹣20x+1890,k=﹣20<0,∴y随x的增大而减小,∴当x=10时,y有最小值,最小值为:﹣20×10+1890=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.四、综合题:23.(8分)已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB=,PC=2;②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)【解答】解:(1)如图①:①∵△ABC是等腰直直角三角形,AC=1+∴AB===+,∵PA=,∴PB=,∵△ABC和△PCQ均为等腰直角三角形,∴AC=BC,PC=CQ,∠ACP=∠BCQ,∴△APC≌△BQC.∴BQ=AP=,∠CBQ=∠A=45°.∴△PBQ为直角三角形.∴PQ=.∴PC=PQ=2.故答案为:,2;②如图1.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD﹣PD)2=(DC﹣PD)2=DC2﹣2DC•PD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2DC•PD+PD2∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2(2)如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DC•PD+PD2,PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DC•PD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2.(3)如图③:过点C作CD⊥AB,垂足为D.①当点P位于点P1处时.∵,∴.∴.在Rt△CP1D中,由勾股定理得:==DC,在Rt△ACD中,由勾股定理得:AC===DC,∴.②当点P位于点P2处时.∵=,∴.在Rt△CP2D中,由勾股定理得:==,在Rt△ACD中,由勾股定理得:AC===DC,∴.综上所述,的比值为或.24.(14分)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,∴A(5,0),B(0,10),∵抛物线过原点,∴设抛物线解析式为y=ax2+bx,∵抛物线过点A(5,0),C(8,4),∴,∴,∴抛物线解析式为y=x2﹣x,∵A(5,0),B(0,10),C(8,4),∴AB2=52+102=125,BC2=82+(10﹣4)2=100,AC2=42+(8﹣5)2=25,∴AC2+BC2=AB2,∴△ABC是直角三角形.(2)如图1,当P,Q运动t秒,即OP=2t,CQ=10﹣t时,由(1)得,AC=OA,∠ACQ=∠AOP=90°,在Rt△AOP和Rt△ACQ中,,∴Rt△AOP≌Rt△ACQ,∴OP=CQ,∴2t=10﹣t,∴t=,∴当运动时间为时,PA=QA;(3)存在,∵y=x2﹣x,∴抛物线的对称轴为x=,∵A(5,0),B(0,10),∴AB=5设点M(,m),①若BM=BA时,∴()2+(m﹣10)2=125,∴m1=,m2=,∴M1(,),M2(,),②若AM=AB时,∴()2+m2=125,∴m3=,m4=﹣,∴M3(,),M4(,﹣),③若MA=MB时,∴(﹣5)2+m2=()2+(10﹣m)2,∴m=5,∴M(,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,∴点M的坐标为:M1(,),M2(,),M3(,),M4(,﹣),。
【中考模拟2017】湖北武汉市 2017年九年级数学 中考模拟试卷 三(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.实数a,b,c,d在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为()A.aB.bC.cD.d2.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )3.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A.0.278 09×105B.27.809×103C.2.780 9×103D.2.780 9×1044.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°5.下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(-a2)3=﹣a66.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上7.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )A.的 B.中 C.国 D.梦8.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为( )A.80° B.100° C.110° D.130°9.甲、乙两车在同一直线公路上,匀速行驶,开始时甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设乙车行驶的时间为x秒,两车间的距离为y千米,图中折线表示y关于x的函数图象,下列四种说法正确的有()个(1)开始时,两车的距离为500米.(2)转货用了100秒.(3)甲的速度为25米/秒,乙的速度为30米/秒.(4)当乙车返回到出发地时,甲车离乙车900米.A.1B.2C.3D.410.若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为( )A.x1=-3,x2=-1B.x1=1,x2=3C.x1=-1,x2=3D.x1=-3,x2=1二、填空题:11.分解因式:a3﹣25a= .12.设x,x2是方程x2-4x+m=0的两个根,且x1+x2-x1x2=1,则x1+x2= ,m= .113.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心,BC长为半径作弧,交AB于点D,交AC于点E,连结BE,则∠ABE的大小为度.14.小明第一次抛一枚质地均匀的硬币时反面向上,第二次抛此枚硬币时也是反面向上,则他第三次抛这枚硬币时,正面向上的概率是.15.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为 cm.16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=0.75,则矩形ABCD 的周长为三、解答题:17.先化简,再求代数式的值.其中=tan600-300.18.先化简,再从的范围内选取一个你喜欢的x值代入求值。
武汉市武昌区2017年中考数学模拟试卷有答案
2017年九年级数学中考模拟试卷一、选择题:1.如果+160元表示增加160圆,那么-60元表示()A.增加100元B.增加60元C.减少60元D.减少220元2.如图,下列条件不能判断直线l1∥l2的是( )A.∠1=∠3B.∠1=∠4C.∠2+∠3=180°D.∠3=∠53.下列运算正确的是()A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x54.如图是由3个相同的正方体组成的一个立体图形,它的三视图是()5.不等式组的解集在数轴上表示正确的是()A. B.C. D.6.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=21°,则∠AOB′的度数是()A.21° B.45° C.42° D.24°7.某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:人数(人)1341分数(分)80859095那么这9名学生所得分数的众数和中位数分别是()A.90,90B.90,85C.90,87.5D.85,858.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(1,3) B.它的图象经过第一、二、四象限C.当x>0时,y<0 D.y的值随x值的增大而增大9.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第个图中平行四边形的个数是( )A.3n B.3n(n+1) C.6n D.6n(n+1)10.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论有()A.2个B.3个C.4个D.5个二、填空题:11.将因式内移的结果为_______12.分解因式:9x2-6x+1=13.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为.14.如图,在平面直角坐标系中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为______.15.如图,在平面直角坐标系xOy中,正方形OABC的边长为2,写出一个函数,使它的图象与正方形有公共点,这个函数的表达式为________.16.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为 m.三、解答题:17.先化简,再求代数式的值,其中,.18.如图,AB=DC,AC=DB,求证:AB∥CD.19.初中生在数学运算中使用计算器的现象越来越普遍,某校一兴趣小组随机抽查了本校若干名学生使用计算器的情况.以下是根据抽查结果绘制出的不完整的条形统计图和扇形统计图:请根据上述统计图提供的信息,完成下列问题:(1)这次抽查的样本容量是;(2)请补全上述条形统计图和扇形统计图;(3)若从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是多少?20.如图,点A,B,C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.21.已知x2+(a+3)x+a+1=0是关于x的一元二次方程.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根为x1,x2,且x12+x22=10,求实数a的值.22.如图所示是鼎龙高速路口开往宁都方向的某汽车行驶的路程s(km)与时间t(分钟)的函数关系图,观察图中所提供的信息,解答下列问题:(1)汽车在前6分钟内的平均速度是千米/小时,汽车在兴国服务区停了多长时间?分钟;(2)当10≤t≤20时,求S与t的函数关系式;(3)规定:高速公路时速超过120千米/小时为超速行驶,试判断当10≤t≤20时,该汽车是否超速,说明理由.23.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求∠BEC正切值.24.已知二次函数y=x2-2mx+4m-8.(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围;(2)以抛物线y=x2-2mx+4m-8的顶点A为一个顶点作该抛物线的内接正△AMN(M,N两点在抛物线上).请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由;(3)若抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,求整数m的值.参考答案1.C2.A3.D4.A5.D6.D7.A8.B9.B10.A.11.略12.答案为:(3x-1)2;13.答案为:18.14.答案为:1或515.略16.答案为:3m.17.解:原式=,当,原式=.18.【解答】证明:∵在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB(全等三角形的对应角相等).∴AB∥CD(内错角相等,两直线平行).19.解:(1)100÷62.5%=160.即这次抽查的样本容量是160.故答案为160;(2)不常用计算器的人数为:160﹣100﹣20=40;不常用计算器的百分比为:40÷160=25%,不用计算器的百分比为:20÷160=12.5%.条形统计图和扇形统计图补全如下:(3)∵“不常用”计算器的学生数为40,抽查的学生人数为160,∴从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是:0.25.答:从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”的概率是0.25.20.解:(1)证明:连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠ACP=∠CAO=30°.∴∠AOP=60°.∵AP=AC,∴∠P=∠ACP=30°.∴∠OAP=90°,∴OA⊥AP.∴ AP是⊙O的切线.(2)解:连接AD.∵CD是⊙O的直径,∴∠CAD=90°.∴AD=AC•tan30°=.∵∠ADC=∠B=60°,∴∠PAD=∠ADC﹣∠P=60°﹣30°=30°.∴∠P=∠PAD.∴PD=AD=.21.【解答】(1)证明:△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4,∵(a+1)2≥0,∴(a+1)2+4>0,即△>0,∴方程总有两个不相等的实数根;(2)解:根据题意得x1+x2=﹣(a+3),x1x2=a+1,∵x12+x22=10,∴(x1+x2)2﹣2x1x2=10,∴(a+3)2﹣2(a+1)=10,整理得a2+4a﹣3=0,解得a1=﹣2+,a2=﹣2﹣,即a的值为﹣2+或﹣2﹣.22.解:(1)6分钟=小时,汽车在前6分钟内的平均速度为:9÷=90(千米/小时);汽车在兴国服务区停留的时间为:10﹣6=4(分钟).故答案为:90;4.(2)设S与t的函数关系式为S=kt+b,∵点(10,9),(20,27)在该函数图象上,∴,解得:,∴当10≤t≤20时,S与t的函数关系式为S=1.8t﹣9.(3)当10≤t≤20时,该汽车的速度为:(27﹣9)÷(20﹣10)×60=108(千米/小时),∵108<120,∴当10≤t≤20时,该汽车没有超速.23.24.解:(1)因为所以抛物线的对称轴为x=m,因为要使时,函数值y随x的增大而减小,所以由图像可知对称轴应在直线x=2右侧,从而m≥2.(2)(方法一)根据抛物线和正三角形的对称性,可知轴,设抛物线的对称轴与MN交于点B,则,设,∴,又,∴,∴,∴,,∴定值;(方法二)由顶点以及对称性,设,则M,N的坐标分别为,因为M,N两点在抛物线上,所以,即,解得,所以(与m无关);(3)令y=0,即时,有,由题意,为完全平方数,令,即,∵m,n为整数,∴的奇偶性相同,∴或解得或综合得m=2.。
2017年中考数学模拟试卷(含答案)
2017年九年级数学中考模拟题一、填空题:1.A是数轴上一点,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是2.如图,已知AD∥BE,∠1=20°,∠DCE=45°,则∠2的度数为.3.分解因式:2x2-4xy+2y2=4.如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC ∥AD,如图(2)所示,则∠C= 度.5.已知α、β是一元二次方程x2﹣2x﹣2=0的两实数根,则代数式(α-2)(β-2)= .6.如图,正方形ABCD内接于⊙0,其边长为2,则⊙0的内接正三角形EFG的边长为二、选择题:7.用四舍五入法对2.06032分别取近似值,其中错误的是()A.2.1(精确到0.1)B.2.06(精确到千分位)C.2.06(精确到百分位)D.2.0603(精确到0.0001)8.一个正方形的边长为3 cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,y与x的关系式可以写为( )A.y=12-4x B.y=4x-12 C.y=12-x D.以上都不对9.如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是( )A.标号为2的顶点B.标号为3的顶点C.标号为4的顶点D.标号为5的顶点10.下列各式计算正确的是()A. B.(a>0)C. =×D.11.如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB ⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3B.﹣3C.D.﹣12.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是713.下列图形既是轴对称图形又是中心对称图形的是( )14.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A. B. C. D.三、计算题:15.解不等式组:并把解集在数轴上表示出来.四、解答题:16.已知:如图,AB∥CD,AD∥BC,求证:AB=CD,AD=BC.17.情境:试根据图中的信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元;(2)小红比小明多买2根,付款时小红反而比小明少5元.你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.18.在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4,求QF的值.19.为了解2016年初中毕业生毕业后的去向,某县教育局对部分初三学生进行了抽样调查,就初三学生的四种去向(A,读普通高中;B,读职业高中; C,直接进入社会就业; D,其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请根据图中信息解答下列问题:(1)该县共调查了多少名初中毕业生?(2)通过计算,将两幅统计图中不完整的部分补充完整;(3)若该县2016年初三毕业生共有4500人,请估计该县今年的初三毕业生中准备读普通高中的学生人数.20.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.21.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.如图,在一面靠墙的空地商用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)已知墙的最大可用长度为8米;①求所围成花圃的最大面积;②若所围花圃的面积不小于20平方米,请直接写出x的取值范围.五、综合题:23.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(0.5,2.5)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.参考答案1.答案为:±4.2.答案为:25°.3.答案为:2(x-y)24.答案为:95.5.答案为:﹣2.6.答案为:7.B 8.A 9.D. 10.A 11.A 12.B 13.C 14.C15.答案为:2<x≤416.【解答】解:如图,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC.17.略18.【解答】(1)证明:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF;(2)解:∵将△BCF沿BF折叠,得到△BPF,∴FP=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,设QF=x,PB=BC=AB=4,CF=PF=2,∴QB=x,PQ=x﹣2,在Rt△BPQ中,∴x2=(x﹣2)2+42,解得:x=5,即QF=5.19.【解答】解:(1)40÷40%=100名,则该县共调查了100名初中毕业生;(2)B的人数:100×30%=30名,C所占的百分比为:×100%=25%,补全统计图如图;(3)根据题意得:4500×40%=1800名,答:今年的初三毕业生中准备读普通高中的学生人数是1800.20.【解答】(1)证明:∵AC为⊙O的直径,∴∠ADC=90°,∴∠BDC=90°,又∵∠ACB=90°,∴∠ACB=∠BDC,又∵∠B=∠B,∴△BCD∽△BAC,∴,即BC2=BA•BD;(2)解:DE与⊙O相切.理由如下:连结DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∴DE与⊙O相切.21.【解答】解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生.(2)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图.(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==.22.【解答】解:(1)S=x(24﹣4x)=﹣4x2+24x(0<x<6)(2)①S=﹣4x2+24x=﹣4(x﹣3)2+36由,解得4≤x<6当x=4时,花圃有最大面积为32②令﹣4x2+24x=20时,解得x1=1,x2=5所以5<x<623.解:(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(0.5,2.5)、B(4,6)在抛物线y=ax2+bx+6上,∴,解得,∴抛物线的解析式为y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣2.25)2+,∵PC>0,∴当n=2.25时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如答图3﹣1,过点A(0.5,2.5)作AN⊥x轴于点N,则ON=0.5,AN=2.5.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=2.5,∴OM=ON+MN=0.5+2.5=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=2x2﹣8x+6 ②联立①②式,解得:x=3或x=0.5(与点A重合,舍去)∴C(3,0),即点C、M点重合.当x=3时,y=x+2=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如答图3﹣2,作点A(0.5,2.5)关于对称轴x=2的对称点C,则点C在抛物线上,且C(3.5,2.5).当x=3.5时,y=x+2=5.5.∴P2(3.5,5.5).∵点P1(3,5)、P2(3.5,5.5)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(3.5,5.5).。
2017年武汉市中考模拟试卷
2016-2017学年度武汉市中考模拟试卷(2)可能用到的物理量:ρ水=1.0×103kg/m3;ρ酒=0.8×103kg/m3;c水=4.2×103J/(kg·℃);g=10N/kg一、选择题(本题包括12小题,每小题只有1个正确选项。
每小题3分,共36分)9. 如图所示,空中加油机正在给战斗机加油的情境,下列说法中错误的是()A.以加油机为参照物,战斗机甲是静止的B.以地面为参照物,战斗机乙是运动的C.以战斗甲为参照物,战斗机乙是运动的D.加油机相对于地面是运动的10.如图是利用光固化3D打印技术制作的一把名为3Dwamius的小提琴,它具有水晶般的透明琴声,也能够演奏。
关于此小提琴说法正确的是()A.小提琴的琴弦振动停止,发声不会立即停止B.小提琴的琴声是通过空气传入人耳的C.深夜不拉小提琴是在传播过程中控制噪声D.演奏前调节小提琴琴弦的松紧是为了调节琴声音的音色11.如图是一种新型材料——海绵金属,它是往熔融的金属里加进起泡剂,金属中产生大量气泡,再将金属强制冷却、快速凝固,气泡被“冻结”在固体的金属里,这样就使海绵金属有了多孔的独特结构。
下列有关说法不正确的是()A.海绵金属在熔化过程中温度保持不变B.海绵金属在熔化过程中内能增大C.海绵金属的密度比同成分金属的密度大D.泡沫铝可用于飞机制造12.如图是一根直树枝斜插在湖水中的一张照片,下列分析正确的是()A.OB是树枝反射形成的虚像B.OB是树枝折射形成的虚像C.OC是树枝本身在水中的部分D.OC是树枝折射形成的实像13.把物体放到凸透镜前16cm处可得到放大的、倒立的实像;现将物体向凸透镜移近8cm 时,得到的是()A.倒立放大的实像B.正立放大的虚像C.倒立缩小的实像D.无法判断14.最近西工大航天学院杨涓教授“无工质引擎”的研究引起很大轰动。
“无工质引擎”顾名思义就是不使用推进剂、不喷射尾气就能产生推力的发动机。
2017中考数学模拟试题含答案(精选5套).pdf
际工作效率比原计划提高了 20%,结果提前 8 天完成任务,求原计划每天修路的长度. 若设原计划每
天修路 x m,则根据题意可得方程
.
17. 在平面直角坐标系中,规定把一个三角形先沿着 x 轴翻折,再向右平移 2 个单
位称为 1 次变换. 如图,已知等边三角形 ABC 的顶点 B,C 的坐标分别是
(-1,-1),(-3,-1),把△ABC 经过连续 9 次这样的变换得到△A′B′C′,
5
10
x (1 + 20%)x
17. (16,1+ 3 ); 18. 15.5(或 31 ). 2
三、解答题
19. (1)解:原式 = 4× 2 -2 2 +1-1……2 分(每错 1 个扣 1 分,错 2 个以上不给分) 2
=0
…………………………………4 分
(2)解:原式 =( m + n - n )· m2 − n2
∠BCD = 30°, ∴DC = BC·cos30°
……………………1 分
= 6 3 × 3 = 9, ……………………2 分 2
∴DF = DC + CF = 9 + 1 = 10,…………………3 分
∴GE = DF = 10.
…………………4 分
在 Rt△BGE 中,∠BEG = 20°,
∴BG = CG·tan20°
点 Q 从点 C 出发,沿 CB 方向匀速运动到终点 B. 已知 P,Q 两点同时出发,并同时到达终点,连接 MP,
MQ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是( )
A. 一直增大
B. 一直减小
C. 先减小后增大
D. 先增大后减小
河北省2017年中考数学模拟试卷(含解析)
2017年河北省中考数学一模试卷一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=23.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.86.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣329.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab211.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.2212.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.315.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.2017年河北省中考数学一模试卷参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形不是中心对称图形,不是轴对称图形,故A选项错误;B、此图形是中心对称图形,也是轴对称图形,故B选项错误;C、此图形是中心对称图形,不是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=2【考点】零指数幂.【分析】根据绝对值的规律,及实数的四则运算、乘法运算.【解答】解:A、﹣2+|﹣2|=﹣2+2=0,故A正确;B、20÷3=,故B错误;C、42=16,故C错误;D、2÷3×=,故D错误.故选A.3.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【考点】点的坐标.【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.5.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.8【考点】三角形中位线定理.【分析】已知DE是△ABC的中位线,BC=8,根据中位线定理即可求得DE的长.【解答】解:∵DE是△ABC的中位线,BC=8,∴DE=BC=4,故选B.6.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:23μg=23÷1000000g=0.000 023g=2.3×10﹣5g.故选:C.7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差【考点】统计量的选择.【分析】由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义分析.【解答】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,故选:A.8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣32【考点】代数式求值.【分析】先求得代数式﹣2a+3b的值,然后将所求代数式变形为3(﹣2a+3b)+2,最后将﹣2a+3b的值整体代入求解即可.【解答】解:∵﹣2a+3b+8=18,∴﹣2a+3b=10.原式=3(﹣2a+3b)+2=3×10+2=32.故选:C.9.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高(1﹣)x=儿子在水中的身高(1﹣)y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,故选:D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【考点】算术平方根.【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解: ==××=a•b•b=ab2.故选D.11.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.22【考点】矩形的性质;翻折变换(折叠问题).【分析】首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【解答】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选D.12.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径【考点】作图—复杂作图;勾股定理的逆定理;圆周角定理.【分析】由作图痕迹可以看出AB是直径,∠ACB是直径所对的圆周角,即可作出判断.【解答】解:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a为半径画弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.故选:B.13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.3【考点】等边三角形的性质.【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【解答】解:延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故选:C.15.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出=,再由角平分线性质即可得出结论.【解答】解:∵DE∥AB,∴=,∵AD为△ABC的角平分线,∴=;故选:B.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B 的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是x≤0.5且x≠﹣1 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,让被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得:1﹣2x≥0,1+x≠0,解得:x≤0.5且x≠﹣1.故答案为:x≤0.5且x≠﹣1.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=90°.【考点】平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于a2,第n个三角形的面积等于.【考点】相似三角形的判定与性质.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,然后判定出△ACD是等边三角形,同理可得被分成的第二个、第三个…第n个三角形都是等边三角形,再根据后一个等边三角形的边长是前一个等边三角形的边长的一半求出第n个三角形的边长,然后根据等边三角形的面积公式求解即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AD,∵∠A=60°,∴△ACD是等边三角形,同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,∵CD是AB的中线,EF是DB的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,∴第一个三角形的面积为a2,第二个等边三角形的边长EF=DB=a,…第n个等边三角形的边长为a,所以,第n个三角形的面积=×a×(•a)=.故答案为a2,.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【考点】整式的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)根据题意列出关系式,化简得到结果,验证即可.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.【考点】全等三角形的判定与性质.【分析】根据AB∥CD,得到∠B=∠C,推出△ABE≌△CDF,根据全等三角形的性质即可得到结论.【解答】解:添加条件为:∠A=∠D,理由:∵AB∥CD,∴∠B=∠C,在△ABE与△CDF中,,∴△ABE≌△CDF,∴AE=DF.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2).∴,解得:,∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2,∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=3,PC×1+PC×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.【考点】列表法与树状图法;根的判别式.【分析】(1)用列表法易得(a,b)所有情况;(2)看使关于x的一元二次方程x2﹣ax+2b=0有实数根的情况占总情况的多少即可.【解答】解:(1)(a,b)对应的表格为:1 2 3ab1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)4 (4,1)(4,2)(4,3)(2)∵方程x2﹣ax+2b=0有实数根,∴△=a2﹣8b≥0.∴使a2﹣8b≥0的(a,b)有(3,1),(4,1),(4,2),∴.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【考点】切线的判定.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【解答】(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意列出方程组求解;(2)①据题意得,y=﹣50n+16500,②利用不等式求出n的范围,又因为y=﹣50x+16500是减函数,所以n取37,y取最大值;(3)据题意得,y=150+n,即y=(m﹣50)n+16500,分三种情况讨论,①当30<m<50时,y随n的增大而减小,②m=50时,m﹣50=0,y=16500,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,解得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机部,则y=150+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (n≥36);②∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)根据题意,得:y=150+n=(m﹣50)n+16500,其中,36≤n≤80,①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤80的整数时,均获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点(2,2)的坐标代入抛物线解析式,即可求得m的值;(2)求出B、C、E点的坐标,进而求得△BCE的面积;(3)根据轴对称以及两点之间线段最短的性质,可知点B、C关于对称轴x=1对称,连接EC与对称轴的交点即为所求的H点,如答图1所示;(4)本问需分两种情况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾的等式,故此种情形不存在.【解答】解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,。
勤学早数学模拟卷(一)教用
都在二次函数#/""+"" 的图象上我们称这 列 数 为 二 次 函 数#/""+"" 型 数若 把 第 一
个数记为%!/%第二个数 记 为%"/2 第0 个 数 记 为%0若"#!"!+"#!""/&则%!! +%!" +
! %%
+
+%"!#"#
的
值
是
!*!
&'""##""!"
*'!!-
" "
" "
2!某 工 厂 加 工 一 批 零 件 为 了 提 高 工 人 工 作 的 积 极 性 工 厂 规 定 每
"
" 名工人每次薪金如下生 产 的 零 件 不 超 过% 件则 每 件 % 元超
过% 件超过部 分 每 件& 元如 图 是 一 名 工 人 一 天 获 得 薪 金 #
勤学早年中考数学模拟试卷一
考 试 参 考 时 间 !"# 分 钟 满 分 !"# 分
一 选 择 题 共 小 题 每 小 题 分 共 分
!!实
数$
! %
的相
反数
是!&!
"
"
" "
" "
&'!%
('$
! %
)'%
*'$%
" "
" "
2017年河北省数学中考模拟试题(1)有答案
2017年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2009)1(-的相反数是( ) A .1 B .1- C .2009 D .2009-2.函数y=+中自变量x 的取值范围是( )A.x ≤2B.x=3C.x 〈2且x ≠3D.x ≤2且x ≠33. 某校九年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A .中位数 B .众数 C .平均数 D .极差4.如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④. 其中单独能够判定 ABC ACD △∽△的个数为( )A .1B .2C .3D .45. 某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x 满足的方程是( )A. 50+50(1+x 2)=196B. 50+50(1+x)+50(1+x)²=196C. 50(1+x 2)=196D.50+50(1+x)+50(1+2x)=1966.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x =(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先增大后减小7. 2013年12月15日,嫦娥三号着陆器、巡视器顺利完成互拍,把成像从远在地球38万km 之外的月球传到地面,标志着我国探月工程二期取得圆满成功,将38万用科学记数法表示应为( )A.0.38×106B.0.38×105 C .3.8×104 D .3.8×1058.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点, 则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:69. 已知二次函数y=ax 2+bx+c 的图像如图所示,下列五个结论中:①2a-b 〈0;②abc 〈0;③a+b+c 〈0;④a-b+c 〉0;⑤4a+2b+c 〉0,1 2 AC AD ·AB =x-3 - 2 x x yO AB6题 O y 第8题图 -1 1错误的有()A.1个B.2个C.3个D.4个10. 如图,在平面直角坐标系xOy 中,等腰梯形ABCD的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ).A .(2010,2)B .(2012,-2 )C .(0,2)D .(2010,-2 ) 11.正方形ABCD 中,点P 是对角线AC 上的任意一点(不包括端点),以P 为圆心的圆与AB 相切,则AD 与P e 的位置关系是( B ) A .相离 B .相切 C .相交 D .不确定 12.已知ABC △的面积为36,将ABC △沿BC 平移到A B C '''△,使B '和C 重合,连结AC '交 A C '于D ,则C DC '△的面积为( D ) A .6 B .9 C .12 D .1813.给出三个命题:①点()P b a ,在抛物线21y x =+上;②点(13)A ,能在抛物线21y ax bx =++上;③点(21)B -,能在抛物线21y ax bx =-+上. 若①为真命题,则A .②③都是真命题B .②③都是假命题C .②是真命题,③是假命题D .②是假命题,③是真命题14.已知⊙O 1的半径是2cm ,⊙O 2的半径是3cm ,若这两圆相交,则圆心距d (cm )的取值范围是 ( ) A . d <1 B . 1≤d ≤5 C . d >5 D . 1<d <5 15.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),将△ABC 绕点A 逆时针旋转90°,则在△ABC 扫过的区域中(不含边界上的点),到点O 的距离为无理数的格点的个数是( )A. 3B. 4C. 5D. 616. 已知两直线11-+=k kx y 、k k x k y ()1(2++=为正整数),设这两条直线与x 轴所围成的三角形的面积为k S ,则1232013S S S S ++++L 的值是( )A .20122013 B .40242013 C .20142013 D .402820132015年河北省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.总 分 核分人A BC (B ')D A ' C '(第9题)2.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.当x ≤0时,化简1x--的结果是 .18. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .19.在面积为12的平行四边形ABCD 中,过点A 作直线BC 的垂线交BC 于点E ,过点A 作直线CD 的垂线交CD 于点F ,若AB =4,BC =6,则CE +CF 的值为 ; 20.将ABC △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90BCA ∠=°,304cm BAC AB ∠==°,为 cm 2.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2。
【中考模拟2017】湖北省武汉市 2017年九年级数学中考模拟试卷 一(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.若数轴上的点A、B分别于有理数a、b对应,则下列关系正确的是( )A.a<b B.﹣a<b C.|a|<|b| D.﹣a>﹣b2.下列图形中,是中心对称图形的是()A. B. C. D.3.G20峰会来了,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人.而这个数字,还在不断地增加.请问近似数9.17×105的精确度是()A.百分位 B.个位 C.千位 D.十万位4.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A.12B.4C.8D.不确定5.下列计算中,正确的是()A.a+a11=a12B.5a﹣4a=aC.a6÷a5=1D.(a2)3=a56.下列事件中是必然事件的是()A.打开电视机,正在播广告B.从一个只装有白球的缸里摸出一个球,摸出的球是白球C.明天,涿州的天气一定是晴天D.从一定高度落下的图钉,落地后针尖朝上7.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( )A.15°B.18°C.20°D.28°9.有一个安装有进出水管的30升容器,水管每单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信息给出下列说法:①每分钟进水5升;②当4≤x≤12时,容器中水量在减少;③若12分钟后只放水,不进水,还要8分钟可以把水放完;④若从一开始进出水管同时打开需要24分钟可以将容器灌满.以下说法中正确的有( )A.1个B.2个C.3个D.4个10.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:点A(x1,y1)、B(x2,y2)1212()A.y1<y2B.y1>y2C.y1≥y2D.y1≤y2二、填空题:11.因式分解:x3﹣9xy2= .12.关于x的方程mx2+mx+1=0有两个相等的实数根,那么m= .13.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为.14.甲、乙两人进行乒乓球比赛,比赛规则为3局2胜制.如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第1局,那么最后甲获胜的概率是.15.如图所示的两段弧中,位于上方的弧半径为r,下方的弧半径为r下,则r上 r下.(填“<”“=”“<”)上16.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为 m.三、计算题:17.计算:18.先化简,再求值:,其中m是方程x2+2x-3=0的根.四、解答题:19.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.(1) 求证:DE⊥AC;(2) 连结OC交DE于点F,若sin∠ABC=0.75,求OF:CF的值.20.学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票。
湖北省武汉市武昌区2017年中考数学模拟试卷(一)含答案(PDF版)
武昌区2017年中考备考数学训练题一一、选择题(共10小题,每小题3分,共30分)1的结果为( ).A.±3 B.3 C.-3 D.92.若代数式24x在实数范围内有意义,则实数x的取值范围是( ).A.x≥-4 B.x<-4 C.x≠4 D.x≠-4 3.下列计算结果为x7的是( ).A.x·x6B.(x4)3C.x10-x3D.(x3)4÷x6 4.事件A:400人中有两个人的生日在同一天;事件B:三条线段可以组成一个三角形,则下列说法正确的是()A.事件A和事件B都是必然事件B.事件A和事件B都是随机事件C.事件A是随机事件,事件B是不可能事件D.事件A是必然事件,事件B是随机事件5.运用乘法公式计算(a+2)(2-a)正确的是( ).A.a2-2 B.4-a2 C.a2+4a+4 D.a2-4a+4 6.点A(-3,1)关于y轴对称点的坐标为( ).A.(3,1) B.(3,-1) C.(-3,-1) D.(1,-3)7.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( ).A.B.C.D.8.某商场一天中售出某种品牌的运动鞋12双,其中各种尺码的鞋的销售量如下表所示鞋的尺码(单位:cm)23 23.5 24 24.5 25销售量(单位:双) 2 2 3 4 1那么这12双鞋的尺码组成的一组数据中,中位数与平均数分别为( ).A.23.5、24 B.24、24C.24、24.5 D.24.5、24.59.如图在5×5的网格中,每个小正方形的边长都是1个单位长度,网格中小正方形的顶点叫格点,矩形ABCD的边分别过格点E、F、G、H,则当OD取最大值时,矩形ABCD的面积为( ).A.4 B.92C.5 D.25610.已知关于x的二次函数y=x2-5mx+4,当1≤x≤3时,二次函数值y>0,则实数m的范围值为( ).A.45m>B.45m≥C.45m<D.45m<≤二、填空题(共6小题,每小题3分,共18分) 11.计算:计算7+(-5)=______________.12.计算:222xx x---=______________.13.在一个口袋中有4个完全质地相同的小球,把它们分别标号为①、②、③、④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是______________. 14.如图,在四边形ABCD中,∠A=100°,∠C=70°,点E、F分别在AB、BC上,将△BEF沿EF 翻折,得△GEF.若EG∥AD,FG∥DC,则∠D=______________.15.如图,在Rt△ABC中,∠ABC=90°,点D、E在边AC上,且AE=AB,CB=CD,连接BD、BE,△BDE外接圆的面积为S1,△ABC内切圆的面积为S2.若DE=8,则S1-S2=______________. 16.如图,已知在平面直角坐标系中,点A(0,3),点B为x轴上一动点,连接AB,将线段AB绕着点B 按顺时针方向旋转90°至线段CB,过点C作直线l∥y轴,在直线l上有一点D位于点C下方,且满足CD=BO.则当点B从(-3,0)平移到(3,0)的过程中,点D的运动路径长为______________.三、解答题(共8小题,共72分)17.(本题8分)解方程:4x-5=2(x-1)+1.18.(本题8分)如图,点A、D、C、F在同一条直线上,AB=DE,BC∥EF,∠B=∠E,求证:AD=CF.19.(本题8分)共享单车为市民出行带来了很大方便,小郑随机调查了若干市民使用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是__________人;(2)求表示A 组的扇形圆心角的度数,并补全条形统计图;(3)如果骑共享单车的平均速度是12 km /h ,请估算,在使用共享单车的市民中,骑车路程不超过6 km的人数所占的百分比.20.(本题8分)某文具店购进100只两种型号的文具销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A 型 10 12B 型1523(1)文具店如何进货,才能使进货款恰好为1300元?(2)要使销售文具所获的利润最大,且所获利润不超过进货价格的40%,请你帮文具店设计一个进货方案,并求出所获利润的最大值.21.(本题8分)如图,CE 是⊙O 的直径,D 为⊙O 上一点,过点D 作⊙O 的切线,交CE 延长线于点A ,连接DE ,过点O 作OB ∥ED ,交AD 的延长线于点B ,连BC . (1)求证:直线BC 是⊙O 的切线;(2)若AE =2,tan DEO ∠=,求AO 的长.图 1FEDCBA图 2GFEDCBA22.(本题10分)如图,点A (2,2)和点B 、C 在双曲线ky x(k >0)上,∠BAC =45°,AB 分别交x 轴负半轴、y 轴正半轴于D 、F 两点,AC 分别交x 轴正半轴、y 轴负半轴于G 、E 两点.(1)直接写出k 的值为___________; (2)求△DOE 的面积;(3)当BD时,求OF 的长.23.(本题10分)在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,点D 为边BC 所在直线上的一个动点,连接AD ,在直线AD 左侧作等腰Rt △AED ,使AE =DE ,∠AED =90°.(1)如图1,点D 在线段BC 上,延长AE 交BC 于点F ,若BF =4,DF =5,求AD 的长;(2)如图2,点D 在线段BC 上,延长BE 交AC 于点G .若CG =2AG ,BD =8,求AD 的长;(3)如图3,点D 在线段BC 延长线上,连接BE 并延长交AC 延长线于点G ,DE 交AG 于点I .若CG =6CI ,直接写出ADAC的值.24.(本题12分)已知抛物线243y kx kx k =-+(k >0)与x 轴交于A 、B 两点(点A 在点B 左边),与y 轴交于点C ,顶点为D .(1)如图1,当△ABD 为等边三角形时,求k 的值;(2)点E 为x 轴下方抛物线243y kx kx k =-+(k >0)上一动点.① 如图2,抛物线的对称轴DH 交x 轴于点H ,直线AE 交y 轴于点M ,直线BE 交对称轴DH于点N ,求MO NHDH+的值;② 如图3,若k =1时,点F 在x 轴上方的抛物线上,连EF 交x 轴于G ,且满足∠FBA =∠EBA .当线段EF 运动时,∠FGO 的大小会发生变化吗?若不会,请求出tan ∠FGO 的值;若会变化,请说明理由.武昌区2017年中考备考数学训练题一一、选择题(共10小题,每小题3分,共30分)1.B 2.D 3.A 4.D 5.B 6.A 7.C 8.B 9.A 10.C 二、填空题(共6小题,每小题3分,共18分)11.2 12.-1 13.1414.95° 15.16π 16.310.提示:抛物线的对称轴为25m x =此题可翻译为无论什么情况下函数的最小值恒大于0 ① 当25m <1,m <52时,x =1时,1-5m +4>0, 解得m <1∴m <52② 当25m >3,m >56时,x =3时,9-15m +4>0,解得m <1513∴无解 ③ 当5652≤≤m 时,25m x =时,0422542522>+-m m , 解得m <54∴5452<≤m 综上所述:m 的取值范围为54<m . 16.红色部分即为D 点运动的轨迹三、解答题(共8小题,共72分) 17.x =2.18.证△ABC ≌△DEF . 19.(1)50; (2)1536010850⨯︒=︒;C 组12人,补图如图; (3)92%.20.(1)文具店购进x 只A 型文具,购进(100)x -只B 型文具,则: 1015(100)1300x x +-=, 解得:40x =,∴文具店购进40只A 型文具,购进60只B 型文具; (2)文具店购进x 只A 型文具,购进(100)x -只B 型文具,则:28(100)[1015(100)]40%x x x x +-+-⨯≤解得:50x ≥,即50100x ≤≤.∵销售文具所获的利润28(100)8006x x x +-=-,且要使所获的利润最大,∴x 取最小值,即当50x =时,使所获的利润最大为500元. 此时的进货方案是:购进50只A 型文具,购进50只B 型文具.21.(1)连接OD . ∵OB ∥ED , ∴∠1=∠2=∠3=∠4, ∵OD=OC ,OB=OB , ∴△ODB ≌△OCB , ∴∠ODB =∠OCB=90°, ∴直线BC 是⊙O 的切线;(2)∵tan tan 2DEO ∠=∠=,∴设OC OE x BC BD ====,.∵OB ∥ED ,∴AD AEBD OE =2x=, ∴AD =在Rt △ABC 中,222AC BC AB +=, ∴2(22)x ++ ∴1x =,∴23AO x =+=22.(1)4;(2)连接OA .∵A (2,2),∴∠DAE=∠∴∠1=∠3,∠2 ∴△AOD ∽△ ∴OA OEOD OA=, ∴2OD OE OA ⋅= ∴12ODE S OD =⋅△(3)设B 点的坐标为(∵A (2,2),∴直线AB :y = ∴4(02)(20)F D a a++,,,.∵BD = ∴4a =-或4a =(舍去), ∴F (0,1), ∴OF =1.图 1M23.(1)将△ABF 绕A 点逆时值顺序旋转90°,使B 点落在C 点,F 点落在M 点,作AH ⊥BC . ∴△ABF ≌△ACM ,△ADF ≌△ADM , ∴CM=BF=4,DF=DM=5,∠DCM=90°, ∴CD=3,∴CH=AH=6,DH=3,∴AD =; (2)【方法一】如图,过点A 作AH ⊥BC 于点H ,连接DG ,以E 为圆心EA 为半径作⊙E 必过点D .∵∠ABD =45°, ∴点B 必在⊙E 上, ∵∠BAG=90° ∴∠BDG =90°, ∵CG =2AG , ∴CD =2DH .∴设DH =x ,则CD =2x , ∴AH=BH=CH=3x . ∵BD =8, ∴4x =8, ∴x =2,∴AH=6,DH=2, ∴=【方法二】解析法,如图,以BC 所在的直线为x 轴,A 点所在的直线为y 轴建立平面直角坐标系. 作GH ⊥BC , ∵CG =2AG , ∴CH=GH=2OH .∴设G 点的坐标为(2t t ,),∴C (30t ,),B (30t -,),A (03t ,),D (380t -+,). ∴BG 的解析式为1322y x t =+. 设E (1322m m t +,), 易证:△AEM ≌△EDN , ∴AM=EN ,EM=DN ,∴1322313822m m t t m t m ⎧-=+⎪⎪⎨⎪-=-+-⎪⎩,解得:22m t =-⎧⎨=⎩, ∴A (06,),D (20,) ∴=F(3)ACAD =426.【方法一】提示:A 、B 、F 、G 、D 五点在⊙E 上,得矩形BFGD , ∴15CI CD CD GI FG BD ===, 设CD=1,BD=5, ∴BC=4, ∴CH=AH=2,∴AC AD ==,, ∴ACAD=426.【方法二】提示:建立坐标系.设A (0,1),B (-1,0),C (1,0),D (t ,0). 通过等腰Rt △ADE ,求E 点坐标为(1122t t--,). 由DG ⊥x 轴及AC 得G 点坐标(1t t -,); 联立DE 、AC 得I 点坐标(2212122t t t t t+-+-,);由斜线截距公式知:221112152t CI t t GI t t+-===+-∴32t =或1t =(舍去), ∴A (0,1),C (1,0),D (32,0), ∴AD AC =. 24.(1)过点D 作DQ ⊥x 轴于Q .∵243y kx kx k =-+,∴A (1,0),D (3,0),D (2,-k ), ∵△ABD 为等边三角形,∴AB =2AQDQ .∵∴k =(2)∵ A (1,0),B (3,0),∴AE 的解析式为y mx m =-,BE 解析式为3y nx n =-, ∴M (0,m -),N (2,n -).联立243y mx m y kx kx k =-⎧⎨=-+⎩和2343y nx ny kx kx k=-⎧⎨=-+⎩ ∴2(4)30kx k m x k m --++=和2(4)330kx k n x k n --++=,∴33A E k m m x x k k +⋅==+和3333B E k n nx x k k +⋅==+, ∴3E m x k =+和1E nx k =+,∴31m nk k+=+,即2n m k -=,∴2MO NH m n DH k+-+==;(3) ∠FGO 的大小不变.∵k =1,∴243y x x =-+,B (3,0),过F 作FI ⊥x 轴于I ,过点E 作EL ⊥x 轴于L . 设F (243m m m -+,),E (243n n n -+,). ∵∠FBA =∠EBA ,∴tan ∠FBA = tan ∠EBA ,即BLELIB FI =, ∴2243(43)33m m n n m n-+--+=--, ∴2n m =-,∴E (22(2)4(2)3m m m ----+,),即E (221m m --,), 直线EF 解析式为2223y x m m =-+-+,∴G (2232m m -+),∴22224343tan 2234322FI m m m m FGO m m m m IG m -+-+∠====-+-+-.。
湖北省武汉市2017年中考数学模拟试卷附答案
湖北省武汉市2017年中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.8的立方根为( ) A .2B .±2C .-2D .42.要使分式15-x 有意义,则x 的取值范围是( ) A .x ≠1 B .x >1 C .x <1 D .x ≠-1 3.计算(a -2)2的结果是( )A .a 2-4B .a 2-2a +4C .a 2-4a +4D .a 2+44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.下列各式计算正确的是( ) A .a 2+2a 3=3a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a ·a 2=a 3 6.如图,A 、B 的坐标为(2,0)、(0,1).若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .57.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是( ) A .S 1>S 2>S 3B .S 3>S 2>S 1C .S 2>S 3>S 1D .S 1>S 3>S 28.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是4,平均数是3.89.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22的圆,则⊙O 的“整点直线”共有( )条 A .7B .8C .9D .1010.Rt △ABC 中,∠ACB =90°,AC =20,BC =10,D 、E 分别为边AB 、CA 上两动点,则CD +DE 的最小值为( ) A .854+B .16C .58D .20二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:5-(-6)=___________ 12.计算:111+++a aa =___________13.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、7、11、-2、5.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________14.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为___________15.如图,△ABC 中,AB =AC ,∠A =30°,点D 在AB 上,∠ACD =15°,则ADBC的值是_______ 16.如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:54212-=-x x18.(本题8分)如图,△ABC 的高AD 、BE 相交于点F ,且有BF =AC ,求证:△BDF ≌△ADC19.(本题8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题: (1) 课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为____________ (2) 请补全条形统计图(3) 该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元(1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?(3) 请你求出学校在第二次购买活动中最多需要多少资金?21.(本题8分)如图,在正方形ABCD 中,以BC 为直径的正方形内,作半圆O ,AE 切半圆于点F 交CD 于E (1) 求证:AO ⊥EO(2) 连接DF ,求tan ∠FDE 的值22.(本题10分)如图,已知直线y =mx +n 与反比例函数xky =交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F (1) 若m =k ,n =0,求A 、B 两点的坐标(用m 表示)(2) 如图1,若A (x 1,y 1)、B (x 2,y 2),写出y 1+y 2与n 的大小关系,并证明 (3) 如图2,M 、N 分别为反比例函数x b y =图象上的点,AM ∥BN ∥x 轴.若3511=+BN AM ,且AM 、BN 之间的距离为5,则k -b =_____________23.(本题10分)已知点I 为△ABC 的内心(1) 如图1,AI 交BC 于点D ,若AB =AC =6,BC =4,求AI 的长 (2) 如图2,过点I 作直线交AB 于点M ,交AC 于点N ① 若MN ⊥AI ,求证:MI 2=BM ·CN② 如图3,AI 交BC 于点D .若∠BAC =60°,AI =4,请直接写出ANAM 11+的值24.(本题12分)如图1,在平面直角坐标系中,抛物线y=x2-4x-5与x轴分别交于A、B(A在B的左边),与y轴交于点C,直线AP与y轴正半轴交于点M,交抛物线于点P,直线AQ与y轴负半轴交于点N,交抛物线于点Q,且OM=ON,过P、Q作直线l(1) 探究与猜想:①取点M(0,1),直接写出直线l的解析式取点M(0,2),直接写出直线l的解析式②猜想:我们猜想直线l的解析式y=kx+b中,k总为定值,定值k为__________,请取M的纵坐标为n,验证你的猜想(2) 如图2,连接BP、BQ.若△ABP的面积等于△ABQ的面积的3倍,试求出直线l的解析式参考答案10.提示:当CG⊥AF时,CD+DE有最小值由角平分线定理,得AF ∶BF =AC ∶CB =2∶1 设BF =x ,则AF =2x在Rt △AFC 中,(10+x )2+202=(2x )2,解得x 1=350,x 2=-10(舍去) ∴sin ∠CAF =34210=+=x x AF CF ∵sin ∠CAF =ACCG∴CG =16二、填空题(共6小题,每小题3分,共18分) 11.11 12.113.5314.25°15.216.π338 15.提示:过点A 作AE ⊥BC 于F ,在AE 上截取EF =EC ,连接FC∴△CEF 为等腰直角三角形 ∵△ADC ≌△CFA (ASA ) ∴AD =CF =2CE =22BC ∴2=ADBC三、解答题(共8题,共72分) 17.解:23=x 18.解:略19.解:(1) 144°;(2) 如图;(3) 16020.解:(1) 设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元⎩⎨⎧+==+3045002550x y y x ,解得⎩⎨⎧==8050y x(2) 设第二次购买A 种足球m 个,则购买B 种足球(50-m )个 ⎩⎨⎧≥-⨯≤-⨯++2350%704500)50(9.080)450(m m m ,解得25≤m ≤27∵m 为整数 ∴m =25、26、27(3) ∵第二次购买足球时,A 种足球单价为50+4=54(元),B 种足球单价为80×0.9=72 ∴当购买B 种足球越多时,费用越高 此时25×54+25×72=3150(元)21.证明:(1) ∵∠ABC =∠DCB =90°∴AD 、CD 均为半圆的切线 连接OF ∵AE 切半圆于E∴∠BAO =∠FAO ,∠CEO =∠FEO ∵∠BAE +∠CEA =180° ∴∠DAF +∠OEF =90° ∴∠AOE =90° ∴AO ⊥EO(2) 设OB =OC =2,则AB =4 ∵Rt △AOB ∽Rt △OEC ∴CE =EF =1,DE =3,AE =5 过点F 作FG ⊥DE 于G ∴FG ∥AD ∴EDEGAD FG EA EF == 即3451EGFG == ∴FG =54,EG =53,DG =512∴tan ∠FDE =31=DG FG 22.解:(1) A (-1,m )、B (1,m )(2) 联立⎪⎩⎪⎨⎧=+=x ky n mx y ,整理得mx 2+nx -k =0 ∴x 1+x 2=m n -,x 1x 2=mk - ∴y 1+y 2=m (x 1+x 2)+2n =-n +2n =n (3) 设N (m b ,m )、B (m k ,m ),则BN =mb k - 设A (n k ,n )、M (n b ,n ),则AM =nk b - ∵3511=+BN AM ∴35=-+--b k m b k n ∵AM 、BN 之间的距离为5 ∴m -n =5∴k -b =53(m -n )=323.解:(1) 23(2) ∵I 为△ABC 的内心 ∴MAINAI ∵AI ⊥MN∴△AMI ≌△ANI (ASA )∴∠AMN =∠ANM 连接BI 、CI ∴∠BMI =∠CNI设∠BAI =∠CAI =α,∠ACI =∠BCI =β ∴∠NIC =90°-α-β∵∠ABC =180°-2α-2β ∴∠MBI =90°-α-β ∴BMI ∽INC ∴NCNINI BM =∴NI 2=BM ·CN ∵NI =MI ∴MI 2=BM ·CN(3) 过点N 作NG ∥AD 交MA 的延长线于G ∴∠ANG =∠AGN =30° ∴AN =AG ,NG =AN 3 ∵AI ∥NG ∴NGAIMG AM =∴ANAN AM AM 34=+,得4311=+AN AM 24.解:(1) ① P (6,7)、Q (4,-5),PQ :y =6x -29P (7,16)、Q (3,-8),PQ :y =6x -26 ② 设M (0,n )AP 的解析式为y =nx +n AQ 的解析式为y =-nx -n联立⎪⎩⎪⎨⎧--=+=542x x y n nx y ,整理得x 2-(4+n )x -(5+n )=0 ∴x A +x P =-1+x P =4+n ,x P =5+n 同理:x Q =5-n设直线PQ 的解析式为y =kx +b联立⎪⎩⎪⎨⎧--=+=542x x y b kx y ,整理得x 2-(4+k )x -(5+b )=0 ∴x P +x Q =4+k∴5+n +5-n =4+k ,k =6 (3) ∵S △ABP =3S △ABQ ∴y P =-3y Q∴kx P +b =-3(kx Q +b ) ∵k =6∴6x P +18x Q =-b∴6(5+n )+18(5-n )=4b ,解得b =3n -30∵x P ·x Q =-(5+b )=-5-3n +30=(5+n )(5-n ),解得n =3 ∴P (8,27)∴直线PQ的解析式为y=6x-21。
2017年河北省中考数学模拟试卷3附答案解析
4
(Ⅰ)图 1 中 a 的值为 ; (Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数; (Ⅲ)根据这组初赛成绩,由高到低确定 9 人进入复赛,请直接写出初赛成绩为 1.65m 的运动 员能否进入复赛. 23.甲车从 A 地驶往 B 地,同时乙车从 B 地驶往 A 地,两车相向而行,匀速行驶,甲车距 B 地的距离 y(km)与行驶时间 x(h)之间的函数关系如图所示,乙车的速度是 60km/h (1)求甲车的速度; (2)当甲乙两车相遇后,乙车速度变为 a(km/h),并保持匀速行驶,甲车速度保持不变, 结果乙车比甲车晚 38 分钟到达终点,求 a 的值.
6
7
2017 年河北省中考数学模拟试卷(3)
参考答案与试题解析
一、选择题(本大题共 16 个小题,共 42 分)
1.﹣ 的倒数的绝对值是( )
A.﹣2017 B.
C.2017 D.
【考点】倒数;绝对值.
【分析】根据倒数的定义可先求得其倒数,再计算其绝对值即可.
【解答】解:
勤学早-2017年武汉市四月调考数学模拟试卷(1)附答案
勤学早2017年武汉市四月调考数学模拟试卷(1)一、选择题(共10小题,每小题3分,共30分)1)A.3 B.-3 C.±3 D.2.若代数式;12x在实数范围内有意义,则x的取值范围是()A.x<2 B.x≠2 C.x>2 D.x=23.下列计算结果是a6的是()A.a2.a3B.a2+a4C.a9-a3D.(a3)24.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球5.运用乘法公式计算(x-2)2的结果是()A.x2-4x+4 B.x2-4 C.x2+4x+4 D.x2-2x+46.已知点A(2,n)与点B(b,3)关于坐标原点对称,则实数a、b的值是()A.a=-3,b=2 B.a=3,b=2 C.a=-3,b=-2 D.a=3,b=-27.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,别该几何体的左视图是()8.九年级某班则该班40名同学年龄的众数和中位数分别是()A.19,15 B.15,14.5 C.19,14.5 D.15,159.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674102+bx+c,函数y与自变量x的部分对应值如下表:若A(m,y1),B(m-1,y2)两点都在该函数的图象上,则当m满足()时,y1<y2.A.m≤2 B.m≥3 C.m<52D.m>52二、填空题(本大题共6个小题,每小题3分,共18分)11.计算8+(-5)的结果为____________12.化简:11xx x+-=____________13.甲盒子中有编号为1、2的2个白色乒乓球,乙盒子中有编号为4、5的2个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为____.14.如图,E,F分别是□ABCD的边BC,AD上的点,把四边形ABCD沿EF翻折,得到四边形GFEH,A的对应点为G,B的对应点为H,若∠B=50°,EH∥CD,则∠AFE的度数是____________15.如图,△ABC中,∠ABC= 45°,∠C= 30°,AD⊥AC交BC于D,以AD为边作正方形ADEF.F在AC边上,则是BD CF的值为____________16.如图,AB为⊙O的直径,C为半圆的中点,D为弧AC上一动点,延长DC至E,使CE=CD,若AB,当点D 从点A运动到点C时,线段BE扫过的面积为____________三、解答题(共8题,共72分)17.(本题8分)解方程:3x+2=5(x-2).18.(本题8分)如图,点B,E,C,F在同一条直线上,AB∥DE,AB= DE,BE=CF,求证:AC=DF.19.(本题8分)学习完统计知识后,某学生就本班同学的上学方式进行调查统计、他通过收集数据后绘制的两幅不完整的统计图如下图所示.请你根据图中提供的信息解答下列问题:(1)该班有_____名学生,其中步行的有______人;在扇形统计图中“骑车部分”所对应扇形的圆心角大小是________;(2)根据以上统计分析,估计该校2000名学生中骑车的人数大约是多少?20.(本题8分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A,B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买A,B 两种商品的总费用为y元.①求y关于x的函数关系式;②若该商品购买的A,B两种商品的总费用不超过296元,那么,购买A商品的件数最多只能买多少件?21.(本题8分)在△PAE中,∠PAE= 90°,点O在边AE上,以OA为半径的⊙O交AE于B,OP平分∠APE.(1)求证:PE是⊙O的切线;(2)设⊙O与PE相切于点C,若34BECB,连接PB,求tan∠APB的值.22.(本题10分)已知反比例函数y=6 x.(1)若该反比例函数的图象与直线y=-x+b相交于A,B两点,若A(3,2),求点B的坐标;(2)如图,反比例函数y=6x(1≤x≤6)的图象记为曲线C1,将C1沿y轴翻折,得到曲线C2.①请在图中画出曲线C1,C2;②若直线y=-x+b与C1,C2一共只有两个公共点,直接写出b的取值范围.23.(本题10分)在等边△ABC中,D为AB上一点,连接CD,E为CD上一点,∠BED= 60°.(1)延长BE交AC于F,求证:AD= CF;(2)若23ADBD,连接AE.BE,求AEBE的值;(3)若E为CD的中点,直接写出ADBD的值.24.(本题12分)抛物线y=mx2-4mx+3与x轴的交点为A(1,0),B,与y轴交于点C.(1)求抛物线的解析式;(2)P为抛物线第一象限上的一点,若∠PAB=2∠ACO,求点P的坐标;(3)M为抛物线在点B右侧上的一点,M与N两点关于抛物线的对称轴对称,AN,AM交y轴于E,D,求OE-OD 的值.。